AN ISLAND-WIDE EDH TRANSMISSION NETWORK FOR THE CEYLON ELECTRICITY BOARD

Submitted in partial fulfillment for the Degree of Master of Engineering in Electronic \& Telecommunication Engineering to the

Department of Electronic \& Telecommunication Engineering University of Moratuwa

Declaration

This work, presented in this dissertation, has not been submitted for the fulfillment of any other degree.

UOM Verified Signature

M N S Shifraj Sharifdeen Candidate

UOM Verified Signature
Eng. ATMEThsiri Samarasinghe

Late. M N Sharifdeen (Retd. Principal), who's dreams, shall reflect on all my successes.

Acknowledgements

I would like to extend my sincere gratitude to my supervisor Eng. A T L Kithsiri Samarasinghe for the invaluable guidance he extended towards the successful completion of this project. Thanks are also due to the M.Eng. Project co-coordinator Prof. J A K S Jayasinghe, for his valuable comments and corrections.

I would like to thank the former Head of the Dept. of Electronic \& Telecommunications, Dr. Dileeka Dias for accepting my project proposal for the masters program, for the advices she rendered and for nominating a suitable supervisor for the project.

And finally the Dept. of Electronic \& Telecommunications Engineering of University of Moratuwa and my employer, the Ceylon Electricity Board receive big thanks for providing me the opportunity to pursue my master's degree successfully.

Index

Page

1. Introduction 01
2. Literature Survey 05
2.1. Overview of SDH Architecture 05
2.1.1. SDH Hierarchy 05
2.1.2. Introduction to SDH Network Components 07
2.1.3. SDH Ring Protection 09
2.1.4. SDH Network Synchronization 15
2.2. Transmission Characteristics of Optical Fibers 19
2.2.1. Attenuation 19
2.2.2. Dispersion 20
2.2.3. Throughput of optical Fibers 21
2.3. Methods of incorporating optical fibres in to power transmission lines 23
2.4. Microwave Link Design 25
3. The SDH Network Design 27
3.1. Identification of Network Nodes 27
3.2. Identification of Rings 29
3.2.1. Central Ring 30
3.2.2. North Central Ring 32
3.2.3. North Western Ring 33
3.2.4. Spur Links 35
3.3. Network Component Schedule 39
3.3.1. Central Ring 39
3.3.2. North Central Ring 40
3.3.3. North Western Ring 40
3.3.4. Spur Links 41
3.4. Determination of Transmission Capacities 41
3.4.1. Traffic Assignment 42
3.4.2. Ring Capacities 44
3.5. Puttalam - Anuradhapura Microwave Link Design 46
3.5.1. Path Profile 46
3.5.2. Power Budget 48
3.6. Optical Links 49
3.6.1. A typical OPGW link 49
3.6.2. Power Budget Calculations for a typical OPGW link 53
3.6.3. Dispersion Analysis 55
3.7. Network Synchronization 58
3.7.1. Synchronization Signal distribution 59
4. Protection Against Lightning 61
4.1. Fiber Protection 61
4.2. Equipment Protection 61
5. Cost Analysis 63
4.1. Cost of OPGW link 65
4.2. Cost of End Equipment 66
4.3. Total Project Cost 67
6. Further Discussions 68
6.1. Comparison of different methods of incorporating optical fibres on High Voltage Transmission Lines 68
6.2. Comparison of Project Cost 69
6.3. A Case Study 71
6.4. Marketing Aspects 76
7. List of Recommendations 78
8. Drawbacks 80
9. References 81
Appendix - A
Appendix - B
Appendix - C
Appendix - D
Appendix-E
Appendix-F

AN ISLAND-WIDE SDH TRANSMISSION NETWORK FOR THE CEYLON ELECTRICITY BOARD

M N S Shiraj Sharifdeen

Abstract

Optical fibers are the choice of transmission medium for the high capacity telecommunication transmission systems of today such as Synchronous Digital Hierarchy (SDH), giving a very high yield for the investment made. With the already established highly reliable power transmission infrastructure, together with the advancement of technology, the utilities have a very high potential market in the telecommunication carrier service. By replacing the ground wires of the overhead high tension transmission lines with Optical Ground Wires ($O P G W$), utilities can build-up a country-wide high capacity transmission network over a relatively very short time frame and a very low investment. This paper analyses the possibility of establishing an island-wide optical fiber transmission network for the Ceylon Electricity Board based on the OPGW technique.

1. Introduction

It is nowadays very common worldwide for the power utilities to enter the telecommunications business. With the massive infrastructure they possess, it is relatively easy to set up and run telecommunication services. The major focus for the power utilities here is to provide long distance carrier services for the telecommunication service providers. The typical customers are wireless operators, cellular operators, data network operators, corporate communication sectors etc. Usually these operators establish their transmission network based on microwave radio links. However, as the network expands the radio transmission systems fail to cope up with the

increasing bandwidth requirements. The landline operators usually have the privilege to lay underground optical fiber networks, which offer extremely large bandwidth capacity. However, the operating license of wireless operators usually restricts them from laying underground fiber networks.

Here is where the power utilities have the opportunity to provide carrier services to such operators. Power utilities essentially have the already established highly reliable power transmission network to cover almost the entire nation. These transmission networks can now be used to carry highspeed telecommunication signals. The ground wires of the overhead transmission lines can be replaced by the Optical Ground Wires (OPGW) in which the core of the ground wire contains highly secured optical fibers in large numbers. Since the transmission lines are usually constructed for very high reliability, the resulting optical fiber network is also highly reliable, mechanically. Replacement of the conventional ground wire by the OPGW can be done for both existing lines and new lines. This would give the power utilities extremely large data transmission capacities with the use of advance techniques such as single mode (SM) fibers and Wavelength Division Multiplexing (WDM). With suitable planning the power utilities can build a nation-wide high capacity transmission network in a very short time frame and have quick access to revenue.

This is completely a different case from the conventional fibre cabling, which requires obtaining of right-of-way from relevant authorities to trench roadways, additional expenditures for the trenching and civil works and
cumbersome maintenance. The already available right-of-way of power utilities in the form of HT transmission lines is made use of to lay fibres.

Hence, the implementation of the OPGW network is relatively cost effective and less time consuming compared to conventional fibre cabling.

In addition to replacing the conventional ground wires with the OPGW, there are several other methods to incorporate optical fibres in to the transmission lines such as All Dielectric Self Supporting (ADSS) fiber cables and WrapAround fiber cables. These are presented in the chapter 2.

Once decided on an optical fiber network based on OPGW, the type of transmission technology also should be determined. The most obvious choice will be the Synchronous Digital Hierarchy (SDH) transmission system. The SDH offers numerous benefits over the Plesiochronous Digital Hierarchy (PDH) and other techniques such as high transmission rates (up to 10 Gbps$)$, simplified add and drop functionality, high availability and capacity matching, high reliability (with ring architecture and path/section protection schemes), better interface to other standards, future proof platform for new services etc.

This report analyzes the possibility of establishing an island-wide SDH transmission network for the Ceylon Electricity Board (CEB) based on the OPGW technique. In chapter 2, the SDH transmission hierarchy, the SDH network components, the self healing ring architecture used for the SDH transmission system, SDH network synchronization, the transmission characteristics of optical fibers, the available techniques of incorporating
optical fibers in to power transmission lines, and the microwave link design are discussed. In the chapter 3, the network design for the CEB SDH transmission system is presented. The chapter 4 presents the cost analysis for the proposed network, while chapter 5 is devoted for further discussions. Chapter 6 lists the recommendations to the power utility based on the study and in Chapter 7 the drawbacks in the study are discussed. Chapter 8 gives the list of references, which is followed by the relevant technical data from Appendix A to Appendix F.

University of Moratuwa, Sri Lanka Electronic Theses \& Dissertations www libmrtaclk

2. Literature Survey

2.1. Overview of SDH Architecture

2.1.1. SDH Hierarchy

Figure 2.1: SDH Hierarchy.

The structure of the SDH hierarchy is shown in the Figure 1. The SDH standards define a structure which enables plesiochronous signals to be combined together and encapsulated within a standard SDH signal (Ref. 24).

Table 2.1 summarizes the STM-N bit rates of the SDH hierarchy.

Table 2.1: The SDH Bit Rates.

STM-N	Bit Rate (Kbit/sec)
STM-1	155,520
STM-4	622,080
STM-16	$2,488,320$
STM-64	$9,953,280$

The STM-N Frame Structure is illustrated in the Figure 2.2 .

Figure 2.2: SDH Frame for STM - N.

2.1.2. Introduction to SDH Network Components

2.1.2.1. Regenerators

Regenerators, as the name implies, have the function of regenerating the clock and amplitude relationships of the incoming data signals that have been attenuated and distorted by dispersion (typically in a optical link). They derive their clock signals from the incoming data stream (Ref. 24).

Figure 2.3; The Regenerator

2.1.2.2. Terminal Multiplexers (TMUX)

Terminal Multiplexers are used to combine plesiochronous and synchronous input signals in to higher bit rate STM-N signals (Ref. 24).

Figure 2.4; The Terminal Multiplexer

2.1.2.3. Add/Drop Multiplexers (ADM)

lesiochronous and lower bit rate synchronous signals can be extracted from or inserted in to high speed SDH bit stream by means of ADMs. This feature makes it possible to set up ring structures, which have the advantage that automatic back up path switching is possible using elements in the ring in the event of a fault (Ref. 24).

Figure 2.5; The Add-Drop Multiplexer

2.1.2.4. Digital Cross Cönnect (DXC) Mornuma Sri Lanka

This network element has the widest range of functions. It allows mapping of PDH tributary signals in to virtual containers as well as switching of various containers up to and including VC-4 (Ref.24).

Figure 2.6; The Digital Cross Connect.

2.1.3. SDH Ring Protection

2.1.3.1. Dedicated Protection Ring (DP Ring)

Figure 2.7: The Dedicated Protection Ring.

In this protection scheme the sending node sends the same signal both ways around the ring and the protection mechanism at the receiving node selects the alternate path upon failure detection.

2.1.3.2. Shared Protection Ring (SP Ring)

Figure 2.8; The Shared Protection Ring.

This is a shared Multiplex Section (MS) switched ring which is able to share protection capacity, reserved all the around the ring. In the event of a failure the protection switches operate on both sides of the failure to re-route the traffic through the spare capacity.

Figure 2.9: The Two FiberUnidirectional Path Switched Ring.

In this type though the transmission is bi-directional for each node, the overall ring transmission is unidirectional and hence, the name unidirectional. Two fibers are used; one for working line and the other for the protection. The transmitting node sends the signal on both working and protection lines and the protection is achieved at the receiver by selecting the better signal (Ref. 24).

Figure 2.10: The Two Fiber Bi-directional Line Switched Ring.

Here the transmission in the fiber is bi-directional on any point in the ring. However, there are no separate fibers for protection. Each fiber is divided in time slots between working and protection lines. The protection line of any working line is on the opposite side of the ring to provide the route diversity.

Another feature of this ring is that the protection lines are not allocated to any path permanently but are assigned segment by segment, according to the requirement, during a fault condition. The switching is done at nodes at both ends of each multiplex section to route the traffic through the shared protection capacity (Ref. 18).

2.1.3.5. Four Fiber Bi-directional Line Switched Ring

This is similar to the two fiber BLSR, but, instead if sharing the time slots between the working and protection lines, dedicated fibers are reserved for protection lines. Hence, it would be immune against end terminal faults (Ref. 18). This is illustrated in Figure 2.10.

2.1.3.6. Other Methods

Another simple and cost effective method of protection is to split the traffic at each node and transmitting them both ways around the ring. In case of a failure at a given line segment, at least half the transmitting capacity is assured to each node. This does not call for much network management complexity. However, the protection is available only for 50% of the transmission capacity.

Figure 2.11: The Four Fiber Bi-directional Line Switched Ring.

2.1.4. SDH Network Synchronization

The fundamental requirement of SDH network is synchronization of all network elements to a common highly accurate clock known as the Primary Reference Clock (PRC). This PRC should conform to ITU-T Rec. G. 811 with the accuracy of $1 * 10^{-11}$. This clock signal must be distributed throughout the entire network. A hierarchical structure is used for this; the signal is passed on by the subordinate Synchronization Supply Units (SSUs - G.812) and Synchronous Equipment Clocks (SECs - G.813). The synchronization signal path can be the same as those used for the SDH communications (ref 24.). The clock signal is generated in the SSUs and SECs with the aid of Phase Locked Loops.

Figure 2.12: Hierarchy of Clock Signal Distribution

The network is organized with a Master-Slave relationship with clocks of the higher-level nodes feeding the timing signals to the clocks of the lower level nodes. All nodes can be traced up to a PRC. The internal clock of an SDH terminal may derive its timing signal from a SSU used by switching systems and other equipment. Thus, this terminal can serve as the Master for the other SDH nodes, providing timing on its outgoing STM-N signal. Other SDH nodes will operate in a Slave mode with their internal clocks timed by the incoming STM-N signal (Ref. 25.).

2.1.4.1. Synchronization Clock Signal Sources for Network Elements

For the proper functioning of the Network Elements (NEs), they should be continuously supplied with the clock signal, which is refered to a PRC. Therefore, protection measures should be taken to ensure that any failure in the network does not affect the continuous supply of the clock signal

To do this, the NEs are designed so as to select clock signals from various sources. A synchronization source list is SET in each NE so that, in case of a failure of the current source, the NE can switch to the next source in the list.

EAST (LINE 1)
WEST (LINE 2)

Figure 2.13: Common Sources of Clock Signals

Common sources of clock signals are;
a. Line signals (STM-N)
b. Tributaries
-East or West
-more than one tributary can be selected
c. External Synchronization Input
-such as PRCs, SSUs etc.
d. Internal Clocks

If the clock supply fails, the network element switches over to a clock source of same or lower quality, or if this is not possible, it switches to hold-over mode. In the hold-over mode, the clock signal is supplied by the internal clock. In this situation the clock signal is kept relatively accurate by controlling the oscillator by applying the stored frequency and phase correction values for the previous hours and taking the temperature of the oscillator in to account (Ref 248227).

Because, the timing source lists at each node can be programmed individually, when the nodes are connected in ring configurations, a potential 'timing loop' or 'clock island' can occur. This must be avoided at all costs, as these would drift out of synchronization with passage of time and the total failure disaster would be the result (Ref 24827).

2.2. Transmission Characteristics of Optical Flbers

The most important Factors that affect the transmission characteristics of the optical fibers are the attenuation and dispersion mechanisms within the fiber.

2.2.1. Attenuation

The very low attenuation characteristic of today's optical fibers, is one of the most important factors that made them attractive as a transmission medium for the telecommunication signals. The tremendous improvements made in this direction since 1970, after the introduction of the first commercial fiber with an attenuation coefficient of $20 \mathrm{~dB} / \mathrm{km}$, has led to the production of silica based glass fibers with losses less than $0.2 \mathrm{~dB} / \mathrm{km}$ (Senior, p.85).

The mechanisms responsible for the signal attenuation within the optical fibers are the material composition, the preparation and purification techniques and the wave guide structures. These irregularities led to several types of signal attenuations such as, material absorption, material scattering, curve and micro-bending losses, mode coupling radiation losses and losses due to leaky modes (Senior, p.88).

These attenuation mechanisms leave three operating regions for optical communications namely the $0.85 \mu \mathrm{~m}$, the $1.31 \mu \mathrm{~m}$ and the $1.55 \mu \mathrm{~m}$ regions; the $1.55 \mu \mathrm{~m}$ region being the lowest attenuation region having a

Figure 2.15.Graph of attenuation against wavelength for single-mode silica fiber.
demonstrated attenuation coefficient of $0.2 \mathrm{~dB} / \mathrm{km}$ which approaches the theoretical minimum limit of $0.16 \mathrm{~dB} / \mathrm{km}$ for silica fibers (Robert, p.298).

The attenuation characteristic with respect to wavelength for silica fibers is shown in Figure 2.15 (Robert, p.298).

2.2.2. Dispersion

Besides attenuation, dispersion is the most critical parameter that affects the transmission characteristics of optical fibers, as a long haul transmission medium. The dispersion, which is characterized by the broadening of the transmitted pulse, influences both the symbol rate of optical pulses within the fiber as well as the transmission distance. Therefore, the dispersion is represented by a bandwidth-distance product, in the optical fiber system specifications. The dispersion is broadly categorized in to inter-modal and intra-modal dispersions.

With the non-existence of inter-modal dispersion in single mode fibers, the limiting factors of the bandwidth-distance product are the material dispersion (Dm) and the wave-guide dispersion (Dw), which belong to intramodel dispersion. The variations of Dm and Dw with wavelength for silica fibers are illustrated in Figure 2.16 (Senior, p.126; Robert, p.303).

The frequency dependence of the refractive index (and therefore the speed of light) of the fiber material causes the material dispersion. For silica, the material dispersion drops to zero at $1.31 \mu \mathrm{~m}$, as shown in Figure 2.1.6.

Figure $2 \cdot 16$. The material dispersion parameter $\left(D_{M}\right)$, the waveguide dispersion parameter (D_{W}) and the total dispersion parameter $\left(D_{\mathrm{T}}\right)$ as functions of wavelength for a conventional single-mode fiber.

Figure2.17. Total dispersion characteristics for the various types of single-mode fiber.

Unfortunately, at this wavelength the attenuation is $0.35 \mathrm{~dB} / \mathrm{km}$, which is not the minimum attenuation wavelength.

The wave-guide dispersion has a negative slope compared to the positive slope of the material dispersion. By modifying the fiber refractive index profile using precise fabrication techniques to affect the wave-guide dispersion characteristics, the fiber can be designed to have the zero total dispersion wavelength shifted to the lowest attenuation wavelength of 1.55 $\mu \mathrm{m}$.

Such fibers are known as dispersion shifted fibers and due to manufacturing tolerances will typically have a non-zero dispersion figure of less than 3 ps.nm ${ }^{-1} . \mathrm{km}^{-1}$ at $1.55 \mu \mathrm{~m}$, in practice (Robert, p.303). The dispersion characteristics of various types of single mode fiber are represented by the curves given in Figure 2.17.

The alternative technique to combat dispersion is to periodically introduce Dispersion Compensating Fibers (DCF), which have a dispersion characteristic, opposite to that of the transmitting fiber.

2.2.3. Throughput of Optical Fibers

The two techniques primarily used to increase the throughput of optical fiber systems are;
a. Increasing the bit-rate (symbol rate)
b. Employing Wavelength Division Multiplexing (WDM)

Increasing the bit-rate (bandwidth) is Largely limited by the dispersion characteristics of fibers. In single mode fibers, it is influenced by the chromatic dispersion. With dispersion shifted fibers, which offer the lowest dispersion at the lowest attenuation wavelength, the only avenue left to further improve the bit-rate is to narrow the line-width of the optical sources. The smaller the line-width of the optical source, the lesser the chromatic dispersion.

Among the contestants of light sources for optical fibers, Laser Diode (LD) is found to have the narrower line-width. While Fabry-Perot LDs have a linewidth of typically 2 nm , the Distributed Feedback LDs offers a line-width of about $5^{*} 10^{-6} \mathrm{~nm}$. These can be compared with that of LEDs having a linewidth of about 40nm (Robert, p.328).

The WDM involves the transmission of a number of different peak wavelength signals in parallel through a single optical fiber. Although, in spectral terms, optical WDM is analogous to electrical Frequency Division Multiplexing, it has the distinction that each WDM channel effectively has access to the entire intensity modulation fiber bandwidth. The next generation Dense Wavelength Division Multiplexing (DWDM) systems will combine hundreds of $40 \mathrm{Gbit} / \mathrm{s}$ bit-rate channels to realize multi-terabit throughput in optical fibers (Bigo). Ref. 20 lists the enabling technologies for high capacity point-to-point long distance transmission using optical fibers.

2.3. Methods of Incorporating Optical Fibres in to the Transmission Lines

There are basically three well-established methods of incorporating fibres in to the transmission lines;

a. Optical Ground Wires (OPGW)

Here the conventional ground wires are replaced by OPGWs which has a well secured core containing the optical fibres with very high degree of protection, surrounded by metallic conductors to carry the lightening current. There is adequate protection for the fibre from high temperatures that may exist in the surrounding conductors during a lightening discharge. The specifications for OPGW cables is given in the Ref. 3, which covers the construction, mechanical and electrical performance, installation guidelines, acceptance criteria and test requirements of the same..

Figure 2.14: OPGW Cable Construction.
b. Wrap-around Cable

Wrap-around cables is suitable for incorporating fibres on existing ground wire in a cost effective way without having to replace them by OPGW. This is a flexible type of optical fibre cable which can be wrapped around the existing ground wire using a special remote controlled wrapping machine, even under energized conditions.
c. All Dielectric Self Supporting (ADSS) Fibre Cable

ADSS cables are manufactured with non-metallic materials to ensure a complete electrical isolation. ADSSs are self-supporting type fibre cables which are strung between transmission towers at a lower elevation than the current carrying conductors of the transmission line.

A comparison of these three techniques is given in the section 5.1. The literature (obtained from the National Grid Company, U.K) pertaining to the installation of fibres by the above techniques is given in Appendix-A.

2.4. Microwave Link Design

- The following equation can be used to calculate the size of the first Freznel zone in meters;
$\mathrm{F}_{1}=17.3 \sqrt{ }\left(\mathrm{~d}_{1} . \mathrm{d}_{2} / \mathrm{f} . \mathrm{d}\right)$
Where $\quad d_{1}, d_{2}$ - distance to the point of interest from the two ends of the link in km
d _ link length in km
f _ frequency in GHz
- The following equations may be used for power budget calculations;

Free Space Loss (FSL) $=32.5+20 \log (\mathrm{f})+20 \log (\mathrm{~d})$
Where $\quad \mathrm{f}$ - frequency in MHz and
d - distance in km crontio Theos $\&$ Disstations

Flat Fade Margin (Mf) $=30 \log _{10}(\mathrm{~d})+10 \log { }_{10}\left(6.8\right.$. Q.f) $-10 \log _{10}(1-\mathrm{R})-70$

Where d- distance in km
δ - factor to convert the worst month fade to the average fade
Q- Terrain Factor
R - Reliability requirement
Selective Fade Margin (Ms)=102-35 Log $10(\mathrm{~L})-10 \log _{10}(\mathrm{~S})$
Where $\quad \mathrm{L}$ - Length of the link in km
S - Signature of the equipment in MHz
Effective Fade Margin (Me) $\quad=\quad-10 \log _{10}\{10(-\mathrm{Mf} / 10)+10(\mathrm{Ms} / 10)\}$

- The following equations can be used to calculate the distance to point of reflection;

Distance to point of reflection			$=(\mathrm{d} / 2)+\mathrm{Ad}$	(2.6)
	Where;	d	$=$ hop length in km	
		Ad	$=$ Correction	
Correction		Ad	$=2 \sqrt{t} * \operatorname{Cos} .\{(\theta+\Pi) / 3\}$	
	Where;	θ	$=\operatorname{Cos}^{-1}\{\mathrm{~T} /(\mathrm{t} \sqrt{ } \mathrm{t})\}$	
	Where;	T	$=6.37 *(k / 4) . \mathrm{d} .\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)$	
		t	$=\left(\mathrm{d}^{2} / 12\right)+8.5 .(\mathrm{k} / 4) .\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)$	

Where h_{2} and h_{1} are the antenna heights in m.

Unikersity of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations
www.liburt.ac lk

3. The SDH Network Design

3.1. Identification of Network Nodes

Since, the purpose of laying the fibre network is to provide the transmission capacity to the commercial operators, it is necessary that the nodes of the transmission network be selected in such a way that they are in close proximity to the commercial cities. To do that the power transmission network of the CEB should be matched with the important commercial cities of the country.

Under the first round of investigation the following cities have been selected as important commercial locations; or Mortuma Sri Lamka

1. Colombo
2. Kandy
3. Anuradhapura
4. Jaffna
5. Trincomalee
6. Batticaloa
7. Ampara
8. Kurunegala
9. Galle
10. Nuwaraeliya
11. Matale
12. Kalutara
13. Vavuniya
14. Kegalle
15. Badulla
16. Ratnapura
17. Puttalam
18. Matara
19. Hambantota
20. Gampaha
21. Negombo
22. Chilaw

The Figure 3.1 gives the typical power transmission network diagram of the CEB. The table 3.1 gives the matching of the Commercial cities to the network nodes.

Table 3.1:

No	Commercial Location	Nearest Network Node
1.	Colombo	Kolonnawa GS
2.	Kandy	Kiribathkumbura GS
3.	Anuradhapura	New Anuradhapura GS
4.	Jaffna	Vavuniya GS
5.	Trincomalee	Trincomalee SS
6.	Batticaloa	Valaichenai SS
7.	Ampara	Ampara SS
8.	Kurunegala	Kurunegala SS
9.	Galle	Galle SS
10.	NuwaraEliya	NuwaraEliya SS
11.	Matale	Ukuwela PS
12.	Kalutara	Panadura SS
13.	Vavuniya	Vavuniya GS
14.	Kegalle	Kiribathkumbura GS
15.	Badulla	Badulla GS
16.	Ratnapura	Embilipitiya GS
17.	Puttalam	Puttalam GS
18.	Matara	Matara SS
19.	Hambantota	Gambantota SS
20.	Gampaha	Kotugoda GS
21.	Negombo	Bolawatta SS
22.	Chilaw	Chilaw SS

Key: GS - Grid Sub Station
SS - Sub Station

3.2. Identification of Rings

The capacity of SDH transmission networks is better utilized when ring networks are employed. Therefore the next step is to identify the rings within the existing power network. For this purpose the CEB network is organized in to three rings and number of Spur Links. The rings and Spur Links are illustrated in the figure 3.1.

3.2.1. The Central Ring

The Central ring consists of the nodes given in table 3.2;

Table 3.2.

No.	Nodes
1.	Kolonnawa GS
2.	Kotmale PS
3.	Badulla GS
4.	Nuwara Eliya SS
5.	Laxapana PS

This ring is established via the following installations of the power transmission network;
(9) University of Moratuwa, Sri Lanka.

Table 3.3.

No	Installation	Remarlis
1.	Kolonnawa GS	Node
2.	Kelanitissa PS	By Pass
3.	Biyagama GS	By Pass
4.	Kotmale PS	Node
5.	Victoria PS	By Pass
6.	Randenigala PS	By Pass
7.	Rantambe PS	By Pass
8.	Badulla GS	Node
9.	Nuwara Eliya GS	Node
10.	Laxapana PS	Node
11.	Polpitiya PS	By Pass

The Central ring is illustrated in the figure 3.1 in Blue.
The lengths of line sections in the Central ring are listed in the table 3.4.

Table 3.4.

No.	Inter Node Section	Line Section	Dist. / (km)
1.	Kolonnawa-Kotmale	Kolonnawa-Kelanitissa	2.2
		Kelanitissa-Biyagama	12.5
		Biyagama-Kotmale	70.5
		Total Distance(Sub-Total)	85.2
2.	Kotmale - Badulla	Kotmale-Victoria	30.1
		Victoria-Randenigala	16.4
		Randenigal-Rantambe	3.1
		Rantambe-Badulla	33
		Total Distance(Sub-Total)	82.6
3.	Badulla - Laxapana	Badulla-NuwaraEliya	35.4
		NuwaraEliya-Laxapana	38.8
		Total Distance(Sub-Total)	74.2
4.	Laxapana - Kolonnawa	Laxapana-Polpitiya	8.3
	Uniceritivo	Polpitiya-Kolonnawa	65.9
	(Q) Electromic The	Total Distance(Sub-Total)	74.2
	Huwnow		
	Total Fibre Distance	(Grand Total)	316.2

3.2.2. North Central Ring

The North Central ring consists of the nodes given in the table 3.5;

Table 3.5.

No,	Nodes
Nog	
1.	Habarana
2.	New Anuradhapura
3.	Kotmale
4.	Kiribathkumbura
5.	Ukuwela

The ring is established via the following installations of the power transmission network;

Table 3.6. Uninersity of Moratuma, Sri Lanka
Electronic Theses \& Dissertions

No.	Installation	
	Remarles	
1.	Habarana	
2.	Anuradhapura (old)	Node
3.	New Anuradhapura	By Pass
4.	Kotamle	Node
5.	Kiribathkumbura	Node
6.	Ukuwala	Node

The North Central ring is illustrated in the figure 3.1 in green.
The lengths of line sections in the North Central ring are listed in table 3.7.

Table 3.7.

No.	Inter Node Section	Line Section	Dist. (1. $1 . \mathrm{m}$)
1.	Habarana - New Anuradhapura	Habarana Anuradhapura	48.9
		Anuradhapura - New Anuradhapura	1.5
		Sub Total	50.4
2.	New Anuradhapura - Kotmale		163 ?
3.	Kotmale - Kiribathkumbura	384.	22.5
4.	Kiribathkumbura - Ukuwala		29.9
5.	Ukuwala - Habarana		82.3
	Total Fibre Distance	Grand Total	348.1

3.2.3. North Western Ring

Unikersity or Mortuma, Sri Lanka

The North Western ring consists of the nodes given in Table 3.8.
Table 3.8.

No.	Nodes
1.	Kolonnawa
2.	Kotugoda
3.	Bolawatta
4.	Chilaw
5.	Puttalam
6.	New Anuradhapura
7.	Kotmale

The segment Puttalam-to-New Anuradhapura has to be established by means of a microwave radio link since there is no transmission line support fibre between these two installations.

The ring is established via the following installations of the power transmission network;

Table 3.9.

No.	Installation	Remarls
1.	Kolonnawa	Node
2.	Kotugoda	Node
3.	Bolawatta	Node
4.	Chilaw	Node
5.	Puttalam	Node
6.	New Anuradhapura	Node
7.	Kotmale	Node
8.	Biyagama	By Pass
9.	Kelanitissa	By Pass

The North Western ring is illustrated in yellow in figure 3.1.
The lengths of line sections in the North Western are listed in the table 3.10.

Table 3.10.

No.	Inter Node Section	Line Section	Dist. 1 (km)
1.	Kolonnawa - Kotugoda	Kolonnawa- Kelaniya	6.6
		Kelaniya - Kotugoda	16.7
		Sub Total	23.3
2.	Kotugoda - Bolawatta	\% ${ }^{\text {a }}$,	21
3.	Bolawatta - Chilaw		29.4
4.	Chilaw - Puttalam	\cdots	68.2
5.	Puttalam-New Anuradhapura		Radio
6.	New Anuradhapura - Kotmale		163 3
7.	Kotmale - Biyagama		
		Kotmale - Biyagama	70.5
		Biyagama - Kelanitissa	12.5
		Kelanitissa-Kolonnawa	2.2
	a) Flactromic tice	Sub Total	85.2
	8) wwwlibminal\|		
	Total Fibre Distance	Grand Total	390.1

3.2.4. The Spur Links

In addition to the three rings, number of Spur Links from the rings have been identified. The Spur Links are shown in the figure 3.1 in orange. There are seven sets of Spur Links.

3.2.4.1. Spur Links - Set 1

Figure 3.2.

The figure 3.2 gives a set of spur links from the Central ring. The line length of the individual links are listed in the table 3.11 . ons

Table 3.11.

No:	Link Section	Line Section	Dist. $1 .(\mathrm{km})$
1.	Laxapana - Balangoda		
		Laxapana - New Laxapana	0.6
		New Laxapana - Balangoda	43.9
		Sub-Total	44.5
2.	Balangoda - Galle		102.5
3.	Balangoda- Embilipitiya		
		Balangoda - Samanalawewa	40
		Samanalawewa-Embilipitiya	38
		Sub-Total -	78
4.	Embilipitiya - Matara		52
5.	Embilipitiya-Hambantota		35

3.2.4.2. Spur Links - Set 2

Figure 3.3.

The line lengths are shown in the table 3.12.

Table 3.12.

Nopini Section	Line Section	Dist	

3.2.4.3. Spur Links - Set3.

University of Montuwa, Sri Lanka
wwwlibmrtaclk

Figure 3.4.
The link length is 99.7 km .

3.2.4.4. Spur Links - Set4

Figure 3.5.
The link length is 34.6 km .

3.2.4.5. Spur Links - Set 5

Figure 3.6.

The link Length is 53.5 km .

3.2.4.6. Spur Links - Set 6

Figure 3.7.
The link length is 103.3 km .
3.2.4.7. Spur Links - Set 7 Eww lib minacik \&isseratons

Figure 3.8.
The line lengths are shown in Table 3.13.
Table 3.13.

3.3. Network Component Schedule

In this section the network component at each node are identified. The SDH ring network is usually built around multiplexers. In addition to multiplexers, Digital Cross- Connects, Regenerators etc. are also commonly used in network structures. The following abbreviations are used;

ADM	Add/Drop Multiplexer
TMUX	Terminal Multiplexer
DXC	Digital Cross Connect

The configuration of the three ring are illustrated in the Drawing No:01.

3.3.1. Central Ring

(G) Uninersity of Mortuma Sri Lanka

The Table 3.14 lists the components at each node that constitute the Central ring.

Table 3.14.

No.	Node	Itpe or Network Component
1.	Kolonnawa	2 * ADM, DXC (Ring Interconnecting, With Spur Link)
2.	Kotmale	3 * ADM, DXC (Ring Interconnecting)
3.	Badulla	ADM (With Spur Link)
4.	Nuwara Eliya	ADM
5.	Laxapana	ADM (With Spur Links)

3.3.2. North Central Ring

The Table 3.15 lists the components at each site that make - up the North
Central ring.
Table 3.15.
$\left.\begin{array}{|c|l|c|}\hline \text { No. } & \text { Node } & \text { Le of Network Component }\end{array}\right\}$

3.3.3. North Western Ring

The Table 16 lists the components at each site that make - up the North Western ring.

Table 3.16.

No.	Node	ype of Network Component
1.	Kolonnawa	2 * ADM, DXC (Ring Interconnecting,
With Spur Link)		

3.3.4. Spur Links

Table 3.17 shows the network components at each site that make up various spur links.

Table 3.17.

No.	Spur Link Set	Node	Type of Network Component
1.	Set 1	Balangoda	TMUX
		Galle	TMUX
		Embilipitiya	TMUX
		Matara	TMUX
		Hambantota	TMUX
2.	Set 2	Panadura	TMUX
3.	Set 3	Valaichenai	TMUX
4.	Set 4	Kurunegala	2. Disstutions TMUX
		- wwwitima	
5.	Set 5	Vavuniya	TMUX
6.	Set 6	Trincomalee	TMUX
7.	Set 7	Ampara	TMUX

3.4. Determination of Transmission Capacities

In order to calculate the capacity of each ring and spur links, it is required to assign the traffic requirements for each node. In the assignment of capacity for each node the following should be considered;
a. the ring interconnecting nodes should be assigned with adequate capacity to meet the traffic flow requirements of the ring interconnection.
b. the nodes with spur links should be assigned higher capacity to meet the transportation of traffic from the other connected nodes.

The above applies for the capacity determination of DXCs also.

3.4.1. Traffic Assignment

The actual traffic assignment for a network requires the study of the market demand and additional information. Hence, it is considered beyond the scope of this project. However, for the purpose of demonstration the following traffic flows have been assumed.

3.4.1.1. Central Ring
 (9.) Unicritiy or Morstuma, SriLanka

Table 3.18 lists the traffic assignments for the nodes in the central ring.

Table 3.18.

No.	Node	Type of Node	Capacity 1 (2MbpS)
1.	Kolonnawa	Ring Interconnecting Node	4000
2.	Kotmale	Ring Interconnecting Node	3000
3.	Badulla	Node with spur link	500
4.	Nuwara Eliya	Node	100
5.	Laxapana	Node with spur link	500

3.4.1.2. North Central Ring

Table 3.19 lists the traffic assignments for the nodes in the North Central Ring.

Table 3.19.

No.	Node	Type of Node	Capacity (2MDps)
1.	Kotmale	Ring Interconnecting Node	3000
2.	New Anuradhapura	Ring Interconnecting Node	1500
3.	Habarana	Node with spur link	500
4.	Kiribathkumbura	Node with Spur link	3000
5.	Ukuwela	Node	500

3.4.1.3. North Western Ring

Table 3.20 list the traffic assignments for the nodes in the North Western Ring.

Table 3.20.

No.	Node	Type of Node	Capacity /(2Mbps)
1.	Kolonnawa	Ring Interconnecting Node	3000
2.	Kotmale	Ring Interconnecting Node	2000
3.	New Anuradhapura	Ring Interconnecting Node	1500
4.	Puttalam	Node	100
5.	Chilaw	Node	100
6.	Bolawatta	Node	200
7.	Kotugoda	Node	200

3.4.2. Ring Capacities

In the calculation of the ring capacity, the knowledge of the type of protection system to be employed plays an important role. Assuming that the traffic at each node is split and routed both ways of the ring for protection, the following sample calculations for ring capacities have been made.

3.4.2.1. Central Ring

Traffic in the ring	$=\frac{\text { Total traffic from all nodes }}{2}$
	$=\frac{4000+3000+500+100+500}{2}$
	$=4050 * 2 \mathrm{Mbps}$ channels

Hence, the selected SDH capacity is STM-64.

3.4.2.2. North Central Ring

Traffic in the ring $\quad=\frac{\text { Total traffic from all nodes }}{2}$
$=\underline{3000+1500+500+3000+500}$
$=4250$ * 2 Mbps channels
Hence the selected SDH capacity is STM-64.

3.4.2.3. North Western Ring

Traffic in the ring
$=$ Total traffic from all nodes
2
$=\underline{3000+2000+1500+100+100+200+200}$
$=3550$ * 2 Mbps channels

Hence, the selected SDH capacity is STM-64.

3.5. Puttalam - Anuradhapura Microwave Link Design

The direct hop length between the two sites is 70 km . As this long link cannot be designed as a single hop, due to the high frequency band of operation (8 GHz) and high capacity of transmission (STM-64), it was decided to break the link in to two hops. To do this, an intermediate regenerative repeater was introduced at Nochchiyagama, where a Customer Service Centre had already been set-up. Hence, the hop distances are;

Puttalam - Nochchiyagama	50 km
Nochchiyagama - Anuradhapura	25 km

The preliminary investigation of the geographical map $(1: 250,000)$ reveals that the path profiles of both the hops consist of flat surface throughout their length. However, the Puttala Nochchiyagama link passes through a water surface (lake) at Balagollagama, situated between $26^{\text {th }}-27^{\text {th }} \mathrm{km}$ from Puttalam. Hence, the antenna heights of both ends were adjusted so that the point of reflection falls at 23 km from Puttalam, avoiding the water surface. The point of reflection for both the links were thus considered to be falling on foliage.

3.5.1. Path profile

In order to draw the path profile, the size of the first freznel zone at 8 GHz was calculated, at each 5 km distance and is tabulated in tables $3.21,3.22$ for both the links.

Table 3.21: Puttalam - Nochchiyagama link

Distance $\mathrm{d}_{1} /(\mathrm{km})$	Distance do/ $/ \mathrm{km})$	Stize of freqnel Ellipsoid/h(m)
5	45	13
10	40	18
15	35	20
20	30	21
25	25	22
30	20	21
35	15	20
40	10	18
45	5	13

Table 3.22: Nochchiyagama - Anuradhapura Link

Distance $d_{1} /(\mathrm{lm})$	Distance $\mathrm{d}_{2} /(\mathrm{km})$	Size of Treznel Ellipsoid $/(\mathrm{m})$
5	20	13
10	Uninersity or 15 luma, Sri Lanka.	15
15	Wurnctil 10 -	15
20	5	13

The following antenna heights were determined from the path profile for the 100% clearance of the first Freznel ellipsoid at 8 GHz frequencies and for the requirements of the distance to point of reflection according to the CCITT recommendations.

Puttalam-Nochchiyagama:	Puttalam	77 m
	Nochchiyagama	60 m
Nochchiyagama-Anuradhapura:	Nochchiyagama	45 m
	Anuradhapura	48 m

3.5.2. Power Budget

To determine the power budget, the actual details of the system components are required. Hence, the performance figures of the following commercial products are used in the sample calculations, the specification sheets of which are given in the Appendix B;
a. 8 GHz High Performance Antennas (HPX 15-82C) from Andrew Corporation, USA.
b. 8GHZ Elliptical Wave-guides (EWP77) from Andrew Corporation, USA.
c. Microwave Radios from Harris

A Microsoft Excel Power Budget Worksheet is given in Table 3.25 and Table
3.26.

TABLE: 3.25. MICROWAVE POWER BUDGET WORKSHEET
$\left.\begin{array}{llcc} & \text { STATION A - to be entered } & \text { PUTTALAM } \\ & \text { STATION B - to be entered } & \text { NOCHCHIYAGAMA }\end{array}\right]$

21	delta- to be entered	0.5
22	Q- to be entered	4
23	Flat Fade Margin / (dB)	40.79
24	Selective Fade Margin / (dB)	48.00
25	Effective Fade Margin / (dB)	40.04

TABLE: 3.26. MICROWAVE POWER BUDGET WORKSHEET

$\left.\begin{array}{llc} & \text { STATION A }- \text { to be entered } & \text { NOCHCHIYAGAMA } \\ & \text { STATION B - to be entered } & \text { ANURADHAPURA }\end{array}\right]$

delta- to be entered	0.5
Q- to be entered	4
Flat Fade Margin / (dB)	31.76
Selective Fade Margin / (dB)	48.00
Effective Fade Margin / (dB)	31.66

University of Moratuwa, Sri Lanka
Electronic Theses \& Dissertations
WWW It mot. se It

3.6. Optical Links

3.6.1 A Typical OPGW Link

The figure 3.9 shows the typical schematic of an OPGW link, which is comprised of the following;
a. An OPGW line segment
b. Approach cable line segments
c. Fiber patch codes
d. Optical Line Terminating Equipment (OLTE)
e. Terminating Box for the approach cable
f. OPGW to Approach cable splice box
g. Transmission Towers spaced at typically 400 m intervals
h. OPGW splice boxes along the transmission line placed at the tower legs.

The optical link design should be primarily focused on the two most important transmission characteristics; the attenuation and dispersion. The attenuation is dealt with a typical power budget calculation that follows this section and it is supplemented by an excel worksheet for the power budget calculation. The generated copies of this worksheet for each link in the network are given under Appendix E. A separate discussion that follows the power budget calculations analyses the dispersion.

For long haul, high capacity applications, where, dispersion is the limiting factor, the Non-Zero Dispersion Shifted Fiber (NZ-DSF/G.655) is preferred
by most authorities over ordinary Single Mode Fibers (SMF/G.652) and Dispersion Shifted Fibers (DSF/G.653), owing to its potential to migrate to future multi-terabit DWDM transmission capacities, economically (RRref. 29 and Ref. 30). The G. 652 fiber is not preferred due to its unacceptably high dispersion at the lowest attenuation window around 1550 nm . The non-linear effects, at higher launched powers and high data rates near zero dispersion wavelength, of the G. 653 fiber precludes the use of the same in high capacity DWDM transmission networks.

Considering the long life span (25 to 30 years) of the fibers installed today and their potential to migrate to high capacity DWDM transmission technologies in the very near future, the G. 655 fiber is selected for this application.

A sample design for the longest link in the network, the Kotmale Anuradhapura link of 163 km , below;

The following component specifications are used for this design;

1. Fiber

Manufacturer: Corning Inc.
Model: LEAF
Type: NZ-DSF (G.655)
Attenuation at $1550 \mathrm{~nm}: \quad 0.3 \mathrm{~dB} / \mathrm{km}$
Dispersion at 1530-1565nm: $\quad 2.0$ to $6.0 \mathrm{ps} /(\mathrm{km} . \mathrm{nm})$

2. Optical Transceiver 1

Manufacturer: Juniper Networks
Model: STM-64 PIC
Capacity: STM-64
Wavelength: $\quad 1550 \mathrm{~nm}$ (C band)
Output power: +8 dBm
RX Sensitivity: - 22 dBm
RX Saturation: - 10 dBm
3. Optical Transceiver 2

Manufacturer: NEC Corporation
Model: SMS-2500A
Capacity: STM-16
Wavelength: 1550 nm (C band)
Output Power: 0 dBm Electronic Theses \& Dissertaions
Rx Sensitivity: -28 dBm
Source Line Width: <1nm
4. Dispersion Compensating Module (DCM)-1

Manufacturer: Avanex Corporation
Model: DCM NZ-DSF-80-336
Wavelength: 1550 nm (C band)
Compensation: -336 ps/nm Nominal (Min -353; Max -319)
5. Dispersion Compensating Module (DCM)-2

Manufacturer: Avanex Corporation
Model: 60\%LC-80-306
Wavelength: 1550 nm (C band)
Compensation: -306 ps/nm Nominal (Min -321; Max -291)

6. EDFA Booster Amplifier

Manufacturer: Avanex Corporation
Model: PureGain 5500
Wavelength: $\quad 1550 \mathrm{~nm}$ (C band)
Gain: $\quad 30 \mathrm{~dB}$
Output Power: +23 dBm
Input Range: -26 to +10 dBm

7. EDFA Pre-Amplifier

Manufacturer: Avanex Corporation
Model: PureGain 1000
Wavelength: $1550 \mathrm{~nm}(\mathrm{C}$ band)
Gain Range: 13 to 30 dB
Output: +3 dBm

Input Power Range: $\quad-30$ to -10 dBm

FIgURE 3.9: TYPICAL OPGW LINK

3.6.2. Power Budget Calculation for a Typical OPGW Link

Typical attenuation coefficient for the above G. 655 fibre at 1550 nm

$$
=0.3 \mathrm{~dB} / \mathrm{km}
$$

The following realistic values are obtained from Appendix C;
Typical single splice loss

$$
=0.04 \mathrm{~dB}
$$

Typical insertion loss for each pair of matched demountable connecters

$$
=0.25 \mathrm{~dB}
$$

Typical splicing interval (Reel Length) of the OPGW cable

$$
=6 \mathrm{~km}
$$

Length of the fiber approach cable $\quad=500 \mathrm{~m}$

The typical power budget calculations are given below for the longest line in the network, the New Anuradhapura - Kotmale link.

Connector / Splicing Losses

Loss at location (1)	$=2^{\star} 0.25(\ldots \ldots$. demountable connectors)
	$=0.5 \mathrm{~dB}$
Loss at Location (2)	$=2 * 0.25 \quad(\ldots . .$. demountable connectors)
	$=0.5 \mathrm{~dB}$
	$=2^{\star} 0.04 \quad(\ldots \ldots$. fusion splicing)
Loss at Location (3)	$=0.08 \mathrm{~dB}$
Length of the line	$=163 \mathrm{~km}$
Span between the towers	$=400 \mathrm{~m}$
Approximate number of spans	$=163 / 0.4$
	$=408 \mathrm{spans}$ (approximately)
Splicing interval (Reel Length)	$=6 \mathrm{~km}$

Therefore, the splicing can be done at every 15 spans.
Hence, the number of splices $\quad=(408 / 15)-1$
$=27$ splices (approximately)
Therefore, the total OPGW splice loss

$$
\begin{align*}
& =27^{\star} 0.04 \text { (} \ldots \ldots . \text { Fusion splicing) } \\
& =1.08 \mathrm{~dB} \tag{3.9}
\end{align*}
$$

The total connector/splicing losses

$$
\begin{align*}
& =0.5+0.5+0.08+1.08 \\
& =2.16 \mathrm{~dB} \tag{3.10}
\end{align*}
$$

Attenuation Losses

Length of the OPGW cable	$=163 \mathrm{~km}$
Total OPGW attenuation	$=163^{*} 0.3$
	$=48.9 \mathrm{~dB}$

Length of the approach cable
$=2 * 0.5$ Ansa, Sri Lanka
$=1 \mathrm{~km}$
Total approach cable attenuation $=1 * 0.3$

Attenuation in the patch cable = negligible
Total attenuation loss $\quad=48.9+0.3$
$=49.2 \mathrm{~dB}$

$$
=0.3 \mathrm{~dB}
$$

$=49.2+2.16$
$=51.36 \mathrm{~dB}$.

In addition, a margin is required for the ageing, fiber cuts (requiring a cable length to be included or a joint to be introduced), change in the physical path etc. and for other uncertainties in the fiber link.

An excel worksheet for power budget calculations, which can be used to calculate power budget for any of the link in the network is attaches in the Appendix E.

3.6.3 Dispersion Analysis

The Dispersion Parameter of the selected fiber	$=4 \mathrm{ps} /(\mathrm{nm} . \mathrm{km})$
	$=4 \times 163$
	$=652 \mathrm{ps} / \mathrm{nm}$
Total dispersion	
The maximum allowable dispersion at 10 Gbps	
	$(\ldots \ldots .$. Senior $)$
	$=0.2 /(10 \mathrm{E}+9)$
	$=20 \mathrm{ps}$

Hence, assuming a source line width of 1 nm , the dispersion compensation required

$$
=652-20
$$

$$
=632 \mathrm{ps}
$$

Design- 1

Components:	Optical Transceiver 1
	Dispersion Compensation Module 1 or
	Dispersion Compensation Module 2
	Regenerator

The above specification for Optical Transceiver 1 gives a maximum system gain of 30 dBm . This system gain is sufficient to meet the total system loss of half the link only.

The dispersion compensation requirement of 632 ps can only be compensated by two numbers of either of the compensating modules given above.

From the above attenuation and dispersion analyses, it is evident that the link cannot be established as a single hop and can be designed as two hops of equal length. The specification for the Optical Transceiver 1 also suggests this distance of around 80 km .

Hence, the possible configuration is given below;

Out of the twenty four links in the network, six links are much longer than 80 km in length and hence, the same above arrangement can be applied to them. For the balance links that are shorter than or around 80 km , a regenerator will not be necessary. However, it will be required to compensate for the dispersion using the dispersion compensating modules.

Design- 2

Components:	Optical Transceiver 1
	EDFA Booster Amplifier
	EDFA Pre Amplifier
	Dispersion Compensating Module 1 or
	Dispersion Compensating Module 2

For the links much longer than 80 km , the alternative design is given below;

The combination of EDFA Booster Amplifier and Pre-Amplifier gives a total maximum gain of 60 dB . This gain figure is sufficient to meet the total loss figure calculated above.

The dispersion compensation requirement can be met as described in Design- 1.

Hence, by installing the Booster Amplifier at the transmit end and the PreAmplifier at the receive end, and installing one DCM at the mid-span and one at the receive end, the same link can be designed as repeater less link.

The configuration is given below;

3.7. Network Synchronization

Assuming Kolonnawa as the Network Control Centre, a PRC will be located here. Due to the larger geographical spread of the NEs and for the purpose of redundancy, another PRC will be located at Kotmale. However, this PRC will operate on the slave-mode. Synchronization Supply Units (SSUs) will be located at the following locations;
a. Laxapana
b. Badulla
c. New Anuradhapura
d. Kiribathkumbura
e. Habarana
f. Puttalam

g. Trincomalee
h. Vavuniya
i. Balangoda

3.7.1. Synchronization Signal Distribution

The distribution of the synchronization timing signal is shown in the figure 3.10.

Uniessity or Moratuwa, Sri Lanka
Electronic Theses $\&$ Dissetaions
Figure 3.10.

Figure 3.11. shows the typical timing signal distribution arrangement for the Central Ring.

Table 3.27. shows the synchronization source list for the NEs in the Central Ring.

Figure 3.11.
Table 3.27.

4. Protection Against Lightning

4.1. Fibre Protection

Although optical fibers, naturally, are immune against any Electromagnetic Interferences (EMI), especially the lightening surges, special attention is required with regard to OPGW, as it is meant to carry lightening and earth fault currents, as does an ordinary earth wire. Hence, OPGW specifications restrict variation in optical characteristic, under given fault current conditions (typically 20 kA or more) and duration (typically 0.1 seconds) and lightning currents (typically 200 kA peak).

The IEEE Std 1138-1994 requires that the fiber optic unit and the outer stranded conductors of the OPGW, to serve together as an integral unit to protect the fiber from degradations due to vibration and galloping, wind and ice loadings, wide temperature variations, lightning and fault currents. It also calls for a short circuit test to be performed on a sample of the complete cable and specifies the maximum temporary change in attenuation due to lightning, fault current and temperature cycling.

4.2. Equipment Protection

The OPGW cable is grounded at every tower along the line as done with ordinary ground wires, to sink all the lightning currents to earth through tower earth. However, there is the possibility of existence of dangerous induced voltages on the tail end of the OPGW, beyond the last earth point. This problem is addressed by the inclusion of the Fibre Optical Approach

Cable (FOAC) between the equipment end and the OPGW. The FOAC, an essentially all dielectric cable, running between terminating box at the equipment housing and the tower, provides a separation not less than 500 m and is spliced with OPGW at the tower leg. Figure 4.1, shows the photograph of OPGW / FOAC splicing and Figure 4.2 , shows the photograph of the wall mounted FOAC Terminating Box (CEB, Kelanitissa Power Station).

Figure 4.1: OPGW/FOAC Splice Box on the Tower Leg

Figure 4.2: Wall Mounted FOAC Terminating Box

5. Cost Analysis

The total network cost basically includes three major components; the cost of the OPGW links, the cost of the end equipment and the civil infrastructure cost. The analysis of the civil infrastructure cost is beyond the scope of this project. The cost of OPGW links and the cost of the end equipment are analyzed here.

The cost of the OPGW links includes the material cost and the erection cost. The erection cost is significant in this case.

The end equipment at each node are the Optical Line Terminal Equipment (OLTE) such as SDH Multiplexers, the Digital Cross Connect (DXC) equipment, Centralized Supervisory Systems, Optical Terminal/Digital Distribution Frames, Power Supplies etc. The costing for power supplies is not included in the analysis as the power supply requirements at each node is different. Many of the latest substations are already equipped with rectified DC power, which are used for the substation control system. As they are very large in capacity it should be possible to make use of them for the communication requirements as well.

The typical cost figures for the cost analysis, were obtained from several local projects recently implemented by local agencies and are given below;

OPGW Links

12 Fiber core OPGW cable	$=$	US $\$ 6500.00 / \mathrm{km}$
24 Fiber core OPGW cable	$=$	US $\$ 8500.00 / \mathrm{km}$
FOAC/ Terminal Box/ Patch Code	$=$	US $\$ 2700.00 / \mathrm{Lot}$
Erection cost	$=U S \$ 2500.00 / \mathrm{km}$	
Cost of Removal of Existing Earth Wire	$=$	US $\$ 850.00 / \mathrm{km}$

Equipment Cost

STM-64 SDH Multiplexer	$=$	JP¥ 25,000,000.00
STM-16 SDH Multiplexer	$=$	JP¥ $10,000,000.00$
STM-4 SDH Multiplexer	$=$	JP¥ $4,500,000.00$
DXC	$=$	JP¥ 25,000,000.00
Optical Terminal/ DDF	$=$	JP¥ $1,000,000.00$
Centralized Supervisory System	$=$	JP¥ 10,000,000.00

The prices given above are FOB (Freight On Board).

5.1. Cost of the OPGW link

Table 4.1 list the cost of each link in the system;
Table 5.1.

		Gength (1 mm)	Cost (USS)
1.	Ukuwela -Habarana	82.3	977,955.00
2.	Habarana- New Anuradhapura	50.4	599,940.00
3.	New Anuradhapura - Kotmale	163	1,934,250.00
4.	Kotmale - Kiribathkumbura	22.5	269,325.00
5.	Kiribathkumbura - Ukuwela	29.9	357,015.00
6.	Kolonnawa - Kotmale	85.2	1,012,320.00
7.	Kotmale - Badulla	82.6	981,510.00
8.	Badulla - Laxapana	74.2	881,970.00
9.	Laxapana - Kolonnawa	104.2	1,237,470.00
10.	Kolonnawa - Kotugoda	23.3	278,805.00
11.	Kotugoda Bolawatta	21	251,550.00
12.	Bolawatta - Chilaw	29.4	351,090.00
13.	Chilaw - Puttalam	68.2	810,870.00
14.	Laxapana - Balangoda	44.5	530,025.00
15.	Balangoda - Galle	102.5	1,217,325.00
16.	Balangoda - Embilipitiya	78	927,000.00
17.	Embilipitiya - Matara www lib mrtacll	52	618,900.00
18.	Embilipitiya - Hambantota	35	417,450.00
19.	Kolonnawa - Panadura	11.7	141,345.00
20.	Habarana - Valaichchenai	99.7	1,184,145.00
21.	Kiribathkumbura - Kurunegala	34.6	412,710.00
22.	New Anuradhapura - Vavuniya	53.5	636,675.00
23.	New Anuradhapura - Trincomalee	103.3	1,226,805.00
24.	Badulla - Ampara	104.9	1,245,765.00
	Total (US\$)		16,601,815.00

These link costs were calculated for repeater-less transmission. However, there are six links in the network that are much larger than 80 km . Hence, additional cost should be included for Design-1 and Design-2 to include the cost of Regenerators, Booster Amplifiers, Pre-Amplifiers, DCM etc.

5.2. Cost of End Equipment

Table 4.2 list the cost of each node;
Table 5.2.

No.	Node	Equipment	Cost (JPI
	Central Ring (STM-64)		
1.	Kolonnawa	ADM/DDF/DXC	50,200,000.00
2.	Kotmale	ADM/DDF/DXC	50,200,000.00
3.	Badulla	ADM/DDF	25,200,000.00
4.	Nuwara Eliya	ADM/DDF	25,200,000.00
5.	Laxapana	ADM/DDF	25,200,000.00
	North Central Ring (STM-64)		
1.	Kotmale	ADM/DDF	25,200,000.00
2.	New Anuradhapura	ADM/DDF/DXC	50,200,000.00
3.	Habarana	ADM/DDF	25,200,000.00
4.	Kiribathkumbura	ADM/DDF	25,200,000.00
5.	Ukuwela	ADM/DDF	25,200,000.00
	North Western Ring (STM-64)	Ex Dissetutions	
1.	Kolonnawa	clk ADM/DDF	25,200,000.00
2.	Kotmale	ADM/DDF	25,200,000.00
3.	New Anuradhapura	ADM/DDF	25,200,000.00
4.	Puttalam	ADM/DDF	25,200,000.00
5.	Chilaw	ADM/DDF	25,200,000.00
6.	Bolawatta	ADM/DDF	25,200,000.00
$7 .$	Kotugoda	ADM/DDF	25,200,000.00
	Spur Links (STM - 4)		
1.	Vavuniya	TMUX/DDF	4,700,000.00
2.	Trincomalee	TMUX/DDF	4,700,000.00
3.	Valaichchenai	TMUX/DDF	4,700,000.00
4.	Kurunegala	TMUX/DDF	4,700,000.00
5.	Amapara	TMUX/DDF	4,700,000.00
6.	Matara	TMUX/DDF	4,700,000.00
7.	Hambantota	TMUX/DDF	4,700,000.00
8.	Embilipitiya	TMUX/DDF	4,700,000.00
9.	Galle	TMUX/DDF	4,700,000.00
10.	Balangoda	TMUX/DDF	4,700,000.00
11.	Panadura	TMUX/DDF	4,700,000.00
	Total (JP\#)		555,100,000.00

To the above equipment cost the cost of the Supervisory system should be added. Assuming a local supervisory terminal for each node and a Centralized supervisory system for each ring, the cost of the Supervisory system is as follows;

Centralized Supervisory system	=	JP¥	25,000,000.00 X 3
	$=$	JP¥	75,000,000.00
Local Supervisory system	$=$	$J P ¥$	$1,000,000.00 \times 28$
	$=$	JP¥	28,000,000.00
Grand Total (Equipment)	=	JPY	658,100,000.00

5.3. Total Project Cost

(9) University of Moratuwa, Sri Lanka

The total project cost is the summation of OPGW link cost and the Equipment cost.

| OPGW link cost | $=$ | US\$ $16,601,815.00$ |
| :--- | :--- | :--- | :--- |
| Equipment cost | $=$ JP¥ 658,100,000.00 | |

Grand Total (SLR equivalent) $=$ SLR 2,024,381,795.00

Note: 1 US\$ = 93 SLR
$1 \mathrm{JP} \neq 0.73 \mathrm{SLR}$

6. Further Discussion

6.1. Comparison of different methods of incorporating fibers on

 High Voltage transmission linesOn new lines the OPGW is the most obvious and economic choice. However, this requires the planning of the OPGW installation with that of the HV transmission line itself. This may not be possible in many circumstances. In order to plan for the OPGW, there should be an overall plan for the complete fibre transmission network before hand and it also requires the knowledge of the terminal equipment and their locations.

On the other hand, technologies have also been developed by many institutions to replace the existing ground wires with OPGW even on a 400 kV line under live condition without any service interruptions. (Appendix A).

ADSS is simple to be introduced on an existing live line. As it is strung at a lower elevation, it is relatively easy to be drawn also, without additional precautions for the operator safety. However, ADSS is more prone to shot gun damages by bird hunters. This is a serious issue, as HV transmission lines usually pass forests. Some cable suppliers claim their product to be safe against shotgun damages.

In case the replacement of the existing earth wire by OPGW is considered costly and the ADSS is not preferred, then the next choice is the Wrap-
around Cable. Special wrapping tools are also available for wrapping under live line conditions.

6.2. Comparison of project cost

The total project cost of SLR $2,024,381,795.00$ is compared with a recently completed island-wide SDH ring project of the Sri Lanka Telecom, based on underground optical fibre network (an unofficial copy of the network diagram is given under Appendix - F). The total contract price of this project (unofficial) JPY 3.5 billion (foreign component) plus SLR 800 million (local component). With the same conversion rate used above the project cost in local currency is SLR $3,355,000,000.00$.

The equipment prices used for the analysis are same as those of the equipment used in the Sri Lanka Telecom (SLT) project. Therefore, it is evident that the price difference should largely be due the fiber cabling. In the SLT project the fiber cabling is underground in which the cost of the civil works is very high. Whereas, in this project, we are making use of the already existing civil infrastructure for HV transmission.

In addition, in this project the costing was done for a 24 -fiber OPGW cable. However, the proposed network will only make use of four fibers for a Four Fiber BLSR protection system. Therefore, an additional count of eight fibers is available for further development. Hence, it is evident that the use of OPGW for high capacity data transmission is a very efficient and cost effective option for power utilities.

Another factor to consider in the cost analysis is the fiber count. It can be seen from the unit prices that the percentage price difference between 12 core fiber cable and the 24 core fiber cable (doubling the fiber count) is only about 30%. This becomes further insignificant when compared with the total project cost of the transmission line. This is the scenario even with very large fiber count, the reason why many utilities tend to put higher and higher fiber counts, whether they plans to use them in the near future or not.

6.3. A Case Study

The above study was based on assumed traffic for each node and the selection criteria was the coverage of the whole island as much as possible by the information superhighway.

For the purpose of simulation of the above design, a case study of an actual traffic situation is considered here. The forecasted traffic flows between major cities were obtained from Reference 31 , which was also a research study for a masters program.

The Table 6.1 below lists the traffic flow between selected major cities;
Table 6.1: Traffic Flow

These cities should be matched to the nodes in the power transmission network.

The Table 6.2 below lists the nearest nodes.

Table 6.2: Matching of Cities to Nodes

Mapping these nodes on the power transmission network, the optimum network topology was selected by trial and error method.

Considering this topology and the original traffic flow input between cities, we can re-calculate the traffic between the nodes to determine the link capacities.

Table 6.3 lists the traffic flow between nodes and the selected SDH capacity. The links that exceed the STM-64 capacity can be served by a combination of one STM-64 capacity and other low order capacity on separate pairs of fibers, using the surplus fibers in the cable.

Figure 6.1: Network Topology

Table 6.3: Link Capacity Calculation

No.	Efnk	Trafric /(MBps)	STM-N
1.	Kolonnawa - Kotugoda	10,581	STM-64
2.	Kotugoda - Bolawatta	6,710	STM-64
3.	Bolawatta - New Anuradhapura	5,678	STM-64
4.	New Anuradhapura - Kiribathkumbura	9,052	STM-64
5.	Kiribathkumbura - Kolonnawa	5,809	STM-64
6.	Kiribathkumbura - Kurunegala	9.163	STM-64
7.	New Anuradhapura - Vavuniya	197	STM-4
8.	New Anuradhapura - Valaichchenai	1,703	STM-16
9.	Kolonnawa - Panadura	20,070	$2 \mathrm{X} \mathrm{STM}-64$
10.	Kolonnawa - Galle	14,793	2X STM-64
11.	Galle - Matara	11,618	STM-64 + STM-16

The longest link in the network is the Kolonnawa - Galle link, which is 219.3 km . This link can be designed as follows;

Design -1:
Considering the 80 km Regenerator interval, as above, two Regenerators will be required and they can be installed at New Laxapana and Deniyaya. The dispersion compensation modules also will be required at these locations and at Galle.

Design - 2 :
This is a repeater-less transmission design and due to the available system gain limitation even with the Booster-Pre Amplifier combination, cannot be used for this distance, at this link capacity.

Out of the eleven links in the network, six links are much longer than 80 km and would require one or more of the regenerative repeaters.

Table 6.4 gives the line costs including the Regenerator costs;
Table 6.4: Line Cost

| | No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ninle | |

Table 6.5 gives the End Equipment costs;

Table 6.5: End Equipment Costs

No.	Node.		
	Equipment.	Equipment	
1.	Kolonnawa	Cost $/($ JPY)	
2.	Kotugoda	ADM (STM-64)	$25,000,000.00$
3.	Bolawatte	ADM (STM-64)	$25,000,000.00$
4.	New Anuradhapura	ADM (STM-64)	$25,000,000.00$
5.	Kiribathkumbura	ADM (STM-64)	$25,000,000.00$
6.	Kurunegala	ADM (STM-64)	$25,000,000.00$
7.	Panadura	TMUX (STM-64)	$25,000,000.00$
8.	Galle	TMUX (STM-64)	$25,000,000.00$
9.	Matara	TMUX (STM-64)	$25,000,000.00$
10.	Vavuniya	TMUX (STM-64)	$25,000,000.00$
11.	Valaichchenai	TMUX (STM-4)	$4,500,000.00$
	Grand Total	TMUX (STM-16)	$10,000,000.00$

With the previous conversion rate, the total cost of the project can be calculated as;

```
Total Project Cost = Line Cost + Equipment Costmka
    = SLR 1,543,936,510.00
```

This is in the same order as that of the previously calculated network cost.

6.4. Marketing Aspects

The optical fiber transmission capacity can be marketed in several ways, depending on the infrastructure, experience and the committed business policy and strategy of the utility company. Some of the commonly practiced ways of marketing the fiber capacity are discussed here;

a. Leasing the Right of Way

Under this method the utility leases its right of way to lay fibers in the high-tension lines to other potential company under a lease agreement or enter in to a partnership agreement with a company having the technical and business experience in the field to roll out the fiber network. The revenue is shared among the companies.

b. Leasing the Dark Fibers

The utility rolls out the fiber network with sufficiently large fiber counts. The dark fibers can be leased for other operators for a specific period of time under a leased agreement. The operator is free to squeeze the maximum capacity of the fiber using whatever the techniques available them.
c. Leasing the Wavelength

The utility employs WDM technology and leases out the capacity in the form of number of wavelengths to other operators. It would be required to impose clear guidelines to avoid any cross talks between wavelengths that originate from different sources of different operators.

d. Leasing Transmission Capacity

The utility can install all the required end equipment and lease out the transmission capacity in Mbps to other operators. Here, the utility has the responsibility of maintaining the reliability of the network, at the committed level.

e. The Utility as a Service Provider

The utility can up subsidiaries and become a telecommunication service provider. The possible services may be public telephony, data services, Internet services etc.

From a. to e. above, the technical complexity, business commitment, capital investment and also the revenue increase. Depending on the capacity of the utility, it can select one or combination of more than one business models given above.

Another option is to expand its business in a planned stage-by-stage way, starting from model with lower commitment to higher commitment. It this way the investment risk is avoided while still leaving room for future expansion of the business. This will also give sufficient time for the utility to build up its human resources and technical and marketing expertise, without loosing the opportunities.

7. List of Recommendations

From the findings of this paper, it is recommended that the power utility shall:

1. Make full use of the extremely valuable right-of-way, which is naturally available for her (and which is not easily available for other operators) to quickly and cost effectively establish an island-wide high capacity transmission network and extend these carrier services to other agencies, for the common benefit.
2. Introduce OPGW on all new transmission lines whether it is immediately used or not, as the incremental cost incurred in introducing OPGW in place of conventional ground wires is very minimal compared to the cost of the transmission line project. The cost of the OPGW cabling is a minor fraction when compared with the project cost of the transmission line. Hence, increase the fiber count as much as possible, even if there is no any plan to use them in the near future, considering marginal increase in cost with the fiber count and the very long life time of the fibers installed today.
3. Use SDH as the transmission protocol for such a high capacity transmission network, as this will make full use of the extremely large bandwidth available with optical fibers.
4. Employ ring architectures to increase the reliability of the network.
5. Lease the transmission capacity, rather than the dark fibers, as the former will produce more revenue, in the case of the commercial leasing to outside agencies.
6. Consider the following access technologies to extend the carrier services from grid substations/Substation to commercial customers;

- Another fiber optic access network based on the medium voltage distribution network
- Point-to-point microwave links
- High capacity Multi Access Radio (MAR) systems. (technical details of a typical high capacity multi access radio system is attached in the Appendix-B)

7. Break the total network plan in to number of implementation stages a separate implementation plan will be required) and execute them in a stageby stage fashion according to the priorities determined by the market force, so as to save on the capital expenditure and to reduce the investment risk.
8. At the time this project was started the Puttalam - Anuradhapura line was not available and therefore this project attemted to design a microwave link between these nodes. As this line has now been constructed, it is recommended to use OPGW on this line also.

8. Drawbacks

The following drawbacks have been identified in this project;

1. In order to find the capacity requirement of each node, the traffic flow for each node in the ring has been assumed. However, in practice, market surveys have to be conducted among prospective customers, before deciding on the node capacities.
2. In the design of the Puttalam - Anuradhapura radio link, the specification of the radio used was that of a $\mathrm{STM}-1,7 / 8 \mathrm{GHz}$ radio. However, the same data was used for STM-64 capacity, due the difficulty of finding the relevant technical information for STM-64 radios.

3. The prices used in the cost analysis are FOB (Freight On Board) values. To find the actual cost of the project, the freight charges as well as the government taxes should be added to this cost.

9. References

11. ITU-T, Rec. G.803; Architecture of transport networks based on the Synchronous Digital Hierarchy (SDH), Geneva, 1997. www libmitac ll
John M Senior; Optical Fiber Communications - Principles \& Practice, Second Edition, Prentice Hall, New Delhi, 1998.

Robert G. Winch; Telecommunications Transmission Systems, McGraw Hill Inc., Singapore, 1993. IEEE Std. 1138; IEEE Standard Construction of Composite Fiber Optic Overhead Ground Wire (OPGW) for Use on Electric Utility Power Lines, New York 1994. ITU/CCITT; Rec. G707; Synchronous Digital Hierarchy Bit Rates, Geneva, 1989. ITU/CCITT; Rec. G708; Network Node Interface for the Synchronous Digital Hierarchy, Geneva, 1989.

ITU/CCITT; Rec. G.709; Synchronous Multiplexing Structure, Geneva, 1989.
ITU-T; Rec. G.811; Timing Characteristics of Primary Reference Clocks, Geneva, 1997. ITU-T; Rec. G.812; Timing Requirements of Slave Clocks Suitable for use as Node Clocks in Synchronization Networks, Geneva, 1998. ITU-T; Rec. G.813; Timing Characteristics of SDH Equipment Slave Clocks (SEC), Geneva, 1996. ITU-T; Rec. 530-7; Propagation Data and Prediction Methods Required for the Design of Terrestrial Line of Sight Systems, Geneva, 1997.

ITU-T; Rec. G.652; Characteristics of Single Mode Optical Fibre Cable, Geneva, 1997. ITU-T; Rec. G.653; Characteristics of Dispersion Shifted Single Mode Fibre Cable, Geneva, 1997. ITU-T; Rec. G.957; Optical Interfaces for Equipments and Systems Relating to the Synchronous Digital Hierarchy, Geneva, 1997.

ITU-T; Rec. G.958; Digital Line Systems Based on the Synchronous Digital Hierarchy for Use on Optical Fibre Cables, Geneva, 1997.

ITU-T/CCITT, Optical Fibre Systems Planning Guide, Geneva 1989.
Ewbank Preece; Telecommunications Technical Guidelines- Microwave Propagation. AOTS Japan training on Digital Telecommunications Technology, Training Document. Joachim Vobis; Wavelength Division Multiplexing for Optical Amplifiers, Telecom Asia, Sep. 1995. S. Bigo et al; Road to Ultra High Capacity Transmission, Alcatel Telecommunications Review, \#rd Quarter 2001.
M. Erman; Trends and Evolution of Optical Networks and Technologies, Alcatel Telecommunications Review, $3^{\text {rd }}$ Quarter 2001.
S. Bigo, W. Idler; Multi-terabit/s transmission over Alcatel Teralight fiber, Alcatel Telecommunications Review, $3^{\text {rd }}$ Quarter 2001.
23. Fiber Optics Inc.; Learning About Options in Fiber, New York.
24. Wandal \& Goltermann, SDH Pocket Guide, Communications Test Solutions.
25. Textronix Inc., SDH Telecommunications Standards Primer
26. ABB Power Automation Ltd., Synchronous Transmission Systems, Switzerland.
27. NEC Corporation, SMS-150A, Add/Drop Multiplexer Manual, Japan.
28. NEC Corporation, NE 6067, Digital Branch \& Cross Connect Equipment Manual, Japan.
29. E Alen Dowdell, High Data Rate Networks, The Latest Fiber Technologies for Long - Haul, AMTC 1999.

Christopher Towery \& E Alan Dowdell, Advanced Optical Fiber for Long Distance Telecommunication Networks, AMTC 2000.
31. K P Kandenaearachchi, Design, Modeling \& Simulation of the Repeater-less Optical Fiber Network for Sri Lanka, M Eng Project, 2004.

University of Moratuwa, Sri Lanka
Electronic Theses \& Dissertations
nww lit metact.

APPENDIX - A:

LITERATURE ON OPGW CABLE STRINGING

METHOD

APPENDIX B

CRADLE BLOCK STRINGING OF FIBRE OPTIC EARTHWIRES

Power utilities are under increasing commercial pressure to maintain power connections and reduce outage times when installing Fibre Optic Earthwires.

The technique of live line "Cradle Block' stringing overcomes this problem. This technique has been used in Japan, Canada and others but not under live line conditions. New Zealand has some experience of live line installation but the technique has now been fairly refined and proven in the UK under 400 kV live line conditions!

The technique consists of setting out a number of cradle blocks to enable a new earthwire to be drawn in under live line working conditions. The general arrangement is shown in figure H . For safety reasons a cradle block is required every 10 metres on UK 400 kV lines. This ensures that any breakage of conductor or pulling rope will not contact a live conductor and cause a safety or power system problem.

CRADLE BLOCK AND MACHINERY HANDLING

The key component to this technique is'the Cradle Block itself illustrated in figure 5. It is required to have an extremely low rolling resistance to enable up to 6 km drum lengths to be installed as a single section. This will involve some 600 cradle blocks. Earth continuity must be maintained throughout the block to avoid capacitively induced voltage appearing on the long and parallel un-earthed components which will lead to flash over and damage. In addition operator safety would be jeopardised.

To assist in the handling of machinery at tower peaks it is normal to make use of a lifting jib shown in figure D. Also for deployment of cradle blocks suitable containers are also temporarily mounted near the tower peak and provides for uninterrupted attachment along each span.

CRADLE BLOCK STRINGING METHOD

The following numbers refer to the Process steps shown on 3 separate diagrams.
Positioning of cradle blocks - a Pulling Rope and conductor Connecting Rope are deployed using a tug unit along the existing earthwire. Cradle Blocks are attached to the enacting rope every 10 m as the Pulling Rope is deployed.

2 The new optical earthwire is attached to the Pulling Rope using a special high integrity connector shown in figure 7 and drawn in. Thus the cradle blocks and pulling rope are supported by the existing earthwire.

3 When pulling is completed the new earthwire is supported by the cradle blocks. The new earthwire is then sagged using conventional sighting techniques.

5 The final sagging ensures that the new earthwire turns the cradle blocks over and is now supporting the cradle blocks and old earthwire

6 The old earthwire may readily be drawn OUI on the bottom rollers of the cradle block.
7 A Tail Rope is aiso drawn through the cradle blocks to control the 'runaway" of the old earthwire.

8 The cradle blocks are then collected by pulling on the "Pulling Rappel and "Runaway" is controlled by a special friction braked roller unit shown in figure 6

9 Should the hug unit become detective during the initial deployment of Cradle blocks it may be rescued with a second tug unit attached to a Rescue Rope.

EQUIPOTENTIAL EQUIPMENT ZONES

It is most important for all operators to be working within the equipotential ground plane of the towers and in all circumstances there shall be an effective earth between any operator who may be handling equipment and the source of induced voltage. This is taken care of by deploying special ring fenced earthing mats and bonding all metal parts to the power system earth as shown in the general arrangement sketches of figure Q1.

SUMMARY
Cradle block stringing provides rapid deployment of composite conductors on high voltage transmission lines without the need for circuit outages.

$\overline{2651!!d y}$

(O) University of Moratuwa, Sri Lanka
Eloctronic Theses \& Dissertations
www Lib mrtac lk

FIG 6 SRAKE UNIT

(O) University of Morntuwa, Sri Lanka.

FIG 7 HIGH INTEGRITY CONNECTOR

NEW ENRTH WIRE
AND CONNGCTOR

APPENDIX - B:

SPECIFICATION SHEETS FOR ANTENNAS,

FEEDERS AND MICROWAVE RADIOS
.750-8.4 GHz Antennas - Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter H(m)	Bottom	Gain, dBI Mid-Band	Top	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L, dB)
High Pertormance Antennas - Planar Radome Included										
7.750-8.4*	CPR112G	HP6-77GE	6 (1.8)	40.3	40.8	41.1	1.5	30	68	1.06 (00.7)
Single		HP8-77GE	8 (2.4)	42.9	43.3	$+3.6$	1.1	30	68	1.04 (34.2)
Polarized		HP10-77GE	10 (3.0)	44.8	45.2	45.5	0.9	30	70	1.04 (34.2)
		HP12-77GF	12 (3.7)	46.3	46.7	47.1	0.7	30	71	1.04 (34.2)
		HP15-77GE	15 (4.6)	$+8.2$	48.5	48.9	0.6	30	71	1.04 (34.2)
Low VSWR Standard Antennas										
7.750-8.4*	CPA112G	PL4.77GD	4 (1.2)	36.8	37.2	37.5	2.2	30	45	1.06 (30.7)
Single		PL6-77GE	6 (1.8)	40.3	40.8	$+1.1$	1.5	30	48	1.06 (30.7)
Polarized		PL8-77GE	$8(2.4)$	42.9	+3.3 45.2	+3.6 +5.5	1.1 0.9	30 30	50 58	$1.04(34.2)$ $1.04(34.2)$
		PL10-77GO	10 (3.0)	44.8	45.2	45.5	0.9	30 30	58	$1.04(34.2)$
		PL12-77GF PL15-77GD	$12(3.7)$ $15(4.6)$	46.3 48.2	46.7 48.5	47.1 +39	0.1 0.6	30 30	54 57	$1.04(34.2)$ $1.04(34.2)$

$\cdot 7.725-8.275$ or $7.725 \cdot 8.5 \mathrm{GHz}$ available on request.
7.125-8.4 GHz Antennas. Electrical Characteristics

7.125-7.725 GHz Antennas - Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter H (m)	Bortom	Gain. dBi Mid-Band	Top	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (A.L. dB)
Focal Plane Antennas**										
$\begin{aligned} & 7.125-7.725 \\ & \text { Single } \\ & \text { Polarized } \end{aligned}$	PDF70	FP4-71	4 (1.2)	34.9	35.2	35.4	2.2	25	52	1.10 (26.4)
		FP6-71	6 (1.8)	38.8	39.2	39.5	1.5	25	58	1.07 (29.4)
		FP8-71	8 (2.4)	42.0	-2.3	42.4	1.1	26	65	1.06 (30.7)
		FP10-71	10 (3.0)	44.1	+4.4	+.i. 5	0.9	26	67	1.04 (34.2)
		FP12-71	12 (3.7)	45.7	46.1	+6. 2	0.7	28	69	1.04 (34.2)
7.125-7.725 Dual Polarized	POR70	FPX6-71	6 (1.8)	38.8	39.2	39.5	1.5	25	58	1.08 (28.3)
		FPX8-71	8 (2.4)	41.8	42.1	$\bigcirc 2.3$	1.1	26	65	1.07 (29.4)
		FPX10-71	10 (3.0)	43.9	42	$\pm .3$	0.9	26	67	1.06 (30.7)
		FPX12-71	12 (3.7)	45.5	-5.9	- 8.0	0.7	28	69	1.06 (30.7)

[^0]7.425 - 7.900 GHz Antennas - Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter t (m)	Bottom	Gain, dBi Mid-Band	Top	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratlo dB	VSWR max. (R.L, dB)
High Pertormance Antennas - Planar Radome Inctuded										
7.425-7.900	CPR112G	HPG-74G	4 (1.2)	36.5	36.7	37.0	2.3	32	63	1.06 (30.7)
Single		HP6-74G	6 (1.8)	40.1	40.4	40.6	1.5	32	64	1.06 (30.7)
Polarized		HPS-74G	$8(2.4)$	42.5	42.8	43.0	1.2	32	71	1.04 (34.2)

7.725-8.275 and 7.725-8.5 GHz Antennas Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter $\mathrm{H}(\mathrm{m})$	Bohom	Gain, dBI Mid-Band	Top	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWA max. (R.L., dB)
UHX(V) Ultra High Pertormance Antennas - Planar Radome Included										
7.725-8.275*	CPR112G	UHX6-77GD	6 (1.8)	40.5	41.0	$+1.2$	1.5	30	67	1.06 (30.7)
Dual		UHX8-77GO	8 (2.4)	43.1	43.5	43.7	1.1	30	68	1.06 (30.7)
Polarized		UHX10-77GD	10 (3.0)	44.9	45.2	45.4	0.9	30	70	1.06 (30.7)
		UHX12.77GD	12 (3.7)	46.4	46.7	46.9	0.7	30	75	1.06 (30.7)
Polarized		UHX15-77GD	15 (4.6)	48.4	48.7	48.9	0.6	30	70	1.06 (30.7)
Wirh XPD Antennas - TEGLAR ${ }^{\text {® }}$ Long Life Radome Included										
5-8.275*	CPR112G	HXPD6-77GC	6 (1.8)	40.5	40.7	41.0	1.5	$35 \dagger$	70	1.06 (30.7)
Uual		HXPD8-77GC	8 (2.4)	43.1	43.4	43.7	1.1	$36 \dagger$	70	1.06 (30.7)
Polarized		HXPD10-77GC	10 (3.0)	44.9	45.2	45.0	0.9	$37 \dagger$	75	1.06 (30.7)
		HXPD12-77GC	12 (3.7)	46.4	46.7	47.0	0.7	$37 \dagger$	75	1.06 (30.7)
Focal Plane Antennas**										
7.725-8.5	POR84	FP6-77G	6 (1.8)	40.2	40.6	40.8	1.5	30	60	1.07 (29.4)
Single		FP8-77G	8 (2.4)	42.9	43.3	43.5	1.1	26	64	1.06 (30.7)
Polarized		FP10-77G	10 (3.0)	44.9	45.3	45.4	0.9	30	66	1.04 (34.2)
		FP12.77G	12 (3.7)	46.5	46.5	47.0	0.7	28	68	1.04 (34.2)
$7.725-8.5$ Dual Polarized	PDR84	FPX6-77G	6 (1.8)	40.2	Mornema	$40 . \hat{L}$	1.5	30	58	1.08 (28.3)

*Meets Canadian DOC Standard SRSP306. VSWR 1.06 (30.7) w.ww lib mita**Focal plane antennas are manufactured and stocked at our
7.725-8.5 GHz on request.
actory in Great Britain and are manufactured on special order in Australia. They are not manufactured or stocked in the United States or Canada.

8.2•8.5 GHz Antennas • Electrical Characteristics

Types EWP77 and EW77

48,

Flexibility and High Strength

Precision formed and corrugated from high conductivity copper

Long Continuous Lengths

Low installation cost and ease of system planning

Low Attenuation

Optimized for specific user band

Advanced Connectors and Accessories

Full line of connectors and accessories designed to simplifyes system planning and reduce cost of installation www ib mitacllk

Proven Performer

EWP77 is proven in thousands of demanding microwave systems

Connector Material: Investment Cast Siiicon Brass

Type No.		$\begin{gathered} \mathrm{L} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} W \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { A } \\ \text { in }(\mathrm{mm}) \end{gathered}$	Weight $\mathrm{lb}(\mathrm{kg})$
$\begin{aligned} & \text { 1770C. } 1770 C T \\ & 1770 C P \end{aligned}$	2080	$\begin{gathered} 4.8 \\ (122) \end{gathered}$	$\begin{gathered} 28 \\ (71) \end{gathered}$	$\begin{aligned} & 3.1 \\ & (78) \end{aligned}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$
$\begin{aligned} & 177 \mathrm{DE} .1770 \mathrm{~T} \\ & 177 \mathrm{DEP} \end{aligned}$		$\begin{gathered} 4.8 \\ (122) \end{gathered}$	$\begin{gathered} 2.8 \\ (71) \end{gathered}$	$\begin{array}{r} 3.1 \\ (78) \end{array}$	$\underset{(1.3)}{2.8}$

Characteristics

Type Numbers	
Premium Waveguice	EWP77
Standard Waveguide	EW77
Electrical	
Max. Frequency Range, Griz*	6.1-3.5
- TE ${ }_{11}$ Mode Cutoff Frequency, GHz	4.722
Group Delay at 7.8 GHz , $\mathrm{ns} / 100 \mathrm{ft}(\mathrm{ns} / 100 \mathrm{~m}$)	128 (419)
Peak Power Rating at $7.8 \mathrm{GHz} . \mathrm{kW}$	63
Mechanical	
Minimum Bending Radii, without rebending, inches (mm)	
E Plane	7 (180)
H Plane	20 (510)
Minimum Bending Radii, with rebending, inches (mm)	
EPlane	9 (230)
H Plane	25 (635)
Maximum Twist, degrees/foot (m)	1 (3)
Dimensions over Jacket, in (mm)	$1.72 \times 1.00(43.6 \times 25.4)$
Weight. pounds per foot (kg/m)	0.45 (0.67)

*Actual usable range is limited by the connecting rectangular waveguide.

Attenuation, Average Power, Group Velocity

Frequency GHz	Artenuation $d B / t 00 \mathrm{ff}(\mathrm{dB} / 100 \mathrm{~m})$	Average Power Rating, kW	Group Velocity of Propagation, \%
7.1	$1.91(6.28)$	3.11	74.7
7.2	$1.89(6.20)$	3.15	75.5.
7.3	$1.87(6.13)$	3.19	76.3
7.4	$1.85(6.06)$	3.22	77.0
7.5	$1.83(6.00)$	3.26	77.7
7.6	$1.31(5.94)$	3.29	78.4
7.7	$1.79(5.69)$	3.32	79.0
7.8	$1.78(5.84)$	3.35	79.6
7.9	$1.77(5.80)$	3.37	80.2
8.0	$1.75(5.75)$	3.40	80.7
8.1	$1.74(5.71)$	3.42	81.2
8.2	$1.73(5.68)$	3.44	81.3
8.3	$1.72(5.64)$	3.47	82.2
8.4	$1.71(5.61)$	3.49	82.7
8.5	$1.70(5.58)$	3.51	83.1

Ordering Information for Waveguide Assemblies

Frequency* Band, GHz	Waveguide Type No.	Connector Type No.	Connector Tuning \ddagger	Connector Mates with Flange Type \ddagger U.S. IEC		$\begin{gathered} \text { VSWR, max.** } \\ \text { (R.L, dB) } \\ \text { up to } 300 \mathrm{~m}(90 \mathrm{~m}) \end{gathered}$
Premium Waveguide Assemblies						
7.125-7.750	EWP77	$\begin{aligned} & 177 \mathrm{DCT} \\ & 1770 \mathrm{CP}-1 \\ & 1770 \mathrm{E} \\ & 1770 E P .1 \end{aligned}$	Tunable Pre-Tuned Tunable Pre-Tuned	UG.52S/U, UG.5I/U UG.52B/U, UG-51/U CPR112G CPA112G	CSR84, U8R84, P8R84 C3R94, UER84, PER84 pCR84 PDR84	$\begin{aligned} & 1.06(30.7) \\ & 1.06(30.7) \\ & 1.06(30.7) \\ & 1.06(30.7) \\ & \hline \end{aligned}$
7.725-8.275	EWPT7	$\begin{aligned} & 1770 C T \\ & 1770 E T \end{aligned}$	Tunable Tunable	$\begin{aligned} & \text { UG.528/U. UG.51/U } \\ & \text { CPR112G } \end{aligned}$	CSF8: UEF84, PSF84 PCR8	$\begin{aligned} & 1.06(30.7) \\ & 1.06(30.7) \end{aligned}$
7.725-8.500	EWP77	$1770 C T$ 177DET	Tunable Tunable	$\begin{aligned} & \text { UG-52S/U, UG-51/U } \\ & \text { CPR112G } \end{aligned}$	$\begin{aligned} & \text { CBR84, UEFS4, PSF84 } \\ & \text { PDR84 } \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.06(30.7) \end{aligned}$
$7.750-8.500$	EWP77	$\begin{aligned} & 1770 C T \\ & 177 D C P-2 \\ & 1770 E T \\ & 1770 E P-2 \end{aligned}$	Tunable Pre-Tuned Tunable Pre-Tuned	```UG-52E/U, UG.51/U UG-528/U, UG-51/U CPR112G CPR112G```	```CSR84 UEFS4. PSR84 CER84. UER84. PER84 FDR84 POF84```	$\begin{aligned} & 1.06(30.7) \\ & 1.06(30.7) \\ & 1.06(30.7) \\ & 1.06(30.7) \end{aligned}$
Standard Waveguide Assemblies						
7.125-7.750	EW77	$\begin{aligned} & \text { 1770C } \\ & 1770 E \end{aligned}$	Non-Tunable Non-Tunable	UG-52G/U. UG-51/U CPF112G	CERE4. UERST, PGR84 PCRE4	$\begin{aligned} & 1.15(23.1) \\ & 1.15(23.1) \end{aligned}$
7.125-7.850	EW77	$\begin{aligned} & 1770 C \\ & 177 D E \end{aligned}$	Non-Tunable Non-Tunable	$\begin{aligned} & \text { UG.52S/U. UG.51/U } \\ & \text { CFF1:2G } \end{aligned}$	CEF84, UBFS4. PSR84 PCR84	$\begin{aligned} & 1.15(23.1) \\ & 1.15(23.1) \end{aligned}$
7.425-7.725	EW77	$\begin{aligned} & 1770 \mathrm{DC} \\ & 1770 \mathrm{E} \end{aligned}$	Non-Tunable Non-Tunable	UG-529/U, UG-51/U CPR112G	CER84. UEFS4. PSR84 PORB4	$\begin{aligned} & 1.15(23.1) \\ & 1.15(23.1) \\ & \hline \end{aligned}$
7.425-7.900	EW77	$\begin{aligned} & 177 D C \\ & 177 D E \end{aligned}$	Non-Tunable Non-Tunable	$\begin{aligned} & \text { UG. } 228 / \mathrm{U}, \mathrm{UG}-51 / \mathrm{U} \\ & \text { CPR112G } \end{aligned}$	C3F84, UBF84, PGR84 POF84	$\begin{aligned} & \mathbf{1 . 1 5}(23.1) \\ & 1.15(23.1! \\ & \hline \end{aligned}$
$7.725-8.500$	EW77	$\begin{aligned} & \text { 1770C } \\ & 1770 \mathrm{D} \end{aligned}$	Non-Tunable Non-Tunable	$\begin{aligned} & \text { UG-52B/U, UG-51/U } \\ & \text { CPR112G } \end{aligned}$	CER84, UGR84. PER84 PDR84	$\begin{aligned} & 1.15(23.1) \\ & 1.15(23.1) \\ & \hline \end{aligned}$
$7.750-8.500$	EW77	$\begin{aligned} & 177 \mathrm{DC} \\ & 177 \mathrm{DE} \end{aligned}$	Non-Tunable Non-Tunable	$\begin{aligned} & \text { UG-528/U, UG-51/U } \\ & \text { CPR112G } \end{aligned}$	CER84, U8R84, PBR84 PCR84	$\begin{aligned} & 1.15(23.1) \\ & 1.15(23.1) \\ & \hline \end{aligned}$
8.2-8.5	EW77	$\begin{aligned} & 1770 \mathrm{D} \\ & 1770 \mathrm{E} \end{aligned}$	Non-Tunable Non-Tunable	UG-528/U, UG-51/U CPR1:2G	CBR84, UER84, PER84 PDR84	$\begin{aligned} & 1.15(23.1) \\ & 1.15(23.1) \end{aligned}$

> "Contac: Andrew for information on other frequency bands.
> "The indicated maximum VSWR characteristics are guaranteed for factory assemblies and are typical for field assemblies.
> \ddagger Tunable" connectors ordered with factory asemblies are factory tuned. "pre-tuned"connectors are for field attachment only.
> $\#$ For detailed information on mating flanges, refer to pages 179 and 180 . Discratoms

Accessories - Photos and detailed descriptions on pages 156-162

To Order

- A sample order is shown on page 273 .
- Specify waveguide Type Number, frequency band in GHz and length in feet or metres. Sec
"Waveguide Assemblies" table.
- Specify connector Type Numbers and "atrached" or "unattached". See "Waveguide Asscmblies" table. When attached connectors on an assembly are different, specily which is "first oif" reel.

Further Information

For general information on HELAAX elliptical wavewguide. see pages 120-123
Section 3
TECHNICAL SPECIFICATIONS

	MegaStar Specifications
Frequency Pange	5925-5425. MHz U.S. Private/Common Carrier
	5915.6930 VHzz Canada
	7125-8500 MHz U.S. Govemment
	7725-8275 MHz Canada
Frequency Stability	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}: \pm 3 \mathrm{PPM}$
Channel Bandwidth	30 MHz
Channel Spacing	29.65 MHz
Transmission Rate	$155.52 \mathrm{Mb} / \mathrm{s}$
Modulation Type	128-stare non-staggered QAMI with Forward Error Correction
Bandwidth Efficiency	$>5.2 \mathrm{~b} / \mathrm{s} \mathrm{Hz}$
Configurations	The MegaStar radio is available in the following configurations: Terminal Add/Drop Repeater Hubbing Add/Drop R pretions Ring Add/Drop Repeater
Protection	The MegaStar radio is available with the following protection: Hot Standby, Space Diversity Frequency Diversity, Hybrid Diversity Non-Protected Unidirectional Path Switched Ring
Transmitter Power	High, HS +30.5 dBm Standard, HS +28.0 dBm Standard, FD, NP +28.8 dBm
Output Power Stability.	$\begin{array}{ll} \text { Over a } 12 \text { month period: } & \pm 0.25 \mathrm{~dB} \text { at maximum power output } \\ & \pm 1 \mathrm{~dB} \text { at minimum power output } \end{array}$
ATPC Range	10 dB (with HS, FD Transmitter)
Diversity Antenna Delay Equalization (DADE) Range	$\pm 480 \mathrm{nsec}$
Error Floor	One hop basis: 10^{-11} \leq Five hop system: 10^{-13} (average Fer hop, measured end to end)

Page 3-2

External Connection Specifications

Payioad Interiace

SPUR Connector CIT Connector

FarScan Connector
CUSTOMER CONNECT
Connector

RS232 Connector

STM1 optical
Optical signal specifications:

Parameter	Symbol	Minimum	Typical	Maximum
Feceiver soecitications				
Optical inout sensitivity	$P_{\text {IN }}$.32 .5 c 8 m	*	-14.078m
Optical wavelength	$\lambda_{\text {IN }}$	1270 nm	\cdots	1380 nm
iransmitter specrications				
Optical output	POUT	. $19 \mathrm{c8m}$	\cdots	$-1408 \mathrm{~m}$
Ootical wavelengit	iout	\cdots	1320 nm	-

SPU Controller

Link to other SCA.N equipment
FarScan por

Alarm Display
Provides customer access to FarScan
Provides customer access to nine solid-state on-board Form C relays and eight opto-isolated signal lines:

Five Relays-Alarms System Major
nww lib mrt System Minor
Major Visible
Major Audible
60 V DC max. 250 mA
Strappable for alarm = OPEN
or alarm = CLOSED
Minor

Four Relays
Site Commands
(Open-collector buffer [use pull-up resistor])
Eight Opto-Isolated Site Alarms

SCU Data Orderwire

External connection to the two RS232 ports ($\leq 4.8 \mathrm{~kb} / \mathrm{s}$ asynchronous data channel)

Ambient Temperature Range

Humidity
Altitude
Standard Power Source
Power Consumption

Environment and Power Characteristics

Full pertormance: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
No outage, error performance $\leq 10^{-6}$: $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage and cransportation: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
5 to 95% non-condensing
0 to 4572 m AMSL
$.56 \mathrm{~V} D C$ to $-21 \mathrm{~V} D C$ or $+21 \mathrm{~V} D C$ to $+56 \mathrm{~V} D C$ with respect to ground.

Terminal
Linear Add/Drop Repeater 800 Watts
Ring Add/Drop Repeater $\quad 465$ Watts
www tio mitactik

ADR scries of microwave Radios from Agilis Communication Technologics represents the latest in the high performance Radios that can be used for high capacity wireless solutions. Offered for SDH broadband applications, this series of microwave Radios are designed to be used with high data rate modems with QAM modulations. (Q) Elacronic Theses \& Dasy and quick Instaliation

REAMRES

- Broad frequency coverage from 7 GHz to 26 GHz
- Low component count and innovative design for flexibility and Reliability
- Conforms to ETSI grade A standards.
- Low Cost
- Competitive Performance
- Support STM0. $21 \mathrm{EI} / \mathrm{Tl} .16 \mathrm{El} / \mathrm{Tl} .8 \mathrm{El} / \mathrm{Tl} \& 4$ E1/TI Applications
- Stand Alone ($1+0$) Configuration
- Hot-Standby ($1+1$) Configuration Protection of Traffic
- Field Proven and Reliable
- Compact and Ruggedized for Outdoor

Agilis Communication Technologies Pte Ltd

A company of Singapore Technologies Electronics
100 Jurong East Street 21. Singapore Technologies Building, Level 4, Singapore 600602

POPULAR BANDS	$7 / 8 \mathrm{GHz}$	13 GHz	15GH7	18 GHz	23 CHz	26 GHz
FREQUENCY RANGE (GHz)	7.1-8.5	12.75-13.25	14.4-15.35	17.7-19.7	21.2-23.6	24.5-26.5
FLANGE TYPE	N-Fernale	WR-62	WR-62	WR-42	WR-42	WR-42
TRANSMITTER	$7 / 8 \mathrm{GHz}$	13 GHz	15 GHZ	18GHz	23 GHz	26 GHz
POWER OUTPUT	(Guaranted at RF Unit antenna port over temperature range)-					
PldB	$+32 \mathrm{dBm}$	$+31 \mathrm{dBm}_{\mathrm{m}}$	$+31 \mathrm{dBm}$	$+28 \mathrm{dBm}$	$+26 \mathrm{dBm}$	+26dBm
STMO-256Q^M - 8 MHz	$+22 \mathrm{dBm}$	$+20 \mathrm{dBm}$	$+20 \mathrm{kBm}$	$+18 \mathrm{dBm}$	$+16 \mathrm{dBm}$	-16dBm
$21 \times \mathrm{EL} / \mathrm{TI}-256 \mathrm{QAM}-8 \mathrm{MHz}$	$+22 \mathrm{dBm}$	$+20 \mathrm{dBm}$	$+20 \mathrm{dBm}$	$+18 \mathrm{dBm}$	$+16 \mathrm{dBm}$	+16dBin
$16 \times \mathrm{EL} / \mathrm{T} 1$ - 256 Q MM -6 MHz	$+22 \mathrm{dBm}$	$+20 \mathrm{dBm}$	$+20 \mathrm{dBm}$	$+18 \mathrm{dBm}$	$+16 \mathrm{dBm}$	$+16 \mathrm{dBm}$
$16 \times \mathrm{EL} / \mathrm{I} 1-128 \mathrm{Q} \wedge \mathrm{M}-7 \mathrm{MHz}$	$+23 \mathrm{dBm}$	+ 21 dBm	+ ? 1118 mm	$+19 \mathrm{dBm}$	$+17 \mathrm{dBm}$	$+17 \mathrm{dBm}$
$16 \times E I T H-64 Q A M-8 M H 7$	$+23 \mathrm{dBm}$	+2103m	+21UBm	$+19 \mathrm{dBm}$	$+17 \mathrm{dBm}$	$+17 \mathrm{dBm}$
8xEl/I' - $256 \mathrm{QAM}-3.5 \mathrm{MHz}$	$\underline{+22 \mathrm{dBrm}}$	+20) $\mathrm{dBm}^{\text {m }}$	$+20 \mathrm{dBm}$	+18dBm	+16dBm	+16dBm
$8 \times E I / T I-16 Q A M-7 M H z$	+24dBin	+22dBm	$+22 \mathrm{dBm}$	$+20 \mathrm{dH3m}$	+ 18 dB in	$+18 \mathrm{dBm}$
$4 \times E /[\mathrm{C}-16 \mathrm{QNM}-3.5 \mathrm{MHz}$	$+24 \mathrm{dBm}$	+22dBm	+22d8m	$+2018 \mathrm{~mm}$	$+18018 \mathrm{~m}$	+18d13m
RECEIVER	7/8GHz	13 CHz	156 H 7	18GHz	236H\%	26 CHz
SENSITIVITY @ IE-G BER	(Guaranteed at RF Unit antenna pont over temperature range)-					
STMO-256Q^M - 8 MHz	$-68 \mathrm{dBm}$	-64d8m	-64dBm	-64dBm	-6.k13m	-6.143m
$21 \times \mathrm{EL} / \mathrm{IL}-256 \mathrm{QAM}-8 \mathrm{MHz}$	-68dBm	-64dBm	-64d3m	-64d33m	-6.4dBm	-64dBm
16xE1/[1-256QAM - 6 MHz	-69dBm	-65diBm	. 6.5 dBm	-65 $\mathrm{d}^{\text {13m }}$	-65dBın	-65dBm
16xEI/II-128QAM - 7 MHz	.72dBm	-68.dPm	-68d8m	-68813m	-68d8m	-68dBm
$16 \times \mathrm{EL} / \mathrm{CI}$ - $64 \mathrm{QNM}-8 \mathrm{MHz}$	-75, 1 Hm	-7181318	-71d13m	-71dBt:	-7118m	-71dRm
$8 \times \mathrm{EL} / \mathrm{TI}-256 \mathrm{Q} \wedge \mathrm{M}-3.5 \mathrm{MHz}$	-72dPm	-68dBm	-68dBm	-6803m	. 68.183 m	-68dBm
$8 \times E 1 /[1-160 \wedge M-7 \mathrm{MHz}$	-81dBm	.77di3m	-77.13m	-77dBm	-77dBm	.77 dBm
$4 \mathrm{EEITI}-16 \mathrm{Q} \wedge \mathrm{M}-3.5 \mathrm{MHz}$. 844 dBm	-80d13m	-801318m	-80, 13 mm	-80k13m	-80.18m
FREQUENCY STABIIITY	+/- 5 рpm	$+/ .5 \mathrm{pmm}$	$+1.5 \mathrm{prm}$	+/-5mm	+1-5ppm	+/-5pmon
RECEIVER TYPE	Double Conversion					
DYNAMIC RANGF	$>60 \mathrm{kdt} 3$					
RECEIVER (JNFADED BER	$>1 \mathrm{E}-12$		-			
SYSTEM GAIN	7/8CHz	13CHz	156 HZ	18 GHz	236 Hz	26 GHz
SYSTEM GAIN@ Threshold	(Guaranteed at RF (jnis antenna port over temperature range)					
STMO-256QAM - 8MHz	92 dB	8 CdB	86JI3	84dB	82 dH	82 dB
$21 \times \mathrm{EL} / \mathrm{T}$ I-256QAM - 8 MHz	92 dB	86 dB	86dis	84 dB	82 dB	82 dB
$16 \mathrm{xFL} /[\mathrm{L}-256 \mathrm{QAM}-6 \mathrm{MHz}$	9.3 dB	87 dB	87 dB	85 dB	83.18	83 dB
$16 \times \mathrm{El} / \mathrm{T} 1-128 \mathrm{QAM}-7 \mathrm{MHz}$	97 dB	9 dB	91 dB	89 dB	87 dB	87 dB
$16 \mathrm{xEl/L1}-64 \mathrm{Q} \wedge \mathrm{M}-8 \mathrm{MHz}$	$1(\mathrm{O}) \mathrm{dB}$	94 dB	9 ddB	92 dB	90 dB	90 dB
$8 \times \mathrm{El} / \mathrm{TI}$ - $256 \mathrm{QAM}-3.5 \mathrm{MHz}$.	9 gdB	90 dB	90 dH	96 dB	9.4 dB	94.4 B
8xEI/TI-16QAM - 7 MH \%	107 dB	101dB	102dB	99 dB	97 dB	97 dB
$4 \times E / / T 1-16 Q \wedge M-3.5 \mathrm{MHz}$.	110 dB	10.4 dB	104 dB	102 dB	100 dB	100 dB

GENERAL
Modulation Type
Digital Interface Type Digital Line Code Digital I/O Interface

Intermecliate Frequency
Frequency Source
RF Channel Select
RF Power Selcet
Frequency Stahility
Loophacks
Power Supply
Power Consumption

MECHANICAI,

IDU

Wright
ODU
Weight

(O) Elo	2 Dissertations Relative Ilumidity	ODU	() ~ 100\%
$1+0$ or $1+1$ IDU $0 \sim 95 \%$			
QAM			
El per ITU-T G. 703	IIUU-ODU INTERCONNECTION		
HDB3	Cable		$!$
7552 Unbalance	Impedance		50S2
BNC-F (DB-25 Optional)	Max distance		300 m
Tx:640M1Iz;	Interconnection		SMA Male- N Male Cable
Rx:140MIIz (User Defmed)			
Programınable Sysnthesizer	SERVICE CHANNELS		
Selected by NMS	Code Format		64 Kbpss I CM
Selected by NMS	Voice Bandu idih		300-34() 1 IL
$\pm 5 \mathrm{ppm}$	Impedance		600s2
IDU. ODU. Local \& Remote	Signaling		DTMF
-36 *0-72 V DC	Monitor		L.ED indicate
35 Watt for ($1+0$)			BER (1) $0^{-3} .10^{-5}$)
70 Watt for ($1+1$)			ODU Alarm
			IDU Alarm
Standard ETSI 3U (19")	MONITOR CHAN	NEL	$2 \times$ Ethernet 10BT RG-45
130×483×250	Environment monitor input:		
8 Kg	Type		8 dry contacts + 2 analog
$120 \times 210 \times 210 \mathrm{~mm}$	Interface		25 pin D-iype
(Customisation Possitle)	Environment control output:		
6 Kg	Type		4 dry contacts
	Interface		25 pin D-type
$-30-600^{\prime \prime} \mathrm{C}$	NETWORK MANAGEMENT		
0-50 $0^{\prime \prime} \mathrm{C}$	Interface		$2 \times$ Ethernet IOBT RG-45
	Protocn		SNMP

Agilis Communication Technologies Pte Ltd

A company of Singapore Technologies Electronics
100 Jurong East Street 21, Singapore Technologies Building. Ievel 4. Singapore foy9602

System Parameters (64QAM)

Radio Frequency	4 GHz	5 GHz	U 6 GHz
Frequency Range	$3.600-4,200 \mathrm{MHz}$	$4.400-5.000 \mathrm{MHz}$	$6.430-7.110 \mathrm{MHz}$
Channel Spacing	40 MHz	40 MHz	40 MHz
Modulation Scheme		$64 \mathrm{QAM} \mathrm{MLCM}+\mathrm{RS}$	
TX Output Power jexcluding BR CKT Loss)	33 dBm	33 dBm	33 dBm
System Gain at BER $=10^{-3}$ (excluding BR CKT Loss)	109.1 dB	109.1 dB	109.1 dB

Radio Frequenc!'	8 GHz	11 GHz
Frequency Range	$7,725-8.275 \mathrm{MHz}$	$10.700-11.700 \mathrm{MHz}$
Channel Spacing	40.74 MHz	40 MHz
Modulation Scheme	$64 \mathrm{QAM} \mathrm{MLCM}+\mathrm{RS}$	
TX Output Power (excluding BR CKT Loss)	33 dBm	30 dBm
System Gain at BER $=10^{-3}$ (excluding BR CKT Loss)	108.6 dB	105.6 dB

System Parameters (128QAM)

Radio Frequency	4 GHz	L6 GHz	7 GHz
Frequency Range	$3.803 .5-4,203.5 \mathrm{MHz}$	$5,925-6,425 \mathrm{MHz}$	$7,125-7,725 \mathrm{MHz}$
Channel Spacing	29 MHz	29.65 MHz	28 MHz
Modulation Scheme		128 QAM MLCM	
TX Output Power (excluding BR CKT Loss)	32 dBm	32 dBm	
System Gain at BER=10.3 (excluding BR CKT Loss)	105.7 dB	105.7 dB	105.2 dB

Radio Frequency	8 GHz
Frequency Range	$7,725-8,275 \mathrm{MHz}$
Channel Spacing	29.65 MHz
Modulation Scheme	128 QAM MLCM
TX Output Power (excluding BR CKT Loss)	32 dBm
System Gain at BER $=10^{-3}$ (excluding BR CKT Loss)	105.2 dB

System Parameters

Transmission Capacity
Wayside Capacity (in RFCOH)
Service Channel Capacity (in RFCOH)
Power Supply Requirement
Total Power Consumption
Mounting Rack
Dimensions ($\mathrm{W} \times \mathrm{D} \times \mathrm{H}$)
Operating Temperature (Guaranteed)

STM-1 or OC-3 ($155.520 \mathrm{Mbit} / \mathrm{s}$, electrical or optical interface) 64QAM System: $2 \times 2.048 \mathrm{Mbit} / \mathrm{s}$ or $2 \times 1.544 \mathrm{Mbit} / \mathrm{s}$ 128QAM System: $1 \times 2.048 \mathrm{Mbit} / \mathrm{s}$ or $2 \times 1.544 \mathrm{Mbit} / \mathrm{s}$ $1 \times(192$ or $64 \mathrm{kbit} / \mathrm{s})$ and $4 \times 64 \mathrm{kbit} / \mathrm{s}$ -48 V DC (-36 to $-72 \mathrm{~V} \mathrm{DC}) /-24 \mathrm{~V}$ DC (-20 to $-35 \mathrm{VDC}) /$ $+24 \mathrm{VDC}(+20$ to $+35 \mathrm{VDC})$
Approx. 315 W (for $4-\mathrm{U} 6 \mathrm{GHz}, 1+1$ Terminal, 10W FET type, e/w SD)
ETSI - Rack
$600 \times 300 \times 2,200 \mathrm{~mm}$
$-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Technical Specifications

Frequency Band (MHz)		$\begin{array}{\|c\|} \hline \mathrm{U} 4 \\ 3803.5-4203.5 \\ \hline \end{array}$	$\begin{gathered} \text { L6 } \\ 5925-6425 \end{gathered}$	${ }_{7125-7425}$	$\begin{gathered} \mathrm{U} 7 \\ 7425-7725 \end{gathered}$	$\begin{gathered} \mathrm{L} 8 \\ 7725-8275 \end{gathered}$	$\begin{array}{\|c\|} \hline 13 \\ 12750-13250 \\ \hline \end{array}$
Modulation Type		128 QAM-MLCM					
ITU-R Series Rec. No.		F.382-6	F.383-5	F.385-6	F.385-6	F.386-4	F. $497-4$
Channel Spacing (MHz)		29	29.65	28	28	29.65	28
Protection System	Alternated	$5+1$	$7+1$	+ +1	t+1	$7+1$	$7+1$
	Co-channel	$2 \times(5+1)$	$2 \times(7+1)$	-	-	$2 \times(7+1)$	-
RF output power (dBm) ($+/-1 \mathrm{~dB}$)		32	32	32	32	32	27
System Gain (dB) *		106	106	106	106	105.5	97.5
Wayside		$2 \times N$ where N is the number of RF channels					

Frequency Band (MHz)		$\begin{gathered} 4 \\ 3600-4200 \end{gathered}$	$\begin{gathered} 5 \\ 4400-5000 \end{gathered}$	$\begin{gathered} \text { U6 } \\ 6430-7110 \end{gathered}$	$\begin{gathered} 11 \\ 10700-11700 \end{gathered}$
Modulation Type		64 QAM-MLCM			
ITU-R Series Rec. No.		F. 635-3 Annex-1	$\begin{aligned} & \text { F. 1099-1 } \\ & \text { Annex-1 } \end{aligned}$	F.384-6	F.387-7
Channel Spacing (MHz)		40	40	40	10
Protection System	Alternated	$6+1$	$6+1$	$7+1$	$7+1$
	Co-channel	$2 \times(6+1)$	$2 \times(6+1)$	$2 \times(7+1)$	$2 \times(7+1)$
RF output power (dBm) ($+/-1 \mathrm{~dB}$)		32	32	32	29
$\text { System Gain }(\mathrm{dB})^{*}$		 $2 \times$ N wherenvist the number of			104.5
Wayside					hannels

Interface	•SDH: $155.52 \mathrm{Mb} / \mathrm{s}$ Electrical, $155.52 \mathrm{Mb} / \mathrm{s} \mathrm{Optical}$ (Optional)
	\bullet PDH: $139.264 \mathrm{Mb} / \mathrm{s}$ (Optional)

*: This is a typical figure, excluding losses in the Branching Network Unit.

General

Access networks are important building blocks used to close the gap between the classical transport (backbone) networks and the end user. The Bosch Access Network is the optimum solution for this purpose as it supports all physical media (fiber, copper, and radio) in one single system and is monitored and configured
via one common network management system. Thus, the customer can select any suitable solution (or mixtures thereof) to optimize his sperific needs.

As an integral part of the Bosch Access Network, the DMS (Digital Multipoint System) forms the broadband wireless part of the
network. This system solution is of special importance, if a quick deployment is required and the installation of a wired network is not possible or too expensive. Consequently, no compromise in quality can be accepted for the wireless solution.

(access Network (all technologies)

2

DMS - a highly flexible system concept

Main features:

- Point-to-Multipoint system concept
- Single and multiple cell configurations
- Flexible sectorization topologies, overlapping sectors
- Seamless integration into the Bosch Access Network
- Open and standardized interfaces
- Full network management control (OPEN NSÜ)
- Efficient bandwidth utilization
- Dynamic assignment of traffic capacity for voice and data
- High system capacity in cellular environment
- Configurable for business and residential access
- Wide range of RF frequencies
- Fixed network quality and availability
- Advanced adaptive modem technology
- Integrated RF and microwave radio technology
- Software-controlled system functions
- Quick and easy installation and setup
- Planning tools for optimum coverage
- Online interference management (OIM) for further capacity optimization

[^1]
DMS applications and configurations

Example of a radio cell with overlapping sectors $\left(15^{\circ}, 45^{\circ}, 2 \times 90^{\circ}\right)$

DMS system capacity

Switched services mode

$\left.\begin{array}{lllllll|}\hline & \begin{array}{ll}\text { FBA } \\ \text { mode }\end{array} & & & \text { DBA } \\ \text { mode }\end{array}\right]$

Boundary conditions for capacity calculation: typical cellular coverage (with interference)
$B E R<10^{-}$
for DBA: blocking: < 0.01\%
traffic: 0.2 Erl/subscriber

Leased line mode

Frequency range [GHz]	Eloctronic Theses 3.5 issertations	10.5	24/26
RF bandwidth [MHz]	wwwlib mrtac lk 14	30	28
Sectorization [${ }^{\circ}$]	60	45	45
Number of E1 per sector	12	27	25
Number of E1 per cell ($6 / 8$ sectors)	72	216	201
Trunk capacity [Mbit/s]	$2 \times$ STM-1	STM 4	STM-4
Total capacity of all channels	$880 \mathrm{Mbit} / \mathrm{s}$	2.6 Gbit/s	7.4 Gbit/s
in the frequency band [Mbit/s] (duplex)			at 26 GHz

Boundary conditions for capacity calrulation: typical cellular coverage (with interference)
$\mathrm{BER}<10^{-7}$
max of available modulation schemes

Internet traffic

Frequency range [GHz]	3.5	10.5	$24 / 26$	
RF bandwidth $[\mathrm{MHz}]$	14	30	28	
Sectorization [${ }^{\circ}$]	60	45	3240	30
Number of active Internet users per sector	900	25920	24000	
Number of active Intemet users per cell	5400		2	

[^2]Remark: all values are typical

Technical characteristics

Air interface			
Frequency band [GHz]	3.4-3.6	10.15-10.65	24.5-26.5
Multiple access scheme	FOMA	FDMA	FDMA
Air interiace protocol	FBA and DBA	FBA and DBA	FBA and DBA
Modulation schemes	QPSK	QPSK	QPSK
(software-configurable)	8-TCM	8-TCM	$8 \cdot \mathrm{TCM}$
	16-TCM	16-TCM	16-TCM
Channel coding	Convolutional	Convolutional	Convolutional
(software-configurable)	Treilis Trellis	Trellis	
	Reed soiomon	Reed solomon	Reed solomon
Demodulation	Coherent	Coherent	Coherent
	Viterbi decoder	Viterbi decoder	Viterbi decoder
Channel bandwidth [MHz]	$14 \quad 30$	28	
Channel allocation	dupiex	duplex	duplex
Compliance with stardards	ETSI DEN/TM	ETSI DEN/TM	ETSI DEN/TM
	04040.	04040.	04040.
	CEPT REC T/R	CEPT REC T/R	CEPT REC T/R
	14.03 E	12-05 E	13.02E

other frequency bands upon request

Base station	Uninersity of Morntuwa, Sri Lanka.		
Frequency band [GHz]	3.4-3.6	10.15-10.65	24.5-26.5
Architecture	Modular, scaleable, frequency-independent indoor units, frequency-dependent outdoor units		
Antenna sectorization	$60^{\circ}\left(30^{\circ}\right)$	$15^{\circ}, 45^{\circ}, 90^{\circ}$	$15^{\circ}, 45^{\circ}, 90^{\circ}$
Number of sectors per cell	1-6(12)	1-8(24)	1-8(24)
Antenna type	Planar, sector beam, low sidelobes, low cross-polarization		
Interconnection indoor/outdoor	Single coaxial cable		
Network interfaces	STM-1, STM-4, $34 \mathrm{Mbit} / \mathrm{s}, 2 \mathrm{Mbit} / \mathrm{s}, 10 / 100$ Base 「		
Network protocols	CAS, V5.1, V5.2. VB5. IP		

User terminal			
Frequency band $[\mathrm{GHz}]$	$3.4-3.6$	$10.15-10.65$	$24.5-26.5$
Architecture	Modular, scaleable, frequency-independent indoor units, frequency-dependent outdoor units		
Interconnection indoor/outdoor	Single coaxial cable		
Antennas	Planar, high gain,	Planar, high gain,	low sidelobes,

| User interfaces
 (depending on network unit) $n \times P O T S, n \times 1 S D N(U o, ~ S o), V .35 / X .21, V .11, n \times 64 \mathrm{kbit} / \mathrm{s}$,
 10BaseT, E1, fractional E1, $n \times E 1$ (n up to 8),,
 Local PC element manager, remote login |
| :--- | :--- |

Miscellaneous specifications		
Frequency band [GHz]	3.4-3.6; 10.15-10.65; 24.5-26.5	
Security, fraud prevention	Standard:	Identification of subscribers
		via the network management system
	Optional:	SIMM card reader and software control
		per link authentication
	Optional:	Encryption subsystem (sottware enabled)
		DES stancard
Alignment tool	Installation	alignment kit
Planning tools	Planning to	for business and cell/link planning upon request

APPENDIX - C:

SPECIFICATION SHEETS FOR OPTICAL

FIBERS AND CABLES

Below is a cache of http://www.corningcablesystems.com/web/library/AENOTES.NSF/ \$ALLIPGSFO1/\$FLEEGSFO1, pdt It's a snapshol of the page taken as our search engine parner crawled the web We've highlighted the words. 9655 fiber specifications
The websife itself may have changed. You can check the current page (without highlighting).
Yahoo! is not affiliated with the authors of this page or responsible for its content

CORNIVG CABLE SYSTEMS GENERIC SPECHFICATIONFOR SINGLE-MODE OPTICAL FIBERIN LOOSE TLBE AVD RIBBON CABLES

April 2003

Revision K

1
 Gicneral
 Finer Spectications

www lib mrtac ll

1. 1 All hibers in the cable must be usable and meet required specifications
1.2 Each optical finer shall be sulliciently fre of surface impertections and inclusions to mee the optical. mechanical, and envirommental equirements of this spechication.
2. Each optical hiner shall consist of a germana-doped silica core serrounded by a concentric glass cladding. The fiber shall be a matched elad design
1.t Each optical ther shall be proot ested be the liber manulacturer at ammum ol lookps1 (1).7 Givim),
1.5 The fiber shall bo soated with a dual layor acr late protectice coating. The coatmos shall be in phy sical contact with the elading surfiece.
1.1 The atlentation specilication shall be a mavimum watue for wach eabled fiber at 2?: Con the origmal shipping recl.

The single-mode fiber shall meet EIA/TlA-H)2CAAA. "Detail Specification for Class IVa Dispersion-Unshifted Single-iMode Optical Fibers." and ITU recommendation G.652, Characteristics of a single-mode optical libre cable.

Geometr:

PGStM

Page 2

Coming (Gble Systems (;emerid Spectication for Singlonlode ()prical fiber in lowse lube and Ribbon
rables
April, 2003. Revivion 8 www liburtacll.
Page 2 of +

Optical
Cabled Fiber Ancnuation
(dB/hili)
$=11.4$
2.9

1310 mm
1550 mm
$=10.3$
Point discontmut!
2.9

131011 m
1550 mm
$=11.1$
Wacrobend Altenuation
(dB)
Turns Mandrel OD

1	32218 mm	Onsuan 15
1110	50) 2 mm	<0115 at 13
1010	(0) 2 mm	- 11.11) at 15 :
1010	(,1) 2 mm	1105 at 15
\because en	(mm)	$\cdots 1200$
	(mm) 1302	$=?$

3 Single－mode（Dispersion Ln－shifted）with Low Water Peak

 Optical Fibers with Low Wator Peak．＂and ITL wemmendation G．as？C． Charactristes ol a smele－mode op！cat libre cable These libers shall hate the same specifiod porformance and geometry salues as standard dispersion un－shified ther （Section 2）except as noted beton．

1rがいm

Page 3
 Cables
．Tpril．2003，Revision 8
Pate 3 uld +

+ Non－zero Dispersion－shifted Fiber for Long－haul Telecommunications Applications

mect ITU recommendation G.655, Characteristics of a Non-Zero Dispersion Shifted Single-Mode Optical Fibre Cable. (Rcl Table I/G.655-G.65ラA)

Geometry

Oprical

 Cables
Ipril, 2uns. Revision X
Page + or +
5 Non-fero Dispersionshifed Fiber for Meropolitan Telecommanications Applicatimes

Ceomers?

i.	Clading Diametor	(111)	1201111
i	Core-6-Cladding Concontricil?	(171)	$=115$
	Claddus Non-Cirularis		$=1.1)^{\prime \prime}$
5	Mode Fickd Dametor 1550 nm	(171)	76010860
5	Coathy Diameter	(111)	$2+55$
3.	Uninersity of Moratuwa. Sri Lanka Colored Fiber Nommal Diamemer	(111)	253-259
5	Fiber Curl radius of cun ature	(mi)	

Optical

C-Band, Chromatic Dispersion Compensation

geatures

- Provides Oplimizua Oispertsion Compensation msooss the 1525 nm to 3565 mm Passbiand on Nom-Zaro Dispersion-Shittec Fibers
- Low Poinnzation Mode Disuersion
- Entances DWDN Evstern

Ferfiomance by Padiling
A cournuato Resioual Dispersion

- Envirmmentatr Rojust and Fuid Fessive
- Vactyotconnector Types anc Putat-anghs anatede

APALCATROAS

- Sysierss bsing EAFD Fiber Or 4 Y Posithanon Zars Uispersionshiter Fiber
- Long Reulanciltra-Lorg-Haut

Comimbicetious Svspems Operaing
in the 1525 nm 101505 mm
Waveiengtt Fange

- iviltorimmel High-Bit-Fale OWDM Systans
- Longer Reach Metropndian Netwotks
 ior -NZ-ESF hibers efficentiy counteract the effects of chmmatco cispersion across the C -Eand

 values are avabobe won recues:

POwn (Ba) wanex

$30010002 / 02$

KEY OPTICAL PARAMETERS FOR COMMON MODULE LENGTHS

SPECTRAL CHARACTERSTICE

NONLINEAR PROFERTIES

	1.75 $\times 10 \times$ \% Typucal
	i5 [ix: (Tuplcal)

ENVPONRENTAL CHARAETERESTICS

Operatig Temperature Fence
Environnental'Relabily Peatina
Storage Femperalure Ferte
-50 0500
Feicorcia GF 2d5+ Quainte
-0% C 1005 C

PRCKAGENG OPTIOAS

opackage

ORCERING \{AFORMATION

When orcerny: piezes specity the ollowily
Mocule asscraption
Conpersated length am, ancor reshisite compensation (parm
Pacl:age wpe
Commector typerpigual :ergta

组 AMAEX

Q

SkyLite ${ }^{\text {™ }}$

$!$	Aluminum Clad Steel Wires		Aluminum Tape Buffer Tubes Aluminum Alloy Core
	SPECIFICATIONS		
		English	Metric
Am	Cable Diameter:	0.469 in	11.91 mm
$\stackrel{ }{ } \cdot$	Core Diameter.	0.297 in	7.54 mm
	Core Area:	0.0468 sg in	30.19 sg mm
	Stranding:		
	Aluminum Clad Steel Wire No./Dia.	14/0.083 in	$14 / 2.11 \mathrm{~mm}$
	Rated Breaking Strength:	13,294 lbs	6,028 kgf
	Rated Fault Current @ $20^{\circ} \mathrm{C}$:	$40(\mathrm{kA}) \mathrm{sq} \mathrm{sec}$	40 (kA) sq sec
	Unit Weight:	$0.284 \mathrm{lb} / \mathrm{ft}$	$0.425 \mathrm{~kg} / \mathrm{m}$
\cdots	Modulus of Elasticity:	$18.34 \mathrm{E}+6 \mathrm{psi}$	$12,898 \mathrm{~kg} / \mathrm{sq} \mathrm{mm}$
	Coefficient of Thermal Expansion:	8.37E-6/DegF	$15.06 \mathrm{E}-6 / \mathrm{Deg} \mathrm{C}$
	Cross Sectional Area:	0.123 sq in	79.06 sq mm
	Nominal D.C. Resistance @ $20^{\circ} \mathrm{C}$:	$0.189 \mathrm{ohm} / \mathrm{kft}$	$0.620 \mathrm{hm} / \mathrm{km}$
	Fiber Count:	2-24	2-24

SCHEDULE D (Continued....)

D-2

	Unit	Earthwire $7 / 3.25 \mathrm{~mm}$	$\begin{gathered} \text { ACSR } \\ 400 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} \text { ACSR } \\ 175 \mathrm{~mm}^{2} \end{gathered}$	TACIR Or Equi.
Conductor Jumper Lug Type Number		A1004015T	130014564	13006144T	-
Vibration Damper Type Number			ALCOILAIT	A3004870	A3004870
Distance from mouth of Suspension or Tension Clamp to Vibration Damper	m		1.37	0.80	1.37
Distance between subsequent Vibration Dampers	m		1.67	0.98	1.67
Details and Type Number of Compresston tools -	 100 Tons	requicred ...	
Identification Numbers of Compresscr Dies to be Supplied -					
Aluminum part - Conductor		-	40AF	27.5 AF	40 AF
Stoel pari - Conductor		-	17 AF	16 AF	17 AF
Jumper Terminal - Conductor	Uninersit Electroni	of Mor-tumas Theses \& Disse	LIAO AF	27.5 AF	40 NF
Repair Sleeve - Conductor	Nww lib	dinacli-	40 AF	-	-
Galvanized Steet - Eartrwire		19AF	-	-	-

D 3-OPGW

Description	Unit	
Type of OPGW		SLOTTED CORE
Conforming to standard		IEEE 1138
Construction of OPGW		
1) Overall - Number of tubes:		2
- Tube diameter.	mm	1.9
- Tube material:		PBT
- Nuinber of fibre/tube:		6
- Length of each fibre per km of OPGW (km):	km	1.012
- Filling compound:		HYDROCARRON
- Central strength member.		GEL
- Heat resistant barrier.		NONE
- Material of fibre:		NOE
2) Inner layer:		SILICA

- Number of wires
- Diameter of wires
- Cross-section
- Lay ratio

Outer layer

- Material:
- Number of wires:
- Diameter of wires:
- Cross-section:
- Lay ratio:

Total cruss sectional area
Rated outer diameter
Nominal weight
Minimum ultimate tensile strength
Maximum tensile strength for normal operation
DC resistance at 20 degree C
Modulus of elasticity

- Inltial
- Final

Coefficient of linear expansion
Method of creep compensation
Minimum bending radius;

- Short term
- Long term

Strain margin;

- Nominal
- Maximum allowance

Maximum allowable temperature and corresponding current;

- continuous
- for short circuit
- for lightning stroke

Optical Wave Guides;

1) Number of optcal fibres in OPGW
2) $M o d \theta$
3) Optimised wave length
4) Cut off wave length at;
measured in 20 m OPGW +2 m optical fibre CC:
measured in 2 m fibre section C :
5) Maximum attenuation per km at, $1,550 \mathrm{~nm}$
$1,300 \mathrm{~nm}$
6) Chromatic Dispersion at, Zero dispersion wave length: Dispersion stope (So-at o): Dispersion D () in the operation window from $1,300 \mathrm{~nm}$ to $1,57.5 \mathrm{~nm}$
7) Nominal zero dispersion wavelength :
8) Refractlve index; Core (1) 1310 nm Cladding © 1310 nm
9) Material used in; Core Cladding Primary coating Jacket

Operating temperature range	deg. C	-20 to +60
Maximum vartation in optical attenuation within operating temperature in range (item 13. above);		$+0.1 \mathrm{~dB} / \mathrm{km}$
at 1.550 rm	$\mathrm{dB} / \mathrm{km}$	$+0.1 \mathrm{~dB} / \mathrm{km}$
at 1,300 nm	dB/km	40
Cable life expectancy	years	Not determined
Atmospheric and sunlight degradation after	years	
Flexing over 100 cycle $+/-90$ with bending radius of		Not determined
(mm) (yes or no):		Not determined
Torsional strength	degreeim	Not determined
Impact resistance al temperature of	deg.C	Not determined
Co-efficient of expanston per degree C		Duct
Sultable for laying in duct/direct burialfor both		1
Length markers on cable in unit length of	m	no
Rodent attack additive provided	yes/no	Sheath meets requirements of BALCORE TR-NWT000020

University of Moratuwa, Sri Lanka Electronic Theses \& Dissertations
www tis mrtac 斯

HIGH FIBER COUNT (HFC) OPT-GW DESIGN

DESIGN FEATURES

- High fiber count package with reduced diameter. and weight (49 to 288 fibers)
- Laser-welded high grade stainless steel tube provides mechanical and thermal protection and hermetic seal for fibers
- Fiber excess length controlled to provide high load and long span capability
- Each optical fiber and tube is uniquely identified for organization at splice locations
- Stranded wires (type \& size) selected to optimize mechanical and electrical properties
- Anti-rotational devices are not required for instailation
- 40 year projected life

DESIGN CRITERIA

- Meets or exceeds test criteria specified in IEEE 1138 and

CABLE CROSS SECTION
 other industry standards

- Test data available upon request

10. Uninersity of Moratuwa, Sri Lanka.

FIBER TYPE \& ATTENUATION mint ill

- Available fiber types include standard multimode. single-mode, dispersion shifted and non-zero dispersion shifted fibers
- Typical performance of $0.40 / 0.30 \mathrm{~dB} / \mathrm{km}$ (1) $1310 / 1550 \mathrm{~nm}$ for single-mode fiber
- Tighter attenuation fibers available upon request

NOMENCLATURE

 installation guifes. and sag and lemsion infomatmon available upon request

Alcoa Fujikura Ltd.
 Telecommunications Division

UP TO I44 FIBER OPT-GW

OPTICAL UNIT CROSS SECTION

Stainless Stecl Tube

SPECIFICATIONS

			INPUT FOR SNG10'× PROGRAM								
llem	PTGW Size		Total Conductor Ares		Overgll Diameler.		Weight		RBS		Sag $10^{\text {re }}$ Cliät Nimtiber
		(KA$)^{2} \mathrm{Se} \times \mathrm{C}$	in ${ }^{2}$	mm^{2}	in	mm	ibs/ft	kg / m	Its	kg \ldots	
HFC7205	S $1.60 / 70 / 630$	107	02090	13487	M0.630	Sri 160	0.4612	0686	22.534	10.221	1.1444
HFC7215	S1.69/69/646	121	0.2204	142217	cse 046	-ral 164	0.4723	0.703	22,857	10.368	1.420
HFC7225	S1.75/76/669	145	0.2407	W155.29	ac0669	17.0	0.5144	0.766	25.109	11.389	1.420
HFC9605	S1.60/701630	107	02090	13487	0.6 .30	16.0	0.4612	0.6886	22.53 .4	10.221	1.1444
HFC9615	S 1.69/69/646	121	02204	142.21	0.646	16.4	0.4723	0.703	22.857	10.368	1.420
HFC9625	51.75/76/669	145	0)2407	15529	0669	17.0	0.5144	0.765	25.109	11.389	1.420
HFC14405	S1-60/60/630	93	01266	12633	0.630	16.0	0.4316	0.642	13.907	9.030	1.420
HFC14415	51-69/59/646	106	0.2080	134.17	0646	16.4	04428	0.659	20.230	9.176	1.536
HFC14425	51.75i66/669	129	0.2282	14725	0.669	17.0	0.48 .8	0.722	22.482	10.198	1.536

Note Custom designs avaitable

TYPICAL REEL LENGTHS

Longer lengilis available upon ierfuest.

- Reel nomenclatures and specificalions are identificu (m page 11

DESIGN FEATURES

- "Tight Structure" optical unit provides optimal mechanical and thermal fiber protection
- Thick wall aluminum pipe provides maximum protection of fiber units with hermetic seal. excellent crush resistance. and low resistivity
- Suranded wires (type \& size) selected to optimize mechanical and electrical properties
- 40 year projected life

DESIGN CRITERIA

- Meets or exceeds test criteria specified in IEEE 1138 and other industry standards
- Test data available upon request

FIBER TYPE AND ATTENUATION

- Available fiber types include standard multimode. single-mode, dispersion shifted and non-zero dispersion shifted fibers
- Typical performance of $0.40 / 0.30 \mathrm{~dB} / \mathrm{km}$ @
$1310 / 1550 \mathrm{~nm}$ or single-mode fiber
- Tighter attenuation fibers available upon request

NOMENCLATURE

Note Mecthanical and electrical data. Gross-sectional and hardware drawings. imslallation guides. and sag and lension information available upon request.

Alcoa Fujikura Ltd.
 Telecommunications Division

SINGLE OPTICAL UNIT CONSTRUCTION - UP TO 8 FIBERS

SPECIFICATIONS

Nole: Customized designs available
TYPICAL REEL LENGTHS

llem Number	NR60.28.30*		$\text { NR68. } 34.35^{\circ}$		NR72:3435	
	feet	melerz	feel	meters	fext:	meters
GW0800	21.378	6.516	23.000	7.010	23,000	7.010
GW0805	21.378	6.516	23.000	7.010	23.000	7.010
GW08 10	21.378	6.516	23.000	7.010	23.000	7.010
GW0815	18.069	5.507	23.000	7.010	23.000	7.010
GW0820	18.069	5.507	23.000	7.010	23.000	7.010
GW()825	18.069	5.507	23.000	7.010	23.000	7.010
GW0830	15.021	4.578	23000	7.010	23.000	7.010
GW0835	15.021	4.578	23.000	7.010	23.000	7.010
CW084()	15.021	4.578	23.000	7.010	23.000	7.010
GW0845	12.025	3.665	18.649	5,68.4	19.607	5.976
GW0850	12.025	3.665	18.649	5.684	19.607	5.976
GW0855	12.025	3.665	18.649	5.68 .4	19.607	5.976

Longer lengths available unor request

- Reel nomenclatures and specifications are identified on page it

ALᄃ口A

SINGLE OPTICAL UNIT CONSTRUCTION - UP TO 24 FIBERS

SPECIFICATIONS

- 12 fiber unit shown

Note: Custom designs available
TYPICAL REEL LENGTHS

Itern Number	NF60 28.30°		NR68.34.35*		$\text { NR72:34 } 35^{\circ}$	
	\{5, ${ }^{\text {a }}$!	melers	feot	meters	fent.	melers
GW 1200	19.953	6.081	23.000	7.010	23.000	7.010
GW 1205	19.353	5.081	23.000	7.010	23,000	7.010
GW1210	19.953	6.081	23.000	7.010	23.000	7.010
GW1215	19.953	6.081	23.000	7.010	23.000	7.010
CW1220	16.957	5.168	23,000	7.010	23.000	7.010
GW1225	16.357	5.168	23.000	7.010	23.000	7.010
GW1230	16.957	5.168	23.000	7.010	23.000	7.010
GW1235	16.357	5.163	23.000	7.010	23.000	7.010
GW:240	14.175	4.320	21.983	6.700	23.000	7.010
CW1245	14.175	4.320	21.083	5.700	23.000	7.010
GW1250	14.175	1.320	21.993	5.700	23.000	7.010
GW 1255	14,175	4,320	21,983	5.700	23.000	7.010

[^3]ALᄃロム
MULTIPLE OPTICAL UNIT CONSTRUCTION - UP TO 36 FIBERS

SPECIFICATIONS

			INPUTFOR SAGIOSSPROGRAM								
IRem Number	OPTGW Size (Sirand AreaKO D)	Fault Current: $(k A)^{2} \sec$	Total Conductor Area		Ovarat Siameter		Weight		RES		Sag10rm Chart. Number
			in^{2}	inm ${ }^{2}$	in	min	Ibit	kgim	lbs	kg	
GW3600	$65 \mathrm{~mm}^{2} / 555$	72	0.1646	106.18	05.55	14.1	0.3853	0.5733	18.960	8.600	1.1461
GW3605	$26 / 39 \mathrm{~mm}^{2} / 555$	81	0.1646	106.18	0.555	i4.	0.3156	0.4697	13.624	6.180	1-1439
GW36 10	$30 / 35 \mathrm{~mm} / 555$	82	0.1646	106.18	0555	14.1	0.3010	0.4524	12.734	5.776	1.1438
GW36 15	$71 \mathrm{~mm}^{2} / 571$	79	0.1746	112.02	0571	14.5	0.414	0.6160	20.712	9.395	1.1450
GW3620	$20 / 51 \mathrm{~mm}^{2 / 571}$	87	0.1746	112.52	0.511	14.5	0.3597	0.5352	16.522	7.494	1.1440
GW3625	$36 / 36 \mathrm{~mm}^{2} / 571$	93	0.1746	112.62	0.571	14.5	0.3187	0.4742	13.381	5.070	1.355
GW3630	$80 \mathrm{~mm}^{2} / 591$	90	0.1878	121.17	0.591	15.0	0.4530	0.6741	23.037	10.450	1-1457
GW3635	$31 / 49 \mathrm{~mm}^{1 / 591}$	103	0.1878	121.17	0.591	15.0	0.3706	0.5514	16.724	7.586	1-1170
GW3640	$37 / 43 \mathrm{~mm}^{2} / 591$	105	0.1878	121.17	0.591	15.0	0.3541	0.5269	15.461	7.013	1.1439
GW3645	$91 \mathrm{~mm}^{2} / 614$	104	0.2041	131.70	0.614	15.0	0.5005	0.7448	25.900	11.748	1.1453
GW3650	$30 / 60 \mathrm{~mm}^{2} / 614$	118	0.2041	131.70	0.614	15.5	0.4197	0.6246	19,709	8.940	1.350
GW3655	$45 / 45 \mathrm{~mm}^{2} / 614$	125	0.2041	131.70	0.614	15.6	0.3793	0.5644	16.613	7.536	1-1438

Note: Custom designs available

TYPICAL REEL LENGTHS

Alcoa Fujikura Ltd.
 Telecommunications Division

MULTIPLE OPTICAL UNIT CONSTRUCTION - UP TO 48 FIBERS

Note: Custom designs available

TYPICAL REEL LENGTHS

	NR60.28.30*		NR68.24 35^{*}		NR72.34.35*:	
,	\% ¢ feet	meters.	fee!	melers	feet.	melers
GWd800	10.330	3,148	16.020	4.882	18.882	5.755
GW4B05	10.330	3.148	16.020	4.882	18.882	5.755
GW4810	10.330	3.148	16.020	4.882	18.882	5.755
GW4815	10.330	3.148	16.020	4.382	18.882	5.755
GW4820	9.513	2.930	11.909	4.54	17.572	5.355
GW4825	9.513	2.930	14.309	4.544	17.572	5.355
GW4830	9.613	2.930	14.309	4.54	17.572	5.355
GW4835	9.613	2.930	14.009	4.54	17.572	5.355
GWar40	8.206	2.501	12.726	3.873	15.000	+ 572
GW4845	8.206	2.501	12.726	3.873	15.000	4.572
GW4850	8.206	2.501	i2.726	3.873	15.000	4.572
GW4855	8.206	2.501	12.726	3.878	15.000	4.572

Longer lengiths available upon request.
-Reel nomenclatures and specifications are ispentified on paye 11

ADSS Catle Desigh

Figure 2: Fiber Freedom Window vs. Pitch

Qrervievs

All Dielectric Self Support (ADSS) cable construction represents a modification of traditional loosetube cable designs which are popular for buried, duct or lashed applications. These modifications allow ADSS cables to endure environmental stresses not typ.cally found in other applications. This Alcatel Application Note describes important similarities and differences between ADSS cables and traditional cables.

Special Design Consicterations for ADSS Optical Cubles

ADSS cables are, by defintion, largeted for aerial installations. Cables that are buried, lashed to other support cables, or installed in ducts are designed with a trade off between the ability to withstand pulling forces and the ability to handle compressive forces (for example caused by bending around the corner of a duct or caused by ice expansion underground during freezing). The primary design consideration for ADSS is to withstand significant tensile loads as the cables hang between supports. The cables own weight as well as environmental forces (prımarily high winds or ice buildup) apply stress to the cable structure. In addition. ADSS cables have to be designed for installation in "live" electrical power environments. or even to withstand potential stray gunshots from hurters. The requirement for installation in eiectrical fields and for lighter weight results in designs that are different from conventional optical fiber cables. In conventional cables metallic or other strength members or yarns provide the ability to withstand pulling iorces. ADSS cable designs must accomplish this with a lightweight dielectric construction.

anss Cuder Dasigns Conpraned to Connentional Opticad Cables

The fundamental design of virtually all ADSS cable is based on the standard loose lube construction commonly used for most optical fiber cables; however. there are some important differences. The loose ube cable construction. Illustrated in Figure 1 is designed to allow high tensile loads to be applied to the cable without transferring stress to the optical fibers within. The principle behind this cable design is to place fibers into buffer tubes filled with a gel compound. These tubes house and protect the fibers allowing freedom to move as the cable elongates or contracts. The buffer tubes themselves are spiral wound (stranded) around a central rod (central strength member) which helps to bear the load during cable pulling. The buffer tubes and the fibers within are longer than the catle itself. As the cable elongates under pulling stress, the fibers are free to move within the gel-filled tubes towards the center of the cable without any strain. Thus creates a 'tensile window' in which there is no fiber elongation or stress to a specified load. For a given central stength member and tube geometry, the shorter the laylength of the stranded lubes, the greater the tensile window (Electromic Thises available. Figure 2 illustrates how a decrease in the stranding pitch reduces the coil interval allowing greater cable elongation without straining the fibers. The addition of strength yarns over the buffer tubes provides further protection and torsionally balances the tensile strength along the cable cross section. While most cables undergo tensite stress only during instaltation. ADSS cables remain continuously under tersion once installed. Specificially, it is the tensite load bearing capabilities of the loose tube design that make it a well sulted design for ADSS applications.

More recently. ADSS cables have incorporated dry water blocking materials used in conventional loose tube designs. Tests have proven that these materials have excellent resistance to penetration of water into the cable structure. Flooding compound offers excellent water resistance but requires more tume in cable preparation for cleaning. Flooding compound also adds to cable weight another consideration favoring dry water blocking materials.

Figure 3: Compressive Forces of Dead End or Suspension Armor Rods

ADSS cables are mounted on poles or towers using hardware to anchor the cable jackets to the structures. Therefore. cable construction must be designed to help support anticipated loads. The cable sheath consists of two layers of polyghylene (inner and outer jackets in Figure 1) with strength yarns sandwiched between them. When anchoring hardware clamps down on the sheath surface, the force is transferred to the strength yarns within (Figure 3). The sheath with strength yarns acts like a net holding the bundles of buffer tubes and fibers within the cable length.

The Selection of ADOSS Cable Meterials of Construction

The primary design challenges for ADSS cables arise from the need to have high strength cables, which are at the jame ume inghweight and electrically nonconductive. Glass-remforced plastics (GRPs) and aramid yarns are used to meet all three of these requirements. Aramid yarns are wrapped around the inner jacket over the cable core. Aramid yarns offer exceilent strength-to-weight ratios (Figure 4) and provide added protection against potential jacket punctures. Aramid yarns are generaliy lighter than steel strength members, although at a cost premium.

ADSS cables require special outer jacket materials for protection against damage from electrical dry band

Figure 4: Tensile Strength vs Density
arcing (track resistant jackets). Alcatels' Trackguard ${ }^{\text {m }}$ jacket provides dry band arcing protection in high voltage applications as well as superior abrasion resistance. ADSS jacket requirements for electric fields are detailed in Alcatel's Application Note \#017

Cade Design for Errenging Barmekictin Neects

Individua! ADSS cables must sult installation in a variety of different settings as well as meet demands for a wide range of fiber counts. The physical setting of the instaltation determines the tensile load requirement for the cable. To accomodate the sometimes enormous tensile loads placed on by hith whs or heavy i loe more or lhick stent by high winds or heavy ice, more or thicker stength yarns are wrapped around the cable core. Each installation must be considered carefully for selection of the proper strength yarn 'content' based on distance between poles or towers, obstacles in the area. changes in elevation, changes in temperature as well as local loading conditions due 10 wind and ice. Alcatel advises on proper selection during the initial quotation for each installation project to make sure that the appropriate cable design is specified for all of these factors.

Traditionally. ADSS cables have been supplied with up to 96 or 144 fibers. Recent growth in bandwidth requirements have resulted in demand for higher fiber counts. Two approaches can be taken to achieve cable designs with higher fiber counts. First. additional buffer tubes may be added which requres an additional outer layer of tubes overlapping an inner layer (multi-layer design). Second. addituonal fibers may be used within exisung buffer tubes (single

1261 Desion whe 24 fibers per tubc

15 mole 1 Design with 12 libers per nubc

Figure 5
tayer design). Figure 5 illustrates these two approaches for a 288 fiber cable. Increasing the quantity of fibers within each buffer tube is preferred for several reasons. First. the addition of more buffer tubes adds to the cable weight in several ways. The buffer tubes themselves add weight, and the cable diameter increases requining more jacket materials. The smatler diameter of the single layer design also reduces the wind and ice load on the cable and support structure by offering a smaller cross section against which these loads are placed.

The Prochuct of Choice for Amial Deppogprent

The design of ADSS opucat fiber cables produces an optumal product for aerial systems. The design
combines foatures widely accepted with traditional cables white also incorporating innovations ideally suited for installation in utility rights-of-way. The key features are:

- Use of the traditional loose ube optical cable design combined with aramid yarns provides a product that has proven rellability and is economical. durable. and easy to install and maintain
- Aerial applications favor lightweight constructions such as single layer buffer lube designs and use of aramid yarns for suength
- All dielectic construction allows installation on live systems without electrical hazard risks
- Special jacket materials prevent jacket damage due to dry-band eledrical arcing damage from utility electric fieids
- For each application. the cable construction should be customized for specific installation structures. climatic conditions. and local topography. Consult the supplier to ensure proper selection.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www lib mrt ac Ik

SINGLE-MODE CONNECTOR PERFORMANCE SPECIFICATIONS

Type	Potish	Repeadability Maximum (CB)	Hrsertion Loss Maxmum (dB)	Amarn Coss	Fomut Matenat
SC	Super PC	0.2	0.25	$\xrightarrow{+5}$	Zirconia Ceramic
SC	Angled PC	0.2	05	-60	Zirconia Ceramic
SC	Uitra PC	0.2	0.25	. 50	Ziiconia Ceramic
FC	Super PC	0.2	0.25	45	Zirconia Ceramic
FC	Angled PC	02	0.5	-60	Zirconia Ceramic
FC	Ultra PC	0.2	0.25	. 50	Zirconia Ceramic
ST®	Super PC	0.2	0.5	$\xrightarrow{-1}$	Zirconia Ceramic
D4	Super PC	0.2	0.25	-45	Ceramic Stainless Steel
04	Ulta PC	0.2	0.25	-50	Ceramic Stainless Steel
SMA	Flat	0.5	1.5	n/a	Ceramic Stainless Steol
Biconic	Flat	0.3	1	$\cdot 30$	Thermoset Epoxyl
MU	Super PC	0.2	0.25	-15	Zirconia Ceramic
MTP	Flat	0.2	1	7/3	Thermosel Epoxyl
MTP	Angled	0.2	1	-60	Thermoset Epoxyl
ESCON(${ }^{\text {a }}$	Super PC	0.2	0.5	-45	Zirconia Ceramic
FDDI	Super PC	- 0.2	- 0.6	45	Zirconia Ceramic

Tost faramotet,	Spectications	Forl Condilon $, ~, ~, ~ \% ~$
Temperature Cycle	$<0.2 \mathrm{~dB}$	40 cycles $\cdot 40^{\circ} \mathrm{C} 100+80^{\circ} \mathrm{C}$
Humidity	$<0.2 \mathrm{~dB}$	$<0.2 \mathrm{~dB} \mathrm{FOTP} \mathrm{-} 5+60^{\circ} \mathrm{C}$ at 95% RH for $504 \mathrm{hrs}$.
Thermal Shock	$<0.2 \mathrm{~dB}$	10 cycles, $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Twist Test	$<0.2 \mathrm{~dB}$	$<0.2 \mathrm{~dB} \mathrm{FOTP} \mathrm{-} 36.10$ cycles. 1.5 kg (3.3 lbs)
Impact Test	$<0.2 \mathrm{~dB}$	<0.2dB FOTP - 2. 8 cycles
Connector Durability	<0.2dB	<0.2dB FOTP - 21.500 insertions
Vibration	$<0.2 \mathrm{~dB}$	<0.2dB FOTP - 11, Condition 11
Flex Test	$<0.2 \mathrm{~dB}$ -	<0.2d8 FOTP - 1.300 cycles 0.5 kg (1.1 Ibs)
Cable Retention	$<0.2 \mathrm{~dB}$	<0.2dB FOTP - 6. 89 Newton's (20 lbs)

Alcoa Fujikura Ltd. Telecommunications Division

FSM-30RI2 MINI MASS FUSION SPLICER

The new Fujikura FSM-30RI2 brings a new level of productivity and capability to mass fusion splicing. The well-proven and market leading mass fusion splicing technology of previous Fujikura mass splicers is now provided in an extremely small and light weight mini-splicer. Improved immunity to ambient conditions and slide-in modular powering units (including battery) provide unprecedented mass fusion splicing capability in remote and outdoor splicing locations. The FSM-30RI2 takes mass fusion splicing productivity to a new plateau with 12 fiber splicing time cut to one third that of previous generation mass splicers. The tube heater for heat shrink splice protection sleeves is twice as fast as the previous generation. The FSM-30R12 is the ideal mass fusion splicer for any application.

FEATURES \& BENEFITS

- Best mass fusion splice loss performance in the industry, including splicing non-zero dispersion-shifted (NZ-DS) fibers
- Maximum productivity with much faster splicing than previous mass fusion splicer: 30 second splicing time

EliNew wind protectoridesign withstands 30 mph cross wind; nwwunnrecedented utility in exposed conditions

- Splices up to 12 fibers simultaneously
- Ultra small and light weight design; ideal for remote/outdoor solicing scenarios
- Built-in programmable tube heater
- Slide-in power modules include AC adapter, battery, or camcorder battery adapter
- Automatically adjusts fusion arc to compensate for differences in atmospheric pressure or altitude
- Simultaneous focus on all 12 fibers and large image magnification on low-glare $5^{\prime \prime}$ color LCD monitor provides great fiber visibility
- Great mass fusion splicer capacity under battery power

FSM-30RI2 MINI MASS FUSION SPLICER

 SPECIFICATIONS| Fiber Splicing Capability | SM, MM. NZ-DS (non-zero dispersion-snifted) 3 DS ibers (capable of splicing 2, 4, 6, 8, 10. or 12 fibers simultanecusly. as well as single iber splicing) |
| :---: | :---: |
| Splice Loss | 0.04 cB for SM, 0.02dB for MM. 0.07 dB for NZ.OS fiber (typical) |
| Return Loss | < 60008 |
| Fusion Splices Per Battery Charge | -30 (inctudes use of splice protection tube heater \& hot jacket riboon stripoing tool) |
| Splice Sleeve Capability | 40 mm mass splice sleeves, both 40 mm \& 60 mm single iber splice sleeves. and micromini sieeves (10 proorammable tuthe heater modes) |
| Allitude Compensation Function: | Fully automatic up to 3.500 meters (11.500 feel) |
| Viewing Method | $5^{\circ} \mathrm{LCD}$ color monitor with 40X magnification |
| Operating Temperature | $-10^{\circ} \mathrm{C}=0+50^{\circ} \mathrm{C}$ |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ |
| Power Supply | Modular bay accepts slide-in 12 V 2.0 amp-hour batery pack or stice-in $A C$ adapter. AC adapter accepts 100 io $240 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$. Optional slide-in adapter for 12 V 2.0 amp -hour camcorder battery. |
| Dimensions ($\mathrm{W} \times \mathrm{O} \times \mathrm{H}$) | $150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 150 \mathrm{~mm}\left(5.9^{-} \times 5.9^{-1} \times 5.9{ }^{\prime \prime}\right)$ |
| Weight | 2.8 kg (6.2 lbs) with $A C$ adapter installed; 3.2 kg (7.0 lbs) with battery installed |

ORDERING INFORMATION

Itemt Descritition	Itertinamber.
FSM-30R12 Mass Fusion Splicer Kit Fiber Holders (1 set) HJS-02 Hot Jacket Stripper CT-100B Cleaver Base FAT-02 or FAT-04 Fiber Arrangement Tool BTR-04 Field Replaceable Battery ADC-07 AC Adapter/Battery Charger FP- 5 Splice Protection Sleeves	5010208
BTR-04 Spare Battery	S010236
ADC-07 Adapter/Battery Charger	5010240
HJS-02 Hot Jacket Stripper	5010340
8TA-02 Camcorder Battery Adapter	5010232
Camcorder Battery. 12V 2.0 amp-hour (5.65 length)	5010324
FAT-02 Fiber Arrangement Tool	S002111
FAT-04 Fiber Arrangement Tool	S010212
FAA-03 Ribbon Forming Adhesive (4 oz. botle)	5008720
ST-3 Splice Tray Holder	S010860
Fiber Holders:	
$\mathrm{FH}-12$ (12 fibers)	S010220
$\mathrm{FH}-10$ (10 fibers)	S010348
FH-8 (8 fibers)	S010352
FH-6 (6 fibers)	5010356
FH-4 (4 fibers)	5010360
FH-2 (2 fibers)	5010364
FH-250 (250um coated single fiber)	S010368
FH-900 (900ym jacketed single fiber)	5010372
Electrodes (pair)	S010216

APPENDIX - D:

SPECIFICATION SHEETS FOR OPTICAL

LINE TERMINAL EQUIPMENT

- High-density interfaces with the ability to mix and match up to fou PICs within a single Flexible PIC Concentrator (FPC) slot
- Broad range of connectivity speeds

University of Moratuwa, Sri Lanka Electronic Theses 美 Dissertations WWW hit mett at it

- SONET APS SDH MSP and MPLS fast reroute protection mechanisms
- Reduces operational complexity
- Decreases operational costs
a Minmzes traming time for operational stafi
- Improves edge concentration and scalability of the core
- Increases configuration flexibility by enabling service providers to mix different speeds, technologies, and IP services
- Enables service providers to add uplink interfaces without wholly consumung an FPC slot
- Reduces operational costs by maximizing
- POP space
- Enables service providers to offer a wide range of IP services in diverse environrnents
- Enhances service defintion nichness by increasing configuration flesibility
- Erisures scalability for both subscriber and uplink inteflaces
- Increases network reliability with under 50 -ms fallover
- Increases performance by multipling avalable bandwidth
- Increases netvork reliatilly
- Provides lank redundancy
- Increases scalability using exsting SOIE T/SDH technology to provide acilitinal bandwidth

Descriptions

2-port, 4-port The OC-3c/STM-1 PIC provides an ideal solution for bulding backbones using high-speed OC-3c/STM-1 access circuits. This PIC OC-3c/STM-1 delivers per-port 155-Mbps throughput for an aggregate PIC through;ut of up to 622 Mbps
a 2-port available on M5 and M10 Routers

	a 4-port available on all M-series routers, $T 320$ routers, and the $T 640$ routing node - MM and SMIR optics a Operates in concatenated mode cnly
1-port, 4-port OC-12cISTM-4	The one-port OC-12c/STM-4 PIC is ideal for migrating backbones to higher speeds while preserving the option for redundant circuits. This PIC delivers up to 622-Mbps clear channel throughput and can also provide four $155-\mathrm{Mbps}$ OC-3/STM-1 circuits over a single optical interface. The four-port OC-12c/STM-4 PIC is well suited for high-bandwidth intra-POP connections, offering a lower cost per connection than OC-48C/STM-16 interfaces. It is also well fitted for applications where higin-bandwith intracampus connections are needed. This PIC delivers per-port 622-Mbps throughput for an aggregate PIC throughput of up to 25 Gbps - 1-port - Available on all M-series routers - Operates in both concatenated and nonconcatenated modes - MM and SMIR optics r Morntuma, Sri Lanka - 4-port mirtacik - Available on M40e, M160, and T320 routers, and the T640 routing node 』 Operates in concatenated mode only - MM and SMIR optics
1-port, 4-port OC. $48 \mathrm{c} / \mathrm{STM}-16$	The OC-4 $4 \mathrm{C} / \mathrm{STM}-16$ SONET/SDH FIC is ideal for meeting the bandwidth demands at the laternel core with its uncompromising - 1-poit SFP a Small form factor pluggable (SFP) optics (SMIR, SMLR, and SMSR options) - Avaitable on M20, M40e, M160, T320, and T640 platfons - 1-port - Quad wide available on M10 router - SMLR and SMSR optics - Operates in both concatenated and nonconcatenated modes - 4-port SFP - Small form factor pluggable (SFP) optics (SMIR, SMLR, and SMSR options) - Available on the T320 and T640 platforms

file://C Winy Documents Jt:niper Networks SONET-SDH PICs.hum

Per chassis	-	128	32	32	8	-	-
Fer rack	-	256	64 :	64	16	-	-
M160							
Perchassis	-	128	32	128	32	-	8
Per rack	--	256	64	256	64	-	16
T320							
Perchassis	-	64	-	64	16	64	16
Perrack	-	192	-	192	48	192	48
Tot0							
Perchassis	-	128	--	128	32	128	32
Perrack	-	256	-	256	64	256	64
- = Not applicable		ssity of ronic TI lib mrt	anka. ions				

Key Features

A few of the key features supported by SONET/SDH PICs include SONET APS, SOH MSP. MPLS fast reroute. and link aggregation. Additionally, SONET/SDH PICs support filtering, sampling, load balancing, rate liniting, class of senve, and other key features necessary for deployng secure dependable, high-performance IP services

Automatic Protection Switching

The SONET/SDH PICs support APS $1+1$ switching (bidirectional), which enables two routers and a SOHET ADM to commumcate. This functionality ensures a secondary path in the case of a router-to-ADM circuit failure, interface failure, or router fallure This funclionality is interoperable with any ADM that uses GR-253-CORE -style signaling ($K 1 / K 2$) In addition to the automatic switchover, se, vice providers can manually inutute tine switchover

MPLS Fast Reroute

MPLS fast reroute provides fast recovery if any circuit or router along a predetermined MPLS path, knovin as the label-svatched path (LSP), fails Each router along the LSP computes a standby detour path that avoids its downstream hop. If a circuit fats, the nearest upstrearn router automatically activates the detour paths

Link Aggregation

Lunk aggregation is the abilty to bunde together a set of ports configured with the same speed in full-duplex mode into a vilual link, thereby supporting
 supports up to 8 ports. If a link goes down, the traffic is redistributed among the remairing links, thereby inproving network reliability

Specifications

- SMIR optical interface (Bellcore GR-253-CORE compliant)
- Connector: SC duplex connector
- Length: 9.3 miles / 15 km
- W!avelength: 1,274 to $1,356 \mathrm{~nm}$
- Average launch power: -15 to -8 dBm
- Receiver saturation: -8 dBm
- Receiver sensitivity: -28 dBm

1-port and 4-port OC-48c'STM-16 PIC.s with SFP

- Small form-factor pluggable (SFP) optics (SMIR, SMLR, and SMSR options)
- SMIR optical interiace (Bellcore GR-253-CORE compliant)
- Connector: LC duplex connector
- Length: 9.3 miles / 15 km
- Wavelength: 1,260 to $1,360 \mathrm{~nm}$
- Average launch power: -5 to -0 dBm
- Receiver saturation: -0 dBm
- Peceiver sensitivity: -18 dBm
- SMLR opticalinterface (Bellcote GR-253-CORE compliant), cornpatitle with $1,550 \mathrm{~nm}$ single-mode long reach
- Connedor LC duplex connectorms
- Length 49.71 miles $/ 80 \mathrm{~km}$
- Wavelength: 1,500 to $1,580 \mathrm{~mm}$
- Average launch power: -2 to +3 dBin
- Receiver saturation: -9 dBm
- Receiver sensitivity: -28 dBm
- SMSR optical interface (Bellcore GR-253-CORE compliant)
- Connectors LC duplex connector
- Length: 1.24 miles $/ 2 \mathrm{~km}$
- Wavelength: 1,266 to $1,360 \mathrm{~nm}$
- Average launch power: -10 to -3 dBm
- Receiver saturation: -3 dBm
- Receiver sensitivity: -18 dBm

1-port OC-48c/STM-16 PICs

- SMLR optical interface (Bellcore GR-253-CORE compliant); compatible with 1.550 nm single-mode long reach
- Connector: SC duplex connector
a Length: 49.71 miles / 80 km
- Wavelength: 1,500 to $1,580 \mathrm{~nm}$
- Average launch power: -2 to +3 (IBm
a Receiver saturation: -9 dBm

Agency Approvals	Safety EMC Immunity NEBS	－CAN／CSA－C22．2 No．60950－00／UL 60950－Third Edition，Safety of information Technology Equipment －EN 60825－1 Safety of Laser Products－Part 1 Equipment Classification，Requrements and User＇s Guide a EN 60825－2 Safety of Laser Products－Part 2 Safety of Optical Fibre Commurication Systems －EN 60950，Safety of Information Technology Equipment －ASINZS 3548 Class A（Australia／Hew Zealand） －BSMI Class A（Taiwan） 』 EN 55022 Class A Emissions（Europe） －FCC Part 15 Class A（USA） －VCご Class A（Japan） 』 EN 61000－3－2 Power Line Harmonics －ENG1000－4－2 ESD －EN 61000－4－3 Radiated Immunity －EiN 61000－4－4 EFT lontuwa Sri Lanka －EN 61000－4－5 Surge －EN 61000－4－6 Low Frequency Common Immunity －EN51000－4－11 Voltage Dips and Sags Designed to meet these standards －GR－63－CORE NEBS，Physical Protection －GR－1089－CORE．EMC and Electical Safety for Network Telecommunicamons Equpment －SR－3580 NEBS Criteria Levels（Level 3 Compliance）
	ETSI	－ETS－300386：2 Telecommunication Wenvork Equpment Electromagnetic Compatibliy Requirements

Ordering Information


```
OC-3c/STM-1 SONET/SDH
```

Mullimode, 2-port	M5, M7i, M10, M10i	PE-20C3-SON-MM
Multimode, 4-port	M5, M71, M10. M10,	PE-40C3-SON-MM
	M 20	P-4OC3-SON-MM
	M40e, M160, T320	PB-40C3-SON-MM
Single-mode, intermediate reach, 2-port	M5, M7i, M10, M10i	PE-20C3-SON-SMIR
Single-mode, intermediate reach, 4-port	M5, M7̇, Ni10, M10,	PE-4OC3-SON-SMIR
	M 20	P-4OC3-SON-SMIR
	M4OE, M160, T320	PB-40C3-SON-SMIR
	T320, T640	PC-4OC3-SON-SMIR
OC-12c/STM-4 SONET/SDH		
Multumode, 1-port	MS, M71, M10, M101	PE-10C12-SON-MM
	M 20	P-1OC12-SON-MM
	M40e. M160	PB-10C 12 SON-MM
Multimode. 4-port	M40e, M160, T320, T640	PB-40C12-SON-MM
Single-mode, intermediate reach, 1-port	M5, M71, M10, M10	PE-10C12-SON-SMIR
	M 20	P-10C12-SON-SMIR
	Mate M160	PG-10C12-SON-SMIR
Sungle-mode intermedate reach, 4-port	M40e, M160. T320, T640	PB-4OC12-SON-SMIR
OC-48c/STM-16 SONET/SDH		
1-port SFP (Requres pluggable SFP Optics Modules SMIR, SMLR, and SMSR)	M20	1.10C48-SON-SFP
	M40e, M160, T320. Te40	PB-10C48-SON-SFP
Single-mode, loing reach, 1-port	M10	PE-10C48-SON-SMLR
Single-mode, short reach, 1-port	M10	PE-10C48-SON-SMSR
4-port SFP iRequites pluggable SFP Optics Modules SMIR, SML.R, and SMSF,	T 320 T640	PC.40C48-SON-SFP
OC-192c/STM-64		
Single-mode, long reach, 1-port	M 100	IB-OC192-SON-LR-E
	T320 T640	PC-10C192-SON-LR
Single-mode, short reach 2, 1-port	M160	IB-OC192-SON-SR2-E

Very short reach 1, 1-port	M160	IB-OC192-SON-VSR-E
	T320, T640	PC-10C192-SON-VSR
Pluggable Optic Modules		
Small Form-Factor Pluggable Optic Module Single Mode Short Reach	NA	SFP-10048-SR
Small Form-Factor Pluggable Optic Module Single Mode intermediate Reach	HA	SIF-P-10C48-IR
Small Form-Factor Pluggable Optic Module Single Mode Long Reach	NA	SFP.10C48-L.R
: .. :		

Copyright $31999-2004$, Junper Hetwoike, Ins Al Rights Raseved Trademart Notice \qquad

Purecainw

Venable Gain EDFA for bong Haul Neworks

PureGaintw 5500

FEATUAES

- Veriacic Gain Sesign Favices Fiar Uain docross a bige fange of Operating Conaitions
- i2 de bied-Eiege nceess tor DC Mccules, OADMs anci Other High-Loss Optical Componemis
- Finly intenreter Oontrol Elemermes: mencire Siete-onthe-Ar Translent Controt
 (1500-6ecemm)
- Avananle as a ecoster tue or PreAmplimer
- BS 232 Cormarc hiterface with Mioniforing, Atarms and Sarety Shut Dowrs
- Oprionar Uptrau Supenisory Chanmer Acocewor
- 200 a $130 \times 2 \mathrm{~mm}$ size

APPLICATIORIS

- Miman Regionai Liong inaú and Bitra Lorgilaul ExONV Commaricuticis Netivorks
- Frorccas: Ein-hate aid Chennei-Count Indeperident, Supporting up to 10 an/s signais
 mid-staçe access (ivisij. The armpifiers on-coare eiectronics offer ireriziet: contri inat

 PureQain" 5500 Raman Cam Mouutes.

(8) Uninersify of Morntuwa, Sri Lanka

Descrmator.
Fintunts. i
Agprications . 1

Oroma:Eiectricai Schematic. A
Buhtat pylatk.
Bircare Proiuction test

Siomarnal Favonant

POw

GU20niviFOR:04

KEY OPTICAL SOECIFICATICNS

onerang hongy Gange
4. von-undensing.

[^4]

SORTNAME FUNOTOAS, MOA:TORS ANE ALAERS

University of Moratuwa, Sri Lanka Electronic Theses \& Dissertations *ww lib mitac Ik.

OPTEAE PIETALS

\therefore :

Tw Dupu: Power
Gan Gumyaration an Cun Conto Acourac:
Sobe Fgure

 30 Pin Cennoctor (Samtec pin: SQT-125-01-L-D) Floctromic Theses \& Discertitons

[^5]
MECHANICAL FOOTPRINT

COMPLEMERTAFY RRMPLFIER PFOOUCT:
PureGain" 5500 R Raman funp Modute for Long Haul Neworks
PureGain" 2600 variable Gain EDFA or Metropoitan Networks
PureGain" :500 Fixed Gain, Compact EDFA with Control Electronics
PureGain" 1000 Fixed Gein. Col:pect EDFA Eocster Ampinter
PureGain" 1000 Compact E0FA Pre-Amplifier

myAMEX

PureGain ${ }^{\text { }} 1000$

FตスMums

- Hicusiry Stancara Compase Fom Factar $70 \times 10 \times 12 \mathrm{~mm}$
- Gan up to 30 de
- internal Motouipes ic :Monitor inpul and Cumput Fower

- Long Haul anc Me:re Notworks
- Engue-Channe: SD:!SONET) or DWONANeworks
- Wavelength Adol/Crop and Optical Cross Cornect Power Equalization
- Tranmitter and Feceiver Amplification
 bute pertomance it an mcustry-siancerc. compact form factor. This prowut enables

 roser :n wnicure aptra network

University of Moratuwa, Sri Lanka Electronic Theses \& Dissertations

KEY O:TGCA SOECIEMCATGNS

Gutrathy Case Trmperatue	ก	$7 ?$	r
Storuye lennceriente	-40	2	\because
Onatamatmanay	$\ddot{\square}$	5	\% RH:

\therefore Gonemsonsing.

Tcial Fover Consumption, Linoubied

EiECTRICAL BiN ASSIGNBENTS

iด-pin coninector is availeble upon recuesi.

BECHABUCAL FOOTERIST

STARDAND FEOWUCTGKTESTS
mput Power
Supu: Power
Turno Drive Currera
Cain
Noise Figure
Exesponsivity

1. A:l mizasuroments gre ceformen outere whe reuneciors
and aro nisasided as rachtor jower

牫期NEX
 www.ovonex.rom

APPENDIX - E:

MS EXCEL WORKSHEETS OF OPTICAL

POWER BUDGET CALCULATIONS

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: New Anuradhapura - Kotmale
 Link Length /(km):
 163

1 SYSTEM FIGURES

Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest
multiple of span)
Approximated Link Length: (to be given in the nearest
multiple of splicing interval) 168
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 27
OPGW Splice Loss 1.08
Total Connector / Splice Losses 2.16
3 Attenuation Losses
OPGW Attenuation / (dB) 48.9
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 49.2
4 Total System Loss / (dB) 51.36

5 Total System Gain / (dB)

6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kotmale - Kiribathkumbura
 Link Length /(km):
 22.5

1 SYSTEM FIGURES

Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 24
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 3
OPGW Splice Loss 0.12
Total Connector / Splice Losses 1.2
3 Attenuation Losses
OPGW Attenuation / (dB) 6.75
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 7.05
4 Total System Loss / (dB) 8.255 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kiribathkumbura - Ukuwela
Link Length /(km): 29.9

1 SYSTEM FIGURES

Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 30
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 4
OPGW Splice Loss 0.16
Total Connector / Splice Losses 1.24
3 Attenuation Losses
OPGW Attenuation / (dB) 8.97
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 9.27
4 Total System Loss / (dB) 10.51
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kolonnawa - KotmaleLink Length /(km):85.2
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 90
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 14
OPGW Splice Loss 0.56
Total Connector / Splice Losses 1.64
3 Attenuation Losses
OPGW Attenuation / (dB) 25.56
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 25.86
4 Total System Loss / (dB) 27.55 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kotmale - Badulla
Link Length /(km): 82.6
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 84
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 13
OPGW Splice Loss 0.52
Total Connector / Splice Losses 1.6
3 Attenuation Losses
OPGW Attenuation / (dB) 24.78
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 25.08
4 Total System Loss / (dB) 26.68
5 Total System Gain / (dB)
$\underline{6}$ Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Badulla - Laxapana
Link Length /(km): 74.2
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 78
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 12
OPGW Splice Loss 0.48
Total Connector / Splice Losses 1.56
3 Attenuation Losses
OPGW Attenuation / (dB) 22.26
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 22.56
4 Total System Loss / (dB) 24.12
5 Total System Gain / (dB)

6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEE

LINK: Laxapana - KolonnawaLink Length /(km):104.2
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 108
$\mathbf{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 17
OPGW Splice Loss 0.68
Total Connector / Splice Losses 1.76
3 Attenuation Losses
OPGW Attenuation / (dB) 31.26
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 31.56
4 Total System Loss / (dB) 33.32
5 Total System Gain / (dB)
6 Margin / (dB)
Appendix E: OPTICAL POWER BUDGET WORKSHEET
LINK: Kolonnawa - Kotugoda Link Length /(km): 23.3
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest
multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 24
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 3
OPGW Splice Loss 0.12
Total Connector / Splice Losses University of Moratuwa, Sri Lanka. 1.2
3 Attenuation Losses
OPGW Attenuation / (dB) 6.99
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 7.29
4 Total System Loss / (dB) 8.49
5 Total System Gain I (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kotugoda - Bolawatta Link Length /(km): 21
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 24
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 3
OPGW Splice Loss 0.12
Total Connector / Splice Losses 1.2
3 Attenuation Losses
OPGW Attenuation / (dB) 6.3
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 6.6
4 Total System Loss / (dB) 7.8
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Bolawatta - Chilaw
Link Length /(km): 29.4
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 30
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 4
OPGW Splice Loss 0.16
Total Connector / Splice Losses 1.24
3 Attenuation Losses
OPGW Attenuation / (dB) 8.82
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 9.12
4 Total System Loss / (dB) 10.36
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Chilaw - PuttalamLink Length /(km):68.2
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / ($\mathrm{dB} / \mathrm{km}$) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 72
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 11
OPGW Splice Loss 0.44
Total Connector / Splice Losses 1.52
3 Attenuation Losses
OPGW Attenuation / (dB) 20.46
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 20.76
4 Total System Loss / (dB) 22.28
5 Total System Gain / (dB)
$\underline{6}$ Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Laxapana - BalangodaLink Length /(km):44.5
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 48
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 7
OPGW Splice Loss 0.28
Total Connector / Splice Losses 1.36
3 Attenuation Losses
OPGW Attenuation / (dB) 13.35
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 13.65
4 Total System Loss / (dB) 15.01
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Balangoda - Galle
Link Length /(km): 102.5
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 108
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 17
OPGW Splice Loss 0.68
Total Connector / Splice Losses 1.76
3 Attenuation Losses
OPGW Attenuation / (dB) 30.75
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 31.05
4 Total System Loss / (dB) 32.81
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Balangoda - EmbilipitivaLink Length /(km):781 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 78
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 12
OPGW Splice Loss 0.48
Total Connector / Splice Losses 1.56
3 Attenuation Losses
OPGW Attenuation / (dB) 23.4
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 23.7
4 Total System Loss / (dB) 25.26
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Embilipitiya - Matara
Link Length $/(\mathrm{km})$:
52

1 SYSTEM FIGURES

Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest
multiple of span)
Approximated Link Length: (to be given in the nearest
multiple of splicing interval)

$\underline{2}$ Connector / Splicing Losses

Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 8
OPGW Splice Loss 0.32
Total Connector / Splice Losses University of Mortuma, Sri Lanka. 1.4
3 Attenuation Losses
OPGW Attenuation / (dB) 15.6
$\begin{array}{ll}\text { OFAC Attenuation / (dB) } & 0.3\end{array}$
$\begin{array}{ll}\text { Total Attenuation Losses / (dB) } & 15.9\end{array}$
4 Total System Loss / (dB) 17.3
5 Total System Gain / (dB)

6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Embilipitiya -Hambantota Link Length /(km): 35
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 36
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 5
OPGW Splice Loss 0.2
Total Connector / Splice Losses 1.28
3 Attenuation Losses
OPGW Attenuation / (dB) 10.5
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 10.8
4 Total System Loss / (dB) 12.08
5 Total System Gain / (dB)
$\underline{6}$ Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kolonnawa - Panadura
Link Length /(km):
11.7

1 SYSTEM FIGURES

Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest
multiple of splicing interval) 12
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 1
OPGW Splice Loss 0.04
Total Connector / Splice Losses 1.12
3 Attenuation Losses
OPGW Attenuation / (dB) 3.51
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 3.81
4 Total System Loss / (dB) 4.93
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Habarana - ValaichchenaiLink Length /(km):99.7
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 102
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 16
OPGW Splice Loss 0.64
Total Connector / Splice Losses 1.72
3 Attenuation Losses
OPGW Attenuation / (dB) 29.91
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 30.21
4 Total System Loss / (dB) 31.93
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Kiribathkumbura - Kurunegala Link Length /(km): 34.6
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest
multiple of splicing interval) 36
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 5
OPGW Splice Loss 0.2
Total Connector / Splice Losses 1.28
3 Attenuation Losses
OPGW Attenuation / (dB) 10.38
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 10.68
4 Total System Loss / (dB) 11.96
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: New Anuradhapura - Vavuniya
Link Length /(km): 53.5
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 54
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 8
OPGW Splice Loss 0.32
Total Connector / Splice Losses 1.4
3 Attenuation Losses
OPGW Attenuation / (dB) 16.05
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 16.35
4 Total System Loss / (dB) 17.75
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: New Anuradhapura -Trincomalee Link Length /(km):
 103.3

1 SYSTEM FIGURES

Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing interval for OPGW / $(\mathrm{km})-$ to be given in the nearest
multiple of span)
Approximated Link Length: (to be given in the nearest
multiple of splicing interval) 108

2 Connector / Splicing Losses

Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 17
OPGW Splice Loss 0.68
Total Connector / Splice Losses Uninersity or Mortuma_ Sri Lamka 1.76
3 Attenuation Losses
OPGW Attenuation / (dB) 30.99
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 31.29
4 Total System Loss / (dB) 33.05
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Badulla - Ampara
Link Length /(km): 104.9
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 108
2 Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 17
OPGW Splice Loss 0.68
Total Connector / Splice Losses 1.76
3 Attenuation Losses
OPGW Attenuation / (dB) 31.47
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 31.77
4 Total System Loss / (dB) 33.53
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Ukuwela - Habarana
Link Length /(km): 82.3
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 84
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 13
OPGW Splice Loss 0.52
Total Connector / Splice Losses 1.6
3 Attenuation Losses
OPGW Attenuation / (dB) 24.69
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 24.99
4 Total System Loss / (dB) 26.59
5 Total System Gain / (dB)
6 Margin / (dB)

Appendix E: OPTICAL POWER BUDGET WORKSHEET

LINK: Habarana - New Anuradhapura
Link Length /(km): 50.4
1 SYSTEM FIGURES
Single splice loss / (dB) 0.04
Attenuation coefficient / (dB/km) 0.3
Insertion Loss for pair of Demountable Connectors / (dB) 0.25
Length of Optical Fiber Approach Cable / (km) 0.5
Span between tower / (km) 0.4
Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6
Approximated Link Length: (to be given in the nearest multiple of splicing interval) 54
$\underline{2}$ Connector / Splicing Losses
Loss at Location (1) 0.5
Loss at Location (2) 0.5
Loss at Location (3) 0.08
Number of Splices 8
OPGW Splice Loss 0.32
Total Connector / Splice Losses 1.4
3 Attenuation Losses
OPGW Attenuation / (dB) 15.12
OFAC Attenuation / (dB) 0.3
Total Attenuation Losses / (dB) 15.42
4 Total System Loss / (dB) 16.82
5 Total System Gain / (dB)
6 Margin / (dB)

APPENDIX - F:

COMPARISON WITH SIMILAR NETWORKS

[^0]: **Fucal plane antennas are manufactured and stocked at our factory
 in Great Eritain and manufactured on special order in Australia.
 They are no: manufactured or stocked in the United States or Canada.

[^1]: System block diagram

[^2]: Boundary conditions: Peak rate: $2 \mathrm{Mbit} / \mathrm{s}$, duty cycle: 3%, symmetric traffic

[^3]: Longer lengths avaibble upon request

 - Reel nomenclalures and specifications are identified on waye 11

[^4]:

[^5]: di204mpinga

