

THE BRITISH LIBRARY BRITISH THESIS SERVICE

COPYRIGHT

Reproduction of this thesis, other than as permitted under the United Kingdom Copyright Designs and Patents Act 1988, or under specific agreement with the copyright holder, is prohibited.

This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

REPRODUCTION QUALITY NOTICE

The quality of this reproduction is dependent upon the quality of the original thesis. Whilst every effort has been made to ensure the highest quality of reproduction, some pages which contain small or poor printing may not reproduce well.

Previously copyrighted material (journal articles, published texts etc.) is not reproduced.

THIS THESIS HAS BEEN REPRODUCED EXACTLY AS RECEIVED

LB/03F(E)/259

University of Moratuwa

78956

. Ali (41)

A Systems Approach to Earthquake Vulnerability Assessment

WORATUWA, CAN

By

Mauricio Sánchez-Silva

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

A thesis submitted to the University of Bristol in accordance with the requirements for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of Civil Engineering.

October 1995

Abstract

WTA Set Store and Shares

The ability to take decisions about the expected response of existing projects (i.e. buildings, lifelines, cities) to an earthquake is difficult and complex. The behaviour of a few selected parameters of the main structural system (e.g. inter-storey drift) are commonly used to make judgements. The behaviour of a project clearly depends upon the structure but it also depends upon many other factors which often are not considered. These include, safety culture, management, condition, use, construction, materials and so forth. The modelling and measurement of these factors vary in quality since they are very different in nature. A model which enables these factors to be put together to assess the proneness to failure of a particular project is proposed. The model follows a systems approach and concentrates on the modelling and management of information. The management of the uncertainty, which is classified into fuzziness, incompleteness and randomness, is an important part of the model. Hierarchically arranged holons describe the processes making up the project and capture inherent fuzziness of the problem. The model includes tests (such as audits) which a project must pass in order to be declared dependably safe. Dependability is a measure of the degree to which an engineering theory has been tested in practical problems. The proposed methodology combines existing numerical models as well as ways of processing vague information and expert judgement. It is also a very flexible tool which allows the handling of various types of projects and situations which are slightly different from past experience. Experts will use linguistic assessments to measure the evidence about the dependability of processes to sustain their function during an earthquake. Linguistic assessments are matched to interval probability numbers. An interval number is used to capture, in a practical manner, features of fuzziness and incompleteness. Interval probability theory is used to combine evidential support values throughout the hierarchy. A computer implementation of the model (i.e. EVAS) was developed to show its potential for practical use. The software developed was used to apply the methodology to the Hospital Regional de Buenaventura in Colombia. Further testing of the proposed model and EVAS in practical applications should be carried out to ensure their dependability.

Acknowledgements

I would like to thank Dr. C.A. Taylor and Professor D.I. Blockley for their guidance, advice and encouragement during the course of this research. I would also like to thank all people in the systems and earthquake groups during these years for the enriching discussions and for their great support and friendship. I also thank Kath Lanham for her help in the transcription of the interviews.

I also wish to express thanks to the Colombian Government through the Instituto Colombiano para el Fomento de la Ciencia y la Tecnología (COLCIENCIAS), for the financial support for this study; the department of Civil Engineering at Andes University, in Bogotá Colombia; and in a very special manner to Professor A. Sarria for his guidance and encouragement during the last years.

Mostly, I would like to thank my friends and my family for their continuous and unconditional support

IN THE REAL PROPERTY OF

Declaration

This thesis entitled "A Systems Approach of for Earthquake Vulnerability Assessment", is submitted for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of Civil Engineering at the University of Bristol.

The research on which this thesis was based was carried out under the supervision of Doctor C.A. Taylor and Professor D.I. Blockley. It is entirely due to the author except where otherwise acknowledged in the text and has not formed the basis for the submission for any other degree. The views expressed in the dissertation are those of the author and not of the university.

The following papers are based on the work described in this thesis:

- Sánchez-Silva M., Taylor C. A., Blockley D.I. (1994) "Evaluation of Proneness to Failure of a Project in an Earthquake". Fifth US National Conference on Earthquake Engineering, 427-436, Chicago, July.
- Sánchez-Silva M., Taylor C. A., Blockley D.I. (1994) "Proneness to failure of Buildings in an earthquake: a systems approach". Proceedings of 11th European Conference on Earthquake Engineering. Vienna, September.
- Sánchez-Silva M., Taylor C., Blockley D.I. (1995) "Evaluation of Earthquake Induced Failure of Buildings in Buenaventura, Colombia". Chapter 12, Design and construction of buildings and structures to withstand earthquakes. IDNDR/ODA. Thomas Telford, London.
- Sánchez-Silva M., Taylor C. A., Blockley D.I. (1995) "Hazard management of projects in an earthquake". CERRA - ICASP 7, 7th. International Conference on Applications of Statistics and Probability in Civil Engineering. Paris, July.

- Sánchez-Silva M., Taylor C. A., Blockley D.I. (1995) "Towards an integrated model for scismic zonation". Proceedings of the 5th. International Conference on Seismic Zonation. Nice, October.
- Sánchez-Silva M., Blockley D.I., Taylor C. A. (1996) "Uncertainty Modelling of Earthquake hazards". Journal of Microcomputers in Civil Engineering. Vol. 11, No 1, January.

Signed:.....

HERE AND THE CARDENSISTER AND THE PARTY A

,

•

;

3

/ H -)

1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

٧

STATISTICS OF PRESERVED STATISTICS

"Now what I want is, Facts. Teach these boys and girls nothing but Facts. Facts alone are wanted in life. Plant nothing else, and root everything else. You can only form the minds of reasoning animals upon Facts: nothing else will ever be of any service to them.... We hope to have, before long, a board of fact, composed by commissioners of fact, who will force people to be a people of fact, and nothing but fact..."

"Hard Times" Charles Dickens

"Many years later, as he faced the firing squad, Colonel Aureliano Buendia was to remember that distant afternoon when his father took him to discover ice... The world was so recent that many things lacked names, and in order to indicate them it was necessary to point...."

"A hundred years of solitude" Gabriel García Marquez

) |-||

•

)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

To my father, my mother and my sister

an and a second and a second secon

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

vii

CONTENTS

a de la companya de estado de la desenverta de la companya de la companya de la secondada de la companya de la

	Page
Abstract	ü
Acknowledgements	iii
Declaration	iv
Contents	viii
List of Figures	xv
List of Tables	xvii
Notation	xix
Glossary	xxii
1 Introduction	1
1.1 Background	1
1.2 Objectives of the thesis	2
1.3 Layout of the thesis	3
University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	
2 Earthquake disasters www.lib.mrt.ac.lk	5
2.1 Objectives	5
2.2 What is a disaster?	5
2.3 "Natural Disasters"	8
2.4 Modelling disasters	10
2.4.1 General aspects	10
2.4.2 Existing models of disasters	11
2.4.3 Characteristics of disaster models	16
2.4.4 Cultural, social and environmental aspects of disasters	18
2.5 Earthquake disaster system	19
2.5.1 The customers	21
2.5.2 The actors	22
2.5.3 The transformation processes	22
2.5.4 The world view	24
2.5.5 The owner	24

2.5.6 The environmental constrains	25
2.5.7 Definition of the system	26
2.6 Conclusions	27
3 Earthquake vulnerability assessments	29
3.1 Objectives	29
3.2 General aspects	29
3.3 Existing methodologies	31
3.3.1 Classification of methodologies	32
3.3.2 Type of projects	32
3.3.3 Type of information and resources	34
3.4 Discussion of existent methods	36
3.5 Expert view of the problem	39
3.5.1 Interviews and Grounded theory	39
3.5.2 Considerations in the development of a new model	42
3.5.2.1 The project	42
3.5.2.2 The customer	43
3.5.2.3 Objectives leses & Dissertations	44
3.5.2.4 Relationship between ground motion and project	45
3.5.2.5 Expected characteristics of a new methodology	45
3.6 A new interpretation of the problem	47
3.6.1 Systems thinking	47
3.6.2 The model	49
3.6.2.1 Organisation of information	49
3.6.2.2 Hazard analysis	50
3.6.2.3 Procedure	50
3.6.3 Characteristics of the proposed approach	51
3.6.4 Summary	53
3.7 Conclusions	54

4 Earthquake damage uncertainty	56
4.1 Objectives	56
4.2 Damage	56
4.2.1 What is damage?	56
4.2.2 Safety and damage	57
4.2.3 Code of practice and damage criteria	58
4.2.4 Measurement of damage	61
4.3 Measurement of earthquake damage	63
4.3.1 Potential damage of the ground motion	63
4.3.2 Structural damage	64
4.3.3 Damage to non-structural systems	66
4.3.4 Social damage	67
4.3.6 Recovery	68
4.4 Uncertainty	69
4.4.1 What is uncertainty?	69
4.4.2 Types of uncertainty	69
4.4.3 System modelling uncertainty	70
4.5 Earthquake disuster system uncertainty	71
4.5.1 Ground motion	72
4.5.2 Uncertainty of the ground motion	72
4.5.3 Project	74
4.5.4 Uncertainty of the project	75
4.6 Conclusions	77
5 Model of proneness to failure	79
5.1 Objectives	79
5.2 General aspects	79
5.3 Systems Approach	80
5.3.1 Complexity	80
5.3.2 Systems Thinking	82
5.3.3 Dependability	83
5.4 Organisation of Information	85

х

an and a standard and a standard and a standard water and the standard of the standard and a standard and a standard a

5.4.1 Basic concepts	85
5.4.2 Hierarchical organisation of information	88
5.4.3 Interacting Objects Process Model (IOPM)	91
5.4.4 Holons as interactive objects	92
5.4.5 Summary of basic concepts	94
5.5 Purpose of the Model	95
5.6 The methodology	95
5.6.1 Definition of the system	96
5.6.2 Development of the hierarchy	96
5.6.2.1 Basic concepts for developing a hierarchy	96
5.6.2.2 Basic hierarchical arrangement	99
5.6.3 Collecting evidence	100
5.6.4 Evaluation of evidence	101
5.6.4.1 Nature of information	101
5.6.4.2 Assessment of holons	102
5.6.5 Calculation of proneness to failure	103
5.6.6 Identification of critical aspects	104
5.6.7 Monitoring the project	105
5.7 Conclusions	105
6 Assessment of the project	107
6.1 Objectives	107
6.2 General aspects	107
6.3 Aims and scope of the assessment	108
6.4 Collecting evidence	110
6.5 Assessment	112
6.5.1 Expert judgement of evidence	112
6.5.2 Membership function and confidence	114
6.5.3 Confidence	117
6.5.4 Linguistic representation	118
6.5.4.1 Methods for selecting fuzzy numbers	118
6.5.4.2 Selection of fuzzy variables	119

120.00.00 1000.340

A Second Sta

and the second states

SETA . STRACTORS

and an and the second secon

6.5.5 Selection of assessment values	121
6.5.6 Importance	123
6.5.7 Summary	124
6.6 Conclusions	125
7. Numerical model to assess proneness to failure	127
7.1 Objectives	127
7.2 General aspects	127
7.3 Aim and scope of the calculation	128
7.3.1 Summary of results from the assessment	128
7.3.2 Management of information	128
7.4 Interval probability theory	130
7.4.1 Basic concepts	130
7.4.2 Degree of dependence	131
7.4.3 What is dependence?	132
7.4.4 Logical connectors and Dependence	133
7.4.5 Extension to interval numbers Sri Lanka	136
7.4.6 Combination of information	138
7.5 Analysis of results	140
7.5.1 Evidential support	140
7.5.2 Critical aspects of the project	142
7.6 Procedure	143
7.7 General Methodology	145
7.8 Conclusions	147
8. Computer implementation of the model	149
8.1 Objectives	149
8.2 General aspects	149
8.3 Object Oriented programming	150
8.3.1 What is Object Oriented Programming?	150
8.3.2 Philosophy of OOP	150
8.3.3 Basic concepts	151

Der sterner programme generaliseren in der sinder der sonder sinder sinder sinder sinder sinder in der sinder S

xii

the tradition of the home of the home of the measure of the transmission of the second states of the second of the second s

1

Addited to present the work of a factor of

14 24 60L 1/ 5C 82 4 16(11) 10

	8.3.4 Properties of object-oriented systems	152
	8.4 Systems approach and object oriented programming	153
	8.5 Implementation	155
	8.5.1 Spreadsheets	155
	8.5.2 OOP systems	158
	8.6 EVAS	159
	8.6.1 Structure of the programme	160
	8.6.1.1 Basic considerations	160
	8.6.1.2 Development of the hierarchy	160
	8.6.1.3 Assessment	162
	8.6.1.4 Results	162
	8.6.2 Programme functionality	163
	8.6.2.1 Hierarchy Manager window	164
	8.6.2.2 Description window	166
	8.6.2.3 Assessment window	167
	8.6.2.4 Results window	169
	8.7 Conclusions University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk	170
Ho	ospital Regional de Buenaventura a case study	172
	9.1 Objectives	172
	9.2 General aspects	172
	9.3 Buenaventura	173
	9.3.1 Economic aspects	173
	9.3.2 Social aspects	174
	9.3.3 Seismic background	174
	9.4 Building construction characteristics in Buenaventura	175
	9.4.1 General aspects	175
	9.4.2 Hospital Regional de Buenaventura	176
	9.5 Aim of the study	177
	9.6 Hierarchical representation of the system	177
	9.6.1 Definition of the problem	178
	9.6.2 The Ground Motion	180

9.

,

)

9.6.3 The Project	183
9.7 Assessment of the system	184
9.7.1 Assessment of the Ground Motion	185
9.7.1.1 Collecting evidence	185
9.7.1.2 Assessment	186
9.7.1.3 Calculation of evidential support	187
9.7.1.4 Analysis of the results and evidence	188
9.7.2 Assessment of the Hospital Project	190
9.7.2.1 Assessment	190
9.7.2.2 Analysis of the results	193
9.7.2.3 Identification of critical aspects	196
9.8 Summary of the analysis	200
9.9 Main features of the model	201
9.10 Conclusions	203
10. Conclusions and Recommendations	209
10.1 Conclusions University of Moratuwa, Sri Lanka.	209
10.2 Recommendations for further work	212
11. References	215
Appendix A	
Seismic Information about the Hospital Regional de Buenaventura	234
Appendix B	
Calculation of proneness to failure of the Hospital regional de Buenaventura	244

Second to every and state parts for

. . .

 1 424 atres 6 100

the state and the state of the

Figures

2.1 Basic accident representation	11
2.2 Typical event fault tree representation	12
2.3 Loss Causation Model representation	12
2.4 Turner's model of incubating disasters	13
2.5 Pressure and Release Model (PRM)	15
2.6 The reflective practice loop	20
2.7 Description of the system	21
3.1 Procedure of Grounded Theory Analysis	41
3.2 Typical hierarchical representation	49
4.1 Damage to social environment	61
5.1 The reflective practice loop	80
5.2 Hierarchical organisation of information. Dissertations	90
5.3 Examples of the hierarchical organisation of information	91
5.4 Representation of a holon	92
5.5 Hierarchical representation of an Earthquake Disaster System	99
5.6 Description of the process to assess the proneness to failure of a project	104
6.1 Interval representation of the assessment	114
6.2 Examples of intervals	115
6.3 Membership function and confidence	116
6.4 Confidence ranges	117
6.5 Convex fuzzy numbers representation	120
6.6 Representation of linguistic terms	122
6.7 Numerical interpretation of the assessment	125
7.1 Hierarchy	129
7.2 Role of logical connectors	134

7.3 Venn diagram representation of dependence	135
7.4 Result from the combination of evidence	141
8.1 Example of the implementation using a spreadsheet	157
8.2 Kappa-PC Main menu	159
8.3 Example of a hierarchy of holons generated	161
8.4 Hierarchy Manager window	165
8.5 Description window	166
8.6 Assessment window	168
8.7 Assessment and State windows	168
8.8 Results window	169
9.1 Representation of a holon	178
9.2 Hierarchical representation of the system	205
9.3 First levels of the hierarchy	180
9.4 Hierarchical representation of the Ground Motion	181
9.5 Representation of the support interval for the Ground Motion	189
9.6 Results for the design of the Hospital Project	196

्रम्

Tables

2.1 Different disaster models	16
2.2 CATWOE Summary	26
3.1 Classification of methodologies	32
3.2 Summary of the methodology proposed	51
4.1 Linguistic description of earthquake damage	62
4.2 Damage capacity measures of the ground motion	64
4.3 Structural damage indices	66
4.4 Relationship between damage and casualties	68
4.5 Uncertainty of the ground motion	73
4.6 Uncertainty of the project	76
5.1 Description of the main attributes of a holon	93
5.2 Description of Function	94
5.3 Summary of the methodology proposed & Dissertations	96
5.4 Analogy between biological and structural systems	98
5.5 Relationship between the attributes of Function and the assessment	103
6.1 Relationship between attributes of Function and the assessment	108
6.2 Confidence ranges and mean values	118
8.1 Analogy between OOP and the system approach	153
8.2 Description of the main aspects of the spreadsheet implementation	
shown in Figure 8.1	156
8.3 Description of different windows	164
8.4 Function of every button in the Hierarchy Manager	165
9.1 Description of the Ground Motion at different levels of definition	182
9.2 Description of the Hospital Project at different levels of definition	183
9.3 Evidence associated to the Ground Motion process	185

The second states of the states of the second state

9.4 Assessment of the Ground Motion	186
9.5 Calculation of support for the Ground Motion	187
9.6 Type of evidence collected about the Ground Motion	189
9.7 Assessment at level 3 of the hierarchy	191
9.8 Assessment at level 4 of the hierarchy.	193
9.9 Summary of assessments at different levels of the hierarchy	194
9.10 Main factors influencing proneness to failure at level 4	197
9.11 Main factors influencing proneness to failure at level 6	198
9.12 Main factors influencing proneness to failure at level 9	199
9.13 Summary of results	201

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

xviii

Notation

如此此,你们还不是我们的你的?""你是我们的你们的你们的你们的你们的你们的你们的你们的你们的你们的?"

a(τ)	- Ground acceleration during the earthquake (Arias (Husid 1973)).
Ams	- Root mean square of the ground acceleration (Wen et al. 1988).
AND	- Logical operator for the intersection of sets.
App _{B/R}	- Applicability of B for the rule R.
Bi	- A component holon of B.
Conf	- Confidence.
c/cc	- Viscous damping ratio (Arias (Husid 1973)).
D	- Damage Index (Stephens and Yao 1987 and Park and Ang 1985).
Di,	- Damage Index
dE	- Dissipated hysteretic energy (Park and Ang 1985).
Dcp _R	- Dependability value of the rule R .
(Dcp _R) _I	- Necessary support value of the Dependability of the rule R.
(Dep _R) _u	- Possible support value of the Dependability of the rule R.
g	- Acceleration of gravity
I _{Bi}	- Importance value of B_i where $B_i \in B = \{B_1, B_2, \dots, B_n\}$.
I	- Importance
I	- Ground motion intensity measure (Housner 1952, Husid 1973, Fajfar 1990).
Ic	- Characteristic Intensity of the ground motion (Wen et al. 1988).
Indep	- Independence.
к	- Flexural damage ratio (Banon and Veneziano 1982).
m	- Constant (Powell et al. 1988).
Maxdep	- Maximum dependence.
Mindep	- Minimum dependence.
Ms	- Magnitude of an earthquake in the Richter scale.
Mutexc	- Mutual exclusive.
N	- Normalised cumulative rotation (Banon and Veneziano 1982).
OR	- Logical operator for the union of sets.
P(A)	- Probability of A.

xix

$[S_n(A),S_p(A)]$	- Interval probability number, where $S_p(A)$ and $S_p(A)$ are defined as the
	lower and upper bounds of the probability $P(A)$ for any event or
	proposition A.
$P(A \cap B)$	- Intersection between events A and B.
$P(A \cup B)$	- Union between events A and B.
Qу	- Static yield strength (Park and Ang 1985).
Si	- Demand (Bertero and Bresler 1971).
$S_n(A)$	- Necessary support for the proposition A.
$S_n(A_i)_w$	- Weighted necessary support for the proposition A.
$S_p(A)$	- Possible support for the proposition A.
$S_p(A_i)_w$	- Weighted possible support for the proposition A.
ri	- Capacity (Bertero and Bresler 1971).
1o	- Strong motion duration (Arias (Husid 1973) and Wen et al. 1988).
t _D	- Duration of the ground motion after Trifunac and Brady (1975).
Vς	- Pseudo-velocity spectrum (Housner 1952).
v _g	- Ground velocity (Fajfar et al. 1990).
w,	- Weights (Bertero and Brester 1971).
W'Bi	- Weight value of B_i where $B_i \in B = \{B_1, B_2, \dots, B_n\}$.
$(w_{B_i})_i$	- Necessary support value of the weight of B_i where $B_i \in B = \{B_1, B_2, \dots, B_n\}$.
(<i>WBi</i>) _u	- Possible support value of the weight of B_i where $B_i \in B = \{B_1, B_2,, B_n\}$.
α	- Constant (Stephens and Yao 1987).
β	- Constant (Park and Ang 1985).
$\Delta \delta_{p}$	- Positive change in plastic deformation (Stephens and Yao 1987).
$\Delta \delta_{\mu \nu}$	- Positive change in plastic deformation at failure (Stephens and Yao 1987).
ρ	- Degree of dependence.
ρ _{<i>B1B2Bm</i>·<i>I.Bm</i>}	- Dependence relationship between B_1, B_2, \dots, B_{m-1} and B_m
ρι	- Necessary support value of the dependence.
ρ "	- Possible support value of the dependence.
рлв	- Dependence relationship between A and B.
δ	- Damage parameter $\delta = 1 - (\delta_u / \delta_o)$.
Sterlero	- Damage Index (Bertero and Bresler 1971).

δс - Calculated value of the damage parameter (Powell et al. 1988). δh - Cumulative damage (Powell et al. 1988). δd - Value of structural property in damaged state (Powell et al. 1988). - Maximum response deformation (Newmark and Rosenblueth 1974 and δmax Park and Ang 1985). - Value in undamaged state (Powell et al. 1988). δο - Threshold value of the damage parameter (Powell et al. 1988). δι - Ultimate value of the damage parameter (Powell et al. 1988). δu δ, - Ultimate elastic deformation (Park and Ang 1985) - Yielding deformation (Newmark and Rosenblueth 1974). δ, - Ductility factor (Newmark and Rosenblueth 1974). μ η_i and γ_i - Service factors that model the cumulative nature of damage (Bertero and Bresler 1971).

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

xxi

Glossary

Some of the main concepts used in this thesis are defined in this section⁴.

Accident	an unplanned failure event (Blockley 1994).
Construction	implementation of the design to create an artefact that is fit for its intended use (Dester 1992).
Culture	is a shared set of beliefs, norms, attitudes, roles and practices (Comerford and Blockley 1993).
Damage state	a particular level of loss of value or fitness for purpose of a project. A damage state may be personal harm or loss to property, plant, or a loss of business opportunity (Blockley 1993). cronic floses & Dissertations
Danger	liability or exposure to an accident (Blockley 1993).
Dependability	is the extent to which an engineering theory has been tested in practical decisions (Blockley 1980)
Design	is the process that transforms the conceptual design into a form which can be directly developed into an artefact (Dester 1992).
Expert	is a person who has detailed knowledge and experience of a topic, situation or activity (Dester 1992).

¹ Italies denote a term that has also been defined in this section.

Event	is some occurrence that may cause the state of a system to change (Booch 1994).
Failure of an artefact	is the lack of correspondence between a required state of the world and the actual state of the world (Blockley 1992).
Failure event	is one in which an artefact or project is <i>damaged</i> (Blockley 1993)
Form	is the "essence" as initially defined by Plato. (i.e. What it is).
Function	fitness for purpose (Blockley 1992).
Fuzziness	imprecision of definition (Blockley 1993).
Hazard Hierarchy	is a set of incubating preconditions for failure (Blockley 1993). University of Moretuwa, Sri Lanka, Electronic These & Discentions is a ranking or ordering of concepts logically connected at
	different levels of definition.
Holon	is both a whole and a part (Koestler 1967). Holons exhibit emergent properties. These are not properties of any of the parts but emerge from the co-operation of the parts.
Model	is a representation of a defined system for a purpose (Blockley 1993).
Operation	is a process which encompasses all activities, systems and procedures that are necessary for the use of an artefact. This includes maintenance, repairs and modifications (Dester 1992)
Parent holon	is the holon in the immediate upper level of the hierarchy

1

ı.

ххііі

Process a series of actions which produce a change or development. This is a transformation of a initial state into a final state. Processes are defined by needs and objectives. Project is a set of facilities and activities which may be defined in terms of processes at varying levels of definition. Facilities consist of elements such as buildings, the ground, the foundation, the lifelines and so on. The project may be defined at the level of a specific building (or indeed a specific element within the building) or at the level of a city, region or country. The activities with the processes are those which define the purpose of the project, for example a hospital. Proneness to failure is a measure of the available evidence concerning the hazard that an artefact might suffer a failure event (Blockley 1993). University of Moratuwa, Sri Lanka, s the lack of a specific pattern in a set of data (Blockley 1993). Randomness Risk is the combined effect of the chances of occurrence of some failure and its consequences in a given context (Blockley 1993). Reliability is a measure of the chances that an artefact or project will not suffer an accident (Blockley 1993). Safety is freedom from unacceptable risk (Blockley 1993). Society the system of interrelationships which connects together the individuals who share a common culture (Giddens 1989).

HI YO'S STREET ON S

xxiv

Sufficient refinement	is the extent to which the dependability of the result is
	appropriate. The appropriateness of the result may be defined by
	external restrictions such as the requirements of the client, law
	regulations, the quality of information or the grounding of the
	model.
System	is defined as a structured set of objects and/or attributes together
-	with the relationships between them (Wilson 1984). The concept
	system embodies the idea of a set of elements connected together
	which form a whole, showing emergent properties which are
	properties of the whole which result from the co-operation of the
	component parts.
Uncertainty	is lack of knowing (Blockley 1993).
Vulnerability	is defined as the susceptibility to failure of an artefact (structure,
ģ	facility and so forth) under any arbitrary action (Wu et al. 1993). Electronic Theses & Dissertations www.lib.mrt.ac.lk

🖅 year and a nanangan an anayaratan a statistik nangaratan nangara sanan sangaran 1. Kangaran 1. Kangaratan si sangaratan sa

1. 160 St 400

STATE STREAM TO THE ADDRESS OF STREAMS

The second se

entral since conversions from sizes of

Managaran wang baranting di salawala di wasa terrati da marang