LB/DON/36/04

AN ISLAND-WIDE SDH TRANSMISSION NETWORK FOR THE CEYLON ELECTRICITY BOARD

621.38 04" 621.395.74

Submitted in partial fulfillment for the Degree of Master of Engineering in Electronic & Telecommunication Engineering to the

Department of Electronic & Telecommunication Engineering University of Moratuwa Sri Lanka.

UM Thesis coll.

February 2004.

79893

Declaration

This work, presented in this dissertation, has not been submitted for the fulfillment of any other degree.

UOM Verified Signature

M N S Shiraj Sharifdeen Candidate

UOM Verified Signature

< /

r

7

Eng. A T L Kithsiri Samarasinghe University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervisor

Dedication

-

Late. M N Sharifdeen (Retd. Principal), who's dreams, shall reflect on all my successes.

Acknowledgements

I would like to extend my sincere gratitude to my supervisor Eng. A T L Kithsiri Samarasinghe for the invaluable guidance he extended towards the successful completion of this project. Thanks are also due to the M.Eng. Project co-coordinator Prof. J A K S Jayasinghe, for his valuable comments and corrections.

I would like to thank the former Head of the Dept. of Electronic & Telecommunications, Dr. Dileeka Dias for accepting my project proposal for the masters program, for the advices she rendered and for nominating a suitable supervisor for the project.

And finally the Dept. of Electronic & Telecommunications Engineering of University of Moratuwa and my employer, the Ceylon Electricity Board receive big thanks for providing me the opportunity to pursue my master's degree successfully.

Index

1. Introduction012. Literature Survey052.1. Overview of SDH Architecture052.1.1. SDH Hierarchy05	
2. Literature Survey052.1. Overview of SDH Architecture052.1.1. SDH Hierarchy05	
2.1. Overview of SDH Architecture 05 2.1.1. SDH Hierarchy 05	
2.1.2. Introduction to SDH Network Components072.1.3. SDH Ring Protection092.1.4. SDH Network Synchronization152.2. Transmission Characteristics of Optical Fibers192.2.1. Attenuation192.2.2. Dispersion202.2.3. Throughput of optical Fibers212.3. Methods of incorporating optical fibres in to power22	
transmission lines232.4. Microwave Link Design25	
3. The SDH Network Design 27	
3.1. Identification of Network Nodes273.2. Identification of Rings293.2.1. Central Ring303.2.2. North Central Ring323.2.3. North Western Ring333.2.4. Spur Links353.3. Network Component Schedule393.3.1. Central Ring393.3.2. North Central Ring403.3.3. Network Component Schedule393.3.4. Spur Links413.4. Determination of Transmission Capacities413.4. Determination of Transmission Capacities413.4.1. Traffic Assignment423.4.2. Ring Capacities443.5. Puttalam – Anuradhapura Microwave Link Design463.5.1. Path Profile463.6.1. A typical OPGW link493.6.2. Power Budget Calculations for a typical OPGW link533.6.3. Dispersion Analysis553.7. Network Synchronization583.7.1. Synchronization Signal distribution59	
4. Protection Against Lightning614.1. Fiber Protection614.2. Equipment Protection61	

-

5. Cost Analysis 4.1. Cost of OPGW link 4.2. Cost of End Equipment 4.3. Total Project Cost	63 65 66 67
6. Further Discussions	68
optical fibres on High Voltage Transmission Lines 6.2. Comparison of Project Cost 6.3. A Case Study 6.4. Marketing Aspects	68 69 71 76
7. List of Recommendations	78
8. Drawbacks	80
9. References	81
Appendix – A	
Appendix – B	
Appendix – C	
Appendix – D	
Appendix – E E Electronic Theses & Dissertations	

Appendix – F

AN ISLAND-WIDE SDH TRANSMISSION NETWORK FOR THE CEYLON ELECTRICITY BOARD

M N S Shiraj Sharifdeen

<u>Abstract</u>

Optical fibers are the choice of transmission medium for the high capacity telecommunication transmission systems of today such as Synchronous Digital Hierarchy (SDH), giving a very high yield for the investment made. With the already established highly reliable power transmission infrastructure, together with the advancement of technology, the utilities have a very high potential market in the telecommunication carrier service. By replacing the ground wires of the overhead high tension transmission lines with Optical Ground Wires (OPGW), utilities can build-up a country-wide high capacity transmission network over a relatively very short time frame and a very low investment. This paper analyses the possibility of establishing an island-wide optical fiber transmission network for the Ceylon Electricity Board based on the OPGW technique.

1. Introduction

It is nowadays very common worldwide for the power utilities to enter the telecommunications business. With the massive infrastructure they possess, it is relatively easy to set up and run telecommunication services. The major focus for the power utilities here is to provide long distance carrier services for the telecommunication service providers. The typical customers are wireless operators, cellular operators, data network operators, corporate communication sectors etc. Usually these operators establish their transmission network based on microwave radio links. However, as the network expands the radio transmission systems fail to cope up with the

increasing bandwidth requirements. The landline operators usually have the privilege to lay underground optical fiber networks, which offer extremely large bandwidth capacity. However, the operating license of wireless operators usually restricts them from laying underground fiber networks.

Here is where the power utilities have the opportunity to provide carrier services to such operators. Power utilities essentially have the already established highly reliable power transmission network to cover almost the entire nation. These transmission networks can now be used to carry highspeed telecommunication signals. The ground wires of the overhead transmission lines can be replaced by the Optical Ground Wires (OPGW) in which the core of the ground wire contains highly secured optical fibers in large numbers. Since the transmission lines are usually constructed for very high reliability, the resulting optical fiber network is also highly reliable, mechanically. Replacement of the conventional ground wire by the OPGW can be done for both existing lines and new lines. This would give the power utilities extremely large data transmission capacities with the use of advance techniques such as single mode (SM) fibers and Wavelength Division Multiplexing (WDM). With suitable planning the power utilities can build a nation-wide high capacity transmission network in a very short time frame and have quick access to revenue.

This is completely a different case from the conventional fibre cabling, which requires obtaining of right-of-way from relevant authorities to trench roadways, additional expenditures for the trenching and civil works and

cumbersome maintenance. The already available right-of-way of power utilities in the form of HT transmission lines is made use of to lay fibres. Hence, the implementation of the OPGW network is relatively cost effective and less time consuming compared to conventional fibre cabling.

In addition to replacing the conventional ground wires with the OPGW, there are several other methods to incorporate optical fibres in to the transmission lines such as All Dielectric Self Supporting (ADSS) fiber cables and Wrap-Around fiber cables. These are presented in the chapter 2.

Once decided on an optical fiber network based on OPGW, the type of transmission technology also should be determined. The most obvious choice will be the Synchronous Digital Hierarchy (SDH) transmission system. The SDH offers numerous benefits over the Plesiochronous Digital Hierarchy (PDH) and other techniques such as high transmission rates (up to 10 Gbps), simplified add and drop functionality, high availability and capacity matching, high reliability (with ring architecture and path/section protection schemes), better interface to other standards, future proof platform for new services etc.

This report analyzes the possibility of establishing an island-wide SDH transmission network for the Ceylon Electricity Board (CEB) based on the OPGW technique. In chapter 2, the SDH transmission hierarchy, the SDH network components, the self healing ring architecture used for the SDH transmission system, SDH network synchronization, the transmission characteristics of optical fibers, the available techniques of incorporating

optical fibers in to power transmission lines, and the microwave link design are discussed. In the chapter 3, the network design for the CEB SDH transmission system is presented. The chapter 4 presents the cost analysis for the proposed network, while chapter 5 is devoted for further discussions. Chapter 6 lists the recommendations to the power utility based on the study and in Chapter 7 the drawbacks in the study are discussed. Chapter 8 gives the list of references, which is followed by the relevant technical data from Appendix A to Appendix F.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

2. Literature Survey

2.1. Overview of SDH Architecture

2.1.1. SDH Hierarchy

Figure 2.1: SDH Hierarchy.

The structure of the SDH hierarchy is shown in the Figure 1. The SDH standards define a structure which enables plesiochronous signals to be combined together and encapsulated within a standard SDH signal (Ref. 24).

Table 2.1 summarizes the STM-N bit rates of the SDH hierarchy.

Table 2.1: The SDH Bit Rates.

-

-

STM-N	Bit Rate (Kbit/sec)
STM-1	155,520
STM-4	622,080
STM-16	2,488,320
STM-64	9,953,280

The STM-N Frame Structure is illustrated in the Figure 2.2.

Figure 2.2: SDH Frame for STM - N.

2.1.2.1. Regenerators

Regenerators, as the name implies, have the function of regenerating the clock and amplitude relationships of the incoming data signals that have been attenuated and distorted by dispersion (typically in a optical link). They derive their clock signals from the incoming data stream (Ref. 24).

Figure 2.3; The Regenerator

2.1.2.2. Terminal Multiplexers (TMUX)

Terminal Multiplexers are used to combine plesiochronous and synchronous input signals in to higher bit rate STM-N signals (Ref. 24).

Figure 2.4; The Terminal Multiplexer

2.1.2.3. Add/Drop Multiplexers (ADM)

lesiochronous and lower bit rate synchronous signals can be extracted from or inserted in to high speed SDH bit stream by means of ADMs. This feature makes it possible to set up ring structures, which have the advantage that automatic back up path switching is possible using elements in the ring in the event of a fault (Ref. 24).

Figure 2.5; The Add-Drop Multiplexer

2.1.2.4. Digital Cross Connect (DXC) Constant Sti Lanka

This network element has the widest range of functions. It allows mapping of PDH tributary signals in to virtual containers as well as switching of various containers up to and including VC-4 (Ref.24).

Figure 2.6; The Digital Cross Connect.

2.1.3.1. Dedicated Protection Ring (DP Ring)

Figure 2.7: The Dedicated Protection Ring.

In this protection scheme the sending node sends the same signal both ways around the ring and the protection mechanism at the receiving node selects the alternate path upon failure detection.

2.1.3.2. Shared Protection Ring (SP Ring)

Figure 2.8; The Shared Protection Ring.

This is a shared Multiplex Section (MS) switched ring which is able to share protection capacity, reserved all the around the ring. In the event of a failure the protection switches operate on both sides of the failure to re-route the traffic through the spare capacity.

Figure 2.9: The Two FiberUnidirectional Path Switched Ring.

In this type though the transmission is bi-directional for each node, the overall ring transmission is unidirectional and hence, the name unidirectional. Two fibers are used; one for working line and the other for the protection. The transmitting node sends the signal on both working and protection lines and the protection is achieved at the receiver by selecting the better signal (Ref. 24).

Figure 2.10: The Two Fiber Bi-directional Line Switched Ring.

-

Here the transmission in the fiber is bi-directional on any point in the ring. However, there are no separate fibers for protection. Each fiber is divided in time slots between working and protection lines. The protection line of any working line is on the opposite side of the ring to provide the route diversity.

Another feature of this ring is that the protection lines are not allocated to any path permanently but are assigned segment by segment, according to the requirement, during a fault condition. The switching is done at nodes at both ends of each multiplex section to route the traffic through the shared protection capacity (Ref. 18).

2.1.3.5. Four Fiber Bi-directional Line Switched Ring

This is similar to the two fiber BLSR, but, instead if sharing the time slots between the working and protection lines, dedicated fibers are reserved for protection lines. Hence, it would be immune against end terminal faults (Ref. 18). This is illustrated in Figure 2.10.

2.1.3.6. Other Methods

Another simple and cost effective method of protection is to split the traffic at each node and transmitting them both ways around the ring. In case of a failure at a given line segment, at least half the transmitting capacity is assured to each node. This does not call for much network management complexity. However, the protection is available only for 50% of the transmission capacity.

Figure 2.11: The Four Fiber Bi-directional Line Switched Ring.

-

2.1.4. SDH Network Synchronization

The fundamental requirement of SDH network is synchronization of all network elements to a common highly accurate clock known as the Primary Reference Clock (PRC). This PRC should conform to ITU-T Rec. G.811 with the accuracy of $1*10^{-11}$. This clock signal must be distributed throughout the entire network. A hierarchical structure is used for this; the signal is passed on by the subordinate Synchronization Supply Units (SSUs – G.812) and Synchronous Equipment Clocks (SECs – G.813). The synchronization signal path can be the same as those used for the SDH communications (ref 24.). The clock signal is generated in the SSUs and SECs with the aid of Phase Locked Loops.

Figure 2.12: Hierarchy of Clock Signal Distribution

The network is organized with a Master-Slave relationship with clocks of the higher-level nodes feeding the timing signals to the clocks of the lower level nodes. All nodes can be traced up to a PRC. The internal clock of an SDH terminal may derive its timing signal from a SSU used by switching systems and other equipment. Thus, this terminal can serve as the Master for the other SDH nodes, providing timing on its outgoing STM-N signal. Other SDH nodes will operate in a Slave mode with their internal clocks timed by the incoming STM-N signal (Ref. 25.).

2.1.4.1. Synchronization Clock Signal Sources for Network Elements

For the proper functioning of the Network Elements (NEs), they should be continuously supplied with the clock signal, which is referred to a PRC. Therefore, protection measures should be taken to ensure that any failure in the network does not affect the continuous supply of the clock signal.

To do this, the NEs are designed so as to select clock signals from various sources. A synchronization source list is SET in each NE so that, in case of a failure of the current source, the NE can switch to the next source in the list.

Figure 2.13: Common Sources of Clock Signals

Common sources of clock signals are;

a. Line signals (STM-N)

-East or West

b. Tributaries

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

-more than one tributary can be selected

c. External Synchronization Input

-such as PRCs, SSUs etc.

d. Internal Clocks

If the clock supply fails, the network element switches over to a clock source of same or lower quality, or if this is not possible, it switches to hold-over mode. In the hold-over mode, the clock signal is supplied by the internal clock. In this situation the clock signal is kept relatively accurate by controlling the oscillator by applying the stored frequency and phase correction values for the previous hours and taking the temperature of the oscillator in to account (Ref 24&27). Because, the timing source lists at each node can be programmed individually, when the nodes are connected in ring configurations, a potential 'timing loop' or 'clock island' can occur. This must be avoided at all costs, as these would drift out of synchronization with passage of time and the total failure disaster would be the result (Ref 24&27).

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

MERSITY OF MORATUWA, SM LACTED

2.2. Transmission Characteristics of Optical Fibers

The most important Factors that affect the transmission characteristics of the optical fibers are the attenuation and dispersion mechanisms within the fiber.

2.2.1. Attenuation

The very low attenuation characteristic of today's optical fibers, is one of the most important factors that made them attractive as a transmission medium for the telecommunication signals. The tremendous improvements made in this direction since 1970, after the introduction of the first commercial fiber with an attenuation coefficient of 20dB/km, has led to the production of silica based glass fibers with losses less than 0.2 dB/km (Senior, p.85).

The mechanisms responsible for the signal attenuation within the optical fibers are the material composition, the preparation and purification techniques and the wave guide structures. These irregularities led to several types of signal attenuations such as, material absorption, material scattering, curve and micro-bending losses, mode coupling radiation losses and losses due to leaky modes (Senior, p.88).

These attenuation mechanisms leave three operating regions for optical communications namely the 0.85 μ m, the 1.31 μ m and the 1.55 μ m regions; the 1.55 μ m region being the lowest attenuation region having a

1

1

-

-0

:0

¢

demonstrated attenuation coefficient of 0.2 dB/km which approaches the theoretical minimum limit of 0.16 dB/km for silica fibers (Robert, p.298).

The attenuation characteristic with respect to wavelength for silica fibers is shown in Figure 2.15 (Robert, p.298).

2.2.2. Dispersion

Besides attenuation, dispersion is the most critical parameter that affects the transmission characteristics of optical fibers, as a long haul transmission medium. The dispersion, which is characterized by the broadening of the transmitted pulse, influences both the symbol rate of optical pulses within the fiber as well as the transmission distance. Therefore, the dispersion is represented by a bandwidth-distance product, in the optical fiber system specifications. The dispersion is broadly categorized in to inter-modal and intra-modal dispersions.

With the non-existence of inter-modal dispersion in single mode fibers, the limiting factors of the bandwidth-distance product are the material dispersion (Dm) and the wave-guide dispersion (Dw), which belong to intramodel dispersion. The variations of Dm and Dw with wavelength for silica fibers are illustrated in Figure 2.16 (Senior, p.126; Robert, p.303).

The frequency dependence of the refractive index (and therefore the speed of light) of the fiber material causes the material dispersion. For silica, the material dispersion drops to zero at $1.31 \mu m$, as shown in Figure 2.1.6.

Figure 2.17. Total dispersion characteristics for the various types of single-mode fiber.

Unfortunately, at this wavelength the attenuation is 0.35 dB/km, which is not the minimum attenuation wavelength.

The wave-guide dispersion has a negative slope compared to the positive slope of the material dispersion. By modifying the fiber refractive index profile using precise fabrication techniques to affect the wave-guide dispersion characteristics, the fiber can be designed to have the zero total dispersion wavelength shifted to the lowest attenuation wavelength of 1.55 μ m.

Such fibers are known as dispersion shifted fibers and due to manufacturing tolerances will typically have a non-zero dispersion figure of less than 3 ps.nm⁻¹.km⁻¹ at 1.55 μ m, in practice (Robert, p.303). The dispersion characteristics of various types of single mode fiber are represented by the curves given in Figure 2.17.

The alternative technique to combat dispersion is to periodically introduce Dispersion Compensating Fibers (DCF), which have a dispersion characteristic, opposite to that of the transmitting fiber.

2.2.3. Throughput of Optical Fibers

The two techniques primarily used to increase the throughput of optical fiber systems are;

- a. Increasing the bit-rate (symbol rate)
- b. Employing Wavelength Division Multiplexing (WDM)

Increasing the bit-rate (bandwidth) is Largely limited by the dispersion characteristics of fibers. In single mode fibers, it is influenced by the chromatic dispersion. With dispersion shifted fibers, which offer the lowest dispersion at the lowest attenuation wavelength, the only avenue left to further improve the bit-rate is to narrow the line-width of the optical sources. The smaller the line-width of the optical source, the lesser the chromatic dispersion.

Among the contestants of light sources for optical fibers, Laser Diode (LD) is found to have the narrower line-width. While Fabry-Perot LDs have a linewidth of typically 2nm, the Distributed Feedback LDs offers a line-width of about 5*10⁻⁶ nm. These can be compared with that of LEDs having a linewidth of about 40nm (Robert, p.328).

> University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

The WDM involves the transmission of a number of different peak wavelength signals in parallel through a single optical fiber. Although, in spectral terms, optical WDM is analogous to electrical Frequency Division Multiplexing, it has the distinction that each WDM channel effectively has access to the entire intensity modulation fiber bandwidth. The next generation Dense Wavelength Division Multiplexing (DWDM) systems will combine hundreds of 40 Gbit/s bit-rate channels to realize multi-terabit throughput in optical fibers (Bigo). Ref. 20 lists the enabling technologies for high capacity point-to-point long distance transmission using optical fibers.

2.3. Methods of Incorporating Optical Fibres in to the Transmission Lines

There are basically three well-established methods of incorporating fibres in to the transmission lines;

a. Optical Ground Wires (OPGW)

Here the conventional ground wires are replaced by OPGWs which has a well secured core containing the optical fibres with very high degree of protection, surrounded by metallic conductors to carry the lightening current. There is adequate protection for the fibre from high temperatures that may exist in the surrounding conductors during a lightening discharge. The specifications for OPGW cables is given in the Ref. 3, which covers the construction, mechanical and electrical performance, installation guidelines, acceptance criteria and test requirements of the same..

Figure 2.14: OPGW Cable Construction.

b. Wrap-around Cable

Wrap-around cables is suitable for incorporating fibres on existing ground wire in a cost effective way without having to replace them by OPGW. This is a flexible type of optical fibre cable which can be wrapped around the existing ground wire using a special remote controlled wrapping machine, even under energized conditions.

c. All Dielectric Self Supporting (ADSS) Fibre Cable

ADSS cables are manufactured with non-metallic materials to ensure a complete electrical isolation. ADSSs are self-supporting type fibre cables which are strung between transmission towers at a lower elevation than the current carrying conductors of the transmission line.

A comparison of these three techniques is given in the section 5.1. The literature (obtained from the National Grid Company, U.K) pertaining to the installation of fibres by the above techniques is given in Appendix-A.

2.4. Microwave Link Design

• The following equation can be used to calculate the size of the first Freznel zone in meters;

 $F_1 = 17.3 \sqrt{(d_1. d_2 / f. d)}$ (2.1)

Where d_1 , d_2 – distance to the point of interest from the two ends of the link in km

- d _ link length in km
- f _ frequency in GHz

• The following equations may be used for power budget calculations;

Free Space Loss (FSL) = 32.5 + 20 Log(f) + 20 Log(d) (2.2)

Where f - frequency in MHz and

d- distance in km cronic Theses & Dissertations

Flat Fade Margin (Mf) = 30 Log $_{10}(d)+10$ Log $_{10}(6.\delta.Q.f)-10$ Log $_{10}(1-R)-70$

(2.3)

Where d- distance in km

 δ - factor to convert the worst month fade to the average fade

Q- Terrain Factor

R- Reliability requirement

Selective Fade Margin (Ms) = $102 - 35 \log_{10} (L) - 10 \log_{10} (S)$ (2.4)

Where L – Length of the link in km

S – Signature of the equipment in MHz

Effective Fade Margin (Me) = $-10 \text{ Log }_{10} \{ 10 (-Mf/10) + 10 (-Ms/10) \}$

(2.5)

• The following equations can be used to calculate the distance to point of reflection;

Distance to point of reflection			= (d/2) + Ad	(2.6)
	Where;	đ	= hop length in km	
		Ad	= Correction	
Correction		Ad	= 2√t * Cos. {(θ+∏)/3}	
	Where;	θ	= $\cos^{-1} \{T/(t\sqrt{t})\}$	
	Where;	Т	= $6.37*(k/4)$. d. (h_2-h_1)	
		t	$= (d^2/12) + 8.5. (k/4). (h_2-$	h1)

Where h_2 and h_1 are the antenna heights in m.

- 4

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3. The SDH Network Design

3.1. Identification of Network Nodes

Since, the purpose of laying the fibre network is to provide the transmission capacity to the commercial operators, it is necessary that the nodes of the transmission network be selected in such a way that they are in close proximity to the commercial cities. To do that the power transmission network of the CEB should be matched with the important commercial cities of the country.

Under the first round of investigation the following cities have been selected as important commercial locations; Selections Selections

- 1. Colombo
- 2. Kandy
- 3. Anuradhapura
- 4. Jaffna
- 5. Trincomalee
- 6. Batticaloa
- 7. Ampara
- 8. Kurunegala
- 9. Galle
- 10. Nuwaraeliya
- 11. Matale
- 12. Kalutara
- 13. Vavuniya
- 14. Kegalle
- 15. Badulla
- 16. Ratnapura
- 17. Puttalam
- 18. Matara
- 19. Hambantota
- 20. Gampaha
- 21. Negombo
- 22. Chilaw

-

The Figure 3.1 gives the typical power transmission network diagram of the

CEB. The table 3.1 gives the matching of the Commercial cities to the network nodes.

PARED BY U.S. Amaras	inghe MODIFIED BY
WN BY U.S. Amarasingh	REVISED ON 20/10/1999
E 10/07/1999	DRAWING NO. CMN/PLC 001E

Τ	à	b	le	3	. 1	:
_					_	_

No	Commercial Location	Nearest Network Node
1.	Colombo	Kolonnawa GS
2.	Kandy	Kiribathkumbura GS
3.	Anuradhapura	New Anuradhapura GS
4.	Jaffna	Vavuniya GS
5.	Trincomalee	Trincomalee SS
6.	Batticaloa	Valaichenai SS
7.	Ampara	Ampara SS
8.	Kurunegala	Kurunegala SS
9.	Galle	Galle SS
10.	NuwaraEliya	NuwaraEliya SS
11.	Matale	Ukuwela PS
12.	Kalutara	Panadura SS
13.	Vavuniya	Vavuniya GS
14.	Kegalle	Kiribathkumbura GS
15.	Badulla	Badulla GS
16.	Ratnapura	Embilipitiya GS
17.	Puttalam	Puttalam GS
18.	Matara	Matara SS
19.	Hambantota	Hambantota SS
20.	Gampaha 🦉 www.lib.mrt.ac.lk	Kotugoda GS
21.	Negombo	Bolawatta SS
22.	Chilaw	Chilaw SS

Key: GS – Grid Sub Station SS – Sub Station

3.2. Identification of Rings

-

The capacity of SDH transmission networks is better utilized when ring networks are employed. Therefore the next step is to identify the rings within the existing power network. For this purpose the CEB network is organized in to three rings and number of Spur Links. The rings and Spur Links are illustrated in the figure 3.1.

3.2.1. The Central Ring

The Central ring consists of the nodes given in table 3.2;

<u>Table 3.2.</u>

No.	Nodes
1.	Kolonnawa GS
2.	Kotmale PS
3.	Badulla GS
4.	Nuwara Eliya SS
5.	Laxapana PS

This ring is established via the following installations of the power transmission network;

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table 3.3.

5

No.	Installation	Remarks
1.	Kolonnawa GS	Node
2.	Kelanitissa PS	By Pass
3.	Biyagama GS	By Pass
4.	Kotmale PS	Node
5.	Victoria PS	By Pass
6.	Randenigala PS	By Pass
7.	Rantambe PS	By Pass
8.	Badulla GS	Node
9.	Nuwara Eliya GS	Node
10.	Laxapana PS	Node
11.	Polpitiya PS	By Pass

The Central ring is illustrated in the figure 3.1 in Blue.

The lengths of line sections in the Central ring are listed in the table 3.4.

<u>Table 3.4.</u>

No.	Inter Node Section	Line Section	Dist. / (km)
1.	Kolonnawa-Kotmale	Kolonnawa-Kelanitissa	2.2
		Kelanitissa-Biyagama	12.5
		Biyagama-Kotmale	70.5
		Total Distance(Sub-Total)	85.2
2.	Kotmale – Badulla	Kotmale-Victoria	30.1
<u> </u>		Victoria-Randenigala	16.4
		Randenigal-Rantambe	3.1
<u> </u>		Rantambe-Badulla	33
		Total Distance(Sub-Total)	82.6
3.	Badulla – Laxapana	Badulla-NuwaraEliva	35.4
		NuwaraEliya-Laxapana	38.8
		Total Distance(Sub-Total)	74.2
4.	Laxapana – Kolonnawa	Laxapana-Polpitiya	8.3
	University of M	Polpitiya-Kolonnawa	65.9
	Electronic The	Total Distance(Sub-Total)	74.2
	www.ito.itirta		
	Total Fibre Distance	(Grand Total)	316.2

3.2.2. North Central Ring

The North Central ring consists of the nodes given in the table 3.5;

<u>Table 3.5.</u>

No.	Nodes
1.	Habarana
2.	New Anuradhapura
3.	Kotmale
4.	Kiribathkumbura
5.	Ukuwela

The ring is established via the following installations of the power

transmission network;

Table 3.6.

No.	Installation	Remarks
1.	Habarana	Node
2.	Anuradhapura (old)	By Pass
3.	New Anuradhapura	Node
4.	Kotamle	Node
5.	Kiribathkumbura	Node
6.	Ukuwala	Node

The North Central ring is illustrated in the figure 3.1 in green.

The lengths of line sections in the North Central ring are listed in table 3.7.

Table 3.7.

No.	Inter Node Section	Line Section	Dist. /(km)
1.	Habarana – New Anuradhapura	Habarana –	10.0
		Anuradhapura	48.9
		Anuradhapura – New	
		Anuradhapura	1.5
	· · · · ·	Sub Total	50.4
2.	New Anuradhapura - Kotmale		163
3.	Kotmale – Kiribathkumbura		22.5
4.	Kiribathkumbura - Ukuwala		29.9
	·		
5.	Ukuwala – Habarana		82.3
	Total Fibre Distance	Grand Total	348.1

3.2.3. North Western Ring

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The North Western ring consists of the nodes given in Table 3.8.

Table 3.8.

No.	Nodes
1.	Kolonnawa
2.	Kotugoda
3.	Bolawatta
4.	Chilaw
5.	Puttalam
6.	New Anuradhapura
7.	Kotmale

The segment Puttalam-to-New Anuradhapura has to be established by means of a microwave radio link since there is no transmission line support fibre between these two installations. The ring is established via the following installations of the power transmission network;

<u>Table 3.9.</u>

.

No.	Installation	Remarks
1.	Kolonnawa	Node
2.	Kotugoda	Node
3.	Bolawatta	Node
4.	Chilaw	Node
5.	Puttalam	Node
6.	New Anuradhapura	Node
7.	Kotmale	Node
8.	Biyagama	By Pass
9.	Kelanitissa	By Pass

The North Western ring is illustrated in yellow in figure 3.1.

The lengths of line sections in the North Western are listed in the table 3.10.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

<u>Table 3.10.</u>

and the second se			anti anti anti anti anti anti anti anti
No.	Inter Node Section	Line Section	Dist./ (km)
1.	Kolonnawa – Kotugoda	Kolonnawa- Kelaniya	6.6
		Kelaniya – Kotugoda	16.7
····		Sub Total	.23.3
2.	Kotugoda – Bolawatta		21
3.	Bolawatta – Chilaw		29.4
4.	Chilaw – Puttalam		68.2
5.	Puttalam–New Anuradhapura		Radio
6.	New Anuradhapura – Kotmale		163
7.	Kotmale – Biyagama		
		Kotmale – Biyagama	70.5
		Biyagama - Kelanitissa	12.5
		Kelanitissa-Kolonnawa	2.2
	Electronic These	Sub Total	85.2
ļ	Total Fibre Distance	Grand Total	390.1

3.2.4. The Spur Links

In addition to the three rings, number of Spur Links from the rings have been identified. The Spur Links are shown in the figure 3.1 in orange. There are seven sets of Spur Links.

Figure 3.2.

The figure 3.2 gives a set of spur links from the Central ring. The line length

of the individual links are listed in the table 3.11.

<u>Table 3.11.</u>

No.	Link Section	Line Section	Dist. / (km)
1.	Laxapana – Balangoda		
		Laxapana – New Laxapana	0.6
		New Laxapana – Balangoda	43.9
		Sub – Total	44.5
2.	Balangoda – Galle		102.5
3.	Balangoda- Embilipitiya		
		Balangoda - Samanalawewa	40
		Samanalawewa-Embilipitiya	38
		Sub-Total	78
4.	Embilipitiya – Matara		52
L			
5.	Embilipitiya-Hambantota		35

3.2.4.2. Spur Links - Set 2

Figure 3.3.

The line lengths are shown in the table 3.12.

<u>Table 3.12.</u>

No.	Link Section	Line Section	Dist. /(km)
1.	Kolonnawa- Panadura		
		Kolonnawa- Pannipitiya	7
		Pannipitiya- Panadura	4.7
		Total	11.7

University of Moratuwa, Sri Lanka. 3.2.4.3. Spur Links - Set3. Electronic These & Dissertations www.lib.mrt.ac.lk

Figure 3.4.

The link length is 99.7 km.

3.2.4.4. Spur Links – Set4

Figure 3.5.

The link length is 34.6 km.

3.2.4.5. Spur Links - Set 5

Figure 3.6.

The link Length is 53.5 km.

3.2.4.6. Spur Links - Set 6

The link length is 103.3 km.

Ampara Badulla

Figure 3.8.

The line lengths are shown in Table 3.13.

<u>Table 3.13.</u>

No.	Link Length	Line Length	Dist.
1.	Badulla Ampara		
		Badulla – Inginiyagala	79.9
		Inginiyagala – Ampara	25
		Total	104.9

3.3. Network Component Schedule

In this section the network component at each node are identified. The SDH ring network is usually built around multiplexers. In addition to multiplexers, Digital Cross- Connects, Regenerators etc. are also commonly used in network structures. The following abbreviations are used;

ADM	Add/Drop	o Multiplexer
-----	----------	---------------

TMUX Terminal Multiplexer

DXC Digital Cross Connect

The configuration of the three ring are illustrated in the Drawing No:01.

3.3.1. Central Ring

The Table 3.14 lists the components at each node that constitute the Central

University of Moratuwa, Sri Lanka.

ring.

Table 3.14.

No.	Node	Type of Network Component
1.	Kolonnawa	2 * ADM, DXC (Ring Interconnecting, With Spur
		Link)
2.	Kotmale	3 * ADM, DXC (Ring Interconnecting)
3.	Badulla	ADM (With Spur Link)
4.	Nuwara Eliya	ADM
5.	Laxapana	ADM (With Spur Links)

3.3.2. North Central Ring

The Table 3.15 lists the components at each site that make – up the North Central ring.

Table 3.15.

No	Node	Type of Network Component
1.	Habarana	ADM (With Spur Link)
2.	New Anuradhapura	2 * ADM, DXC (Ring Interconnecting, With Spur Links)
3.	Kotmale	3 * ADM, DXC (Ring Interconnecting)
4.	Kiribathkumbura	ADM (With Spur Link)
5.	Ukuwela	ADM

3.3.3. North Western Ring

The Table 16 lists the components at each site that make - up the North

University of Moratuwa, Sri Lanka.

Western ring.

Table 3.16.

No.	Node	Type of Network Component
1.	Kolonnawa	2 * ADM, DXC (Ring Interconnecting,
		With Spur Link)
2.	Kotmale	3 * ADM, DXC (Ring Interconnecting)
3.	New Anuradhapura	2 * ADM, DXC (Ring Interconnecting,
		With Spur Links)
4.	Puttalam	ADM
5.	Chilaw	ADM
6.	Bolawatta	ADM
7.	Kotugoda	ADM

3.3.4. Spur Links

Table 3.17 shows the network components at each site that make up various . . spur links.

Table 3.17.

A. 16-18		and the second	n an
No.	Spur Link Set	Node	Type of Network Component
ವರ್ಷಕ್ ತಲ್ಲ ಆ			
1.	Set 1	Balangoda	TMUX
		Galle	TMUX
		Embilipitiya	TMUX
		Matara	TMUX
		Hambantota	TMUX
2.	Set 2	Panadura	TMUX
3.	Set 3	Valaichenai	TMUX
		E University of Mo	ratures Sri Lanka
4.	Set 4	Kurunegala	& Dissertations TMUX
		www.lib.mrt.ac.ll	
5.	Set 5	Vavuniya	TMUX
6.	Set 6	Trincomalee	TMUX
		······································	
7.	Set 7	Ampara	TMUX

3.4. Determination of Transmission Capacities

In order to calculate the capacity of each ring and spur links, it is required to assign the traffic requirements for each node. In the assignment of capacity for each node the following should be considered;

- a. the ring interconnecting nodes should be assigned with adequate capacity to meet the traffic flow requirements of the ring interconnection.
- b. the nodes with spur links should be assigned higher capacity to meet the transportation of traffic from the other connected nodes.

The above applies for the capacity determination of DXCs also.

3.4.1. Traffic Assignment

The actual traffic assignment for a network requires the study of the market demand and additional information. Hence, it is considered beyond the scope of this project. However, for the purpose of demonstration the following traffic flows have been assumed.

3.4.1.1. Central Ring

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table 3.18 lists the traffic assignments for the nodes in the central ring.

No.	Node	Type of Node	Capacity / (2Mbps)
1.	Kolonnawa	Ring Interconnecting Node	4000
2.	Kotmale	Ring Interconnecting Node	3000
3.	Badulla	Node with spur link	500
4.	Nuwara Eliya	Node	100
5.	Laxapana	Node with spur link	500

<u>Table 3.18.</u>

3.4.1.2. North Central Ring

Table 3.19 lists the traffic assignments for the nodes in the North Central Ring.

Table 3.19.

No.	Node	Type of Node	Capacity
an indiana di sana di sa			/ (2Mbps)
1.	Kotmale	Ring Interconnecting Node	3000
2.	New Anuradhapura	Ring Interconnecting Node	1500
3.	Habarana	Node with spur link	500
4.	Kiribathkumbura	Node with Spur link	3000
5.	Ukuwela	Node	500

3.4.1.3. North Western Ring

University of Moratuwa, Sri Lanka. Table 3.20 list the traffic assignments for the nodes in the North Western

Ring.

4

Table 3.20.

No.	Node	Type of Node	Capacity / (2Mbps)
1.	Kolonnawa	Ring Interconnecting Node	3000
2.	Kotmale	Ring Interconnecting Node	2000
3.	New Anuradhapura	Ring Interconnecting Node	1500
4.	Puttalam	Node	100
5.	Chilaw	Node	100
б.	Bolawatta	Node	200
7.	Kotugoda	Node	200

3.4.2. Ring Capacities

In the calculation of the ring capacity, the knowledge of the type of protection system to be employed plays an important role. Assuming that the traffic at each node is split and routed both ways of the ring for protection, the following sample calculations for ring capacities have been made.

3.4.2.1. Central Ring

Traffic in the ring	= <u>Total traff</u>	<u>fic from all nodes</u> 2	(3.1)
	= <u>4000+300</u>	<u>00+500+100+500</u> 2	
	= 4050	* 2 Mbps channels	
Hence, the selected SI	H ca pacity is S	TM-64.	

3.4.2.2. North Central Ring

Traffic in the ring $= \frac{\text{Total traffic from all nodes}}{2}$ $= \frac{3000+1500+500+3000+500}{4250 \text{ * 2Mbps channels}}$

Hence the selected SDH capacity is STM-64.

3.4.2.3. North Western Ring

Traffic in the ring

¥

+

•

-

= <u>Total traffic from all nodes</u> 2

 $= \frac{3000+2000+1500+100+100+200+200}{2}$

= 3550 * 2 Mbps channels

Hence, the selected SDH capacity is STM-64.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3.5. Puttalam – Anuradhapura Microwave Link Design

The direct hop length between the two sites is 70 km. As this long link cannot be designed as a single hop, due to the high frequency band of operation (8GHz) and high capacity of transmission (STM-64), it was decided to break the link in to two hops. To do this, an intermediate regenerative repeater was introduced at Nochchiyagama, where a Customer Service Centre had already been set-up. Hence, the hop distances are;

Puttalam – Nochchiyagama	50km
Nochchiyagama – Anuradhapura	25km

The preliminary investigation of the geographical map (1:250,000) reveals that the path profiles of both the hops consist of flat surface throughout their length. However, the Puttala - Nochchiyagama link passes through a water surface (lake) at Balagollagama, situated between $26^{th} - 27^{th}$ km from Puttalam. Hence, the antenna heights of both ends were adjusted so that the point of reflection falls at 23kms from Puttalam, avoiding the water surface. The point of reflection for both the links were thus considered to be falling on foliage.

3.5.1. Path profile

In order to draw the path profile, the size of the first freznel zone at 8GHz was calculated, at each 5km distance and is tabulated in tables 3.21, 3.22 for both the links.

.

and the second second second

1

÷ 1

*

.

,

Table 3.21: Puttalam – Nochchiyagama link

Distance d ₁ / (km)	Distance d ₂ / (km)	Size of Freznel Ellipsoid/ (m)
5	45	13
10	40	18
15	35	20
20	30	21
25	25	22
30	20	21
35	15	20
40	10	18
45	5	13

Table 3.22: Nochchiyagama – Anuradhapura Link

Distance d ₁ / (km)	Distance d ₂ / (km)	Size of Freznel Ellipsoid / (m)
5	20	13
10	University of M(Satuwa, Sri Lanka.	15
15	Electronic The 10 & Dissertations	15
20	5	13

The following antenna heights were determined from the path profile for the 100% clearance of the first Freznel ellipsoid at 8 GHz frequencies and for the requirements of the distance to point of reflection according to the CCITT recommendations.

<u> Puttalam – Nochchiyagama:</u>	Puttalam	77m
	Nochchiyagama	60m
<u>Nochchiyagama – Anuradhapura:</u>	Nochchiyagama	45m
	Anuradhapura	48m

3.5.2. Power Budget

To determine the power budget, the actual details of the system components are required. Hence, the performance figures of the following commercial products are used in the sample calculations, the specification sheets of which are given in the Appendix B;

- a. 8GHz High Performance Antennas (HPX 15-82C) from Andrew Corporation, USA.
- b. 8GHZ Elliptical Wave-guides (EWP77) from Andrew Corporation, USA.
- c. Microwave Radios from Harris

A Microsoft Excel Power Budget Worksheet is given in Table 3.25 and Table

3.26.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE: 3.25. MICROWAVE POWER BUDGET WORKSHEET

PUTTALAM

×

	STATION B - to be entered	NOCHCHIYAGAMA	
<u>No.</u> 1 2 3	Parameter Frequency / (MHz) - to be entered Path Length / (km)- to be entered Free Space Loss / (dB)		8000 50 144.54
4 5 6 7 8 9 10 11	Tx Antenna Gain / (dBi)- to be entered Rx Antenna Gain / (dBi)- to be entered Tx Feeder Length / (m)- to be entered Rx Feeder Length / (m)- to be entered Tx Feeder Length / (m)- to be entered Tx Feeder Attenuation / (dB/100m)- to be entered Rx Feeder Attenuation / (dB/100m)- to be entered Tx Feeder Loss / (dB) Rx Feeder Loss / (dB)	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	48.7 48.7 77 60 5.75 5.75 4.43 3.45
12 13	Branching Loss / (dB) - assume Total Losses / (dB)		0.5 152.92
14	Total Gain / (dB)		97.4
15	System Loss / (dB)		55.52
16 17	Tx Power / (dBm)- to be entered Rx Power / (dBm)		30.5 -25.02
18 19	Rx Threshold (at BER 1E-6) / (dBm)- to be entered Allowance for Fade Margin / (dB)		-70 44.98
20	Reliability Requirement for CCITT (R)- to be entered		0.9999

4

STATION A - to be entered

25	Effective Fade Margin / (dB)	40.04
24	Selective Fade Margin / (dB)	48.00
23	Flat Fade Margin / (dB)	40.79
22	Q- to be entered	0:0 A
21	delta- to be entered	0.5

. 🕴

1

.

×

+

TABLE: 3.26. MICROWAVE POWER BUDGET WORKSHEET

NOCHCHIYAGAMA

į.

X

	STATION B - to be entered	ANURADHAPURA	
<u>No.</u>	Parameter		
1	Frequency / (MHZ) - to be entered		8000
2	Pain Lengin / (Km)- to be entered		20
3	Free Space Loss / (db)		130.52
4	Tx Antenna Gain / (dBi)- to be entered		48.7
5	Rx Antenna Gain / (dBi)- to be entered		48.7
6	Tx Feeder Length / (m)- to be entered		45
7	Rx Feeder Length / (m)- to be entered		48
8	Tx Feeder Attenuation / (dB/100m)- to be entered	University of Moratuwa, Sri Lanka.	5.75
9	Rx Feeder Attenuation / (dB/100m)- to be entered	Electronic Theses & Dissertations	5.75
10	Tx Feeder Loss / (dB)	www.no.nirt.ac.ik	2.59
11	Rx Feeder Loss / (dB)		2.76
12	Branching Loss / (dB) - assume		0.5
13	Total Losses / (dB)		144.37
14	Total Gain / (dB)		97.4
15	System Loss / (dB)		46.97
16	Tx Power / (dBm)- to be entered		30.5
17	Rx Power / (dBm)		-16.47
18	Rx Threshold (at BER 1E-6) / (dBm)- to be entered		-70
19	Allowance for Fade Margin / (dB)		53.53
20	Reliability Requirement for CCITT (R)- to be entered		0.9999

Å

STATION A - to be entered

21	delta- to be entered	0.5
22	Q- to be entered	4
23	Flat Fade Margin / (dB)	31.76
24	Selective Fade Margin / (dB)	48.00
25	Effective Fade Margin / (dB)	31.66

Í

1

ŧ

•

X

3.6. Optical Links

3.6.1 A Typical OPGW Link

The figure 3.9 shows the typical schematic of an OPGW link, which is comprised of the following;

- a. An OPGW line segment
- b. Approach cable line segments
- c. Fiber patch codes
- d. Optical Line Terminating Equipment (OLTE)
- e. Terminating Box for the approach cable
- f. OPGW to Approach cable splice box
- g. Transmission Towers spaced at typically 400m intervals
- h. OPGW splice boxes along the transmission line placed at the tower legs.

The optical link design should be primarily focused on the two most important transmission characteristics; the attenuation and dispersion. The attenuation is dealt with a typical power budget calculation that follows this section and it is supplemented by an excel worksheet for the power budget calculation. The generated copies of this worksheet for each link in the network are given under Appendix E. A separate discussion that follows the power budget calculations analyses the dispersion.

For long haul, high capacity applications, where, dispersion is the limiting factor, the Non-Zero Dispersion Shifted Fiber (NZ-DSF/G.655) is preferred

by most authorities over ordinary Single Mode Fibers (SMF/G.652) and Dispersion Shifted Fibers (DSF/G.653), owing to its potential to migrate to future multi-terabit DWDM transmission capacities, economically (RRref. 29 and Ref. 30). The G.652 fiber is not preferred due to its unacceptably high dispersion at the lowest attenuation window around 1550nm. The non-linear effects, at higher launched powers and high data rates near zero dispersion wavelength, of the G.653 fiber precludes the use of the same in high capacity DWDM transmission networks.

Considering the long life span (25 to 30 years) of the fibers installed today and their potential to migrate to high capacity DWDM transmission technologies in the very near future, the G.655 fiber is selected for this application.

> University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

A sample design for the longest link in the network, the Kotmale – Anuradhapura link of 163 km, below;

The following component specifications are used for this design;

<u>Fiber</u>
Manufacturer: Corning Inc.
Model: LEAF
Type: NZ-DSF (G.655)
Attenuation at 1550nm: 0.3 dB/km
Dispersion at 1530 – 1565nm: 2.0 to 6.0 ps/(km.nm)

2. Optical Transceiver 1

Juniper Networks Manufacturer:

Model: STM-64 PIC

Capacity: STM-64

Wavelength: 1550nm (C band)

Output power: +8 dBm

RX Sensitivity: -22 dBm

RX Saturation: -10 dBm

3. Optical Transceiver 2

Manufacturer: NEC Corporation

Model: SMS-2500A

Capacity: STM-16

Wavelength: 1550nm (C band)

Output Power: 0 dBm

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Rx Sensitivity: -28 dBm

Source Line Width: <1nm

4. <u>Dispersion Compensating Module (DCM)-1</u>

Manufacturer: Avanex Corporation

DCM NZ-DSF-80-336 Model:

1550nm (C band) Wavelength:

Compensation: -336 ps/nm Nominal (Min -353; Max -319)

5. Dispersion Compensating Module (DCM)-2

Manufacturer: Avanex Corporation

Model: 60%LC-80-306

Wavelength: 1550nm (C band)

Compensation: -306 ps/nm Nominal (Min -321; Max -291)

6. EDFA Booster Amplifier

Manufacturer: Avanex Corporation

Model: PureGain 5500

Wavelength: 1550 nm (C band)

Gain: 30 dB

Output Power: +23 dBm

Input Range: -26 to +10 dBm

7. EDFA Pre-Amplifier

Manufacturer: Avanex Corporation

Model: PureGain 1000

Wavelength: 1550 nm (C band)

Gain Range: 13 to 30 dB

Output: +3 dBm

Input Power Range: -30 to -10 dBm

FIGURE 3.9: TYPICAL OPGW LINK

3.6.2. Power Budget Calculation for a Typical OPGW Link

Typical attenuation coefficient for the above G.655 fibre at 1550 nm

= 0.3 dB / km

The following realistic values are obtained from Appendix C;

Typical single splice loss = 0.04 dB

Typical insertion loss for each pair of matched demountable connecters

= 0.25 dB

= 6 km

Typical splicing interval (Reel Length) of the OPGW cable

Length of the fiber approach cable = 500m

The typical power budget calculations are given below for the longest line in the network, the New Anuradhapura - Kotmale link.

Connector / Splicing Losses

Loss at location (1)	= 2*0.25 (demountable connectors)	
	= 0.5 dB	(3.4)
Loss at Location (2)	= 2*0.25 (demountable con	nnectors)
	= 0.5 dB	(3.5)
Loss at Location (3)	= 2*0.04 (fusion splicing)	
	=0.08 dB	(3.6)
Length of the line	= 163 km	
Span between the towers	= 400m	
Approximate number of spans	= 163 / 0.4	(3.7)
	= 408 spans (approximately)	
Splicing interval (Reel Length)	= 6 km	
Hence, the number of splices	= (408/15) -1	(3.8)
----------------------------------	--	-----------
	= 27 splices (approximately)	
Therefore, the total OPGW splic	ce loss	
	= 27*0.04 (Fusion splicing	<u>z)</u>
	= 1.08dB	(3.9)
The total connector/splicing los	sses	
	= 0.5+0.5+0.08+1.08	
	= 2.16dB	(3.10)
Attenuation Losses		,
Length of the OPGW cable	= 163 km	
Total OPGW attenuation	= 163*0.3	(3.2)
	= 48.9 dB	
Length of the approach cable	tive=2*0.5oratuwa, Sri Lanka. cerenic hickes & Dissertations willo mrt.ac.lk = 1 km	(3.3)
Total approach cable attenuation	on= 1*0.3	
	= 0.3 dB	(3.4)
Attenuation in the patch cable	= negligible	
Total attenuation loss	= 48.9+0.3	(3.5)
	= 49.2 dB	
Total system loss	= Attenuation Loss +	
	Connector/Splicing Loss	(3.6)
	= 49.2 + 2.16	
	= 51.36 dB.	

Therefore, the splicing can be done at every 15 spans.

In addition, a margin is required for the ageing, fiber cuts (requiring a cable length to be included or a joint to be introduced), change in the physical path etc. and for other uncertainties in the fiber link.

An excel worksheet for power budget calculations, which can be used to calculate power budget for any of the link in the network is attaches in the Appendix E.

3.6.3 Dispersion Analysis

The Dispersion Parameter of the selected fiber	= 4 ps /(nm.km)
Total dispersion	= 4 X 163
	= 652 ps/nm
The maximum allowable dispersion at 10 Gbps	$r_{rs}^{rka.} = 0.2/(10E+9)$
www.lib.mrt.ac.lk	(Senior)
	= 20 ps

Hence, assuming a source line width of 1 nm, the dispersion compensation required = 652 - 20

= <u>632 ps</u>

<u>Design-1</u>

Components:

Dispersion Compensation Module 1 or Dispersion Compensation Module 2 Regenerator

Optical Transceiver 1

The above specification for Optical Transceiver 1 gives a maximum system gain of 30 dBm. This system gain is sufficient to meet the total system loss of half the link only.

The dispersion compensation requirement of 632 ps can only be compensated by two numbers of either of the compensating modules given above.

From the above attenuation and dispersion analyses, it is evident that the link cannot be established as a single hop and can be designed as two hops of equal length. The specification for the Optical Transceiver 1 also suggests this distance of around 80 km.

Hence, the possible configuration is given below;

Out of the twenty four links in the network, six links are much longer than 80km in length and hence, the same above arrangement can be applied to them. For the balance links that are shorter than or around 80 km, a regenerator will not be necessary. However, it will be required to compensate for the dispersion using the dispersion compensating modules.

<u>Design- 2</u>

Components: Optical Transceiver 1 EDFA Booster Amplifier EDFA Pre Amplifier Dispersion Compensating Module 1 or Dispersion Compensating Module 2

For the links much longer than 80 km, the alternative design is given below;

The combination of EDFA Booster Amplifier and Pre-Amplifier gives a total maximum gain of 60 dB. This gain figure is sufficient to meet the total loss figure calculated above.

The dispersion compensation requirement can be met as described in Design-1.

www.lib.mrt.ac.lk

Hence, by installing the Booster Amplifier at the transmit end and the Pre-Amplifier at the receive end, and installing one DCM at the mid-span and one at the receive end, the same link can be designed as repeater less link.

The configuration is given below;

3.7. Network Synchronization

Assuming Kolonnawa as the Network Control Centre, a PRC will be located here. Due to the larger geographical spread of the NEs and for the purpose of redundancy, another PRC will be located at Kotmale. However, this PRC will operate on the slave-mode. Synchronization Supply Units (SSUs) will be located at the following locations;

- a. Laxapana
- b. Badulla
- c. New Anuradhapura
- d. Kiribathkumbura
- e. Habarana
- f. Puttalam
- g. Trincomalee
- h. Vavuniya
- i. Balangoda

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3.7.1. Synchronization Signal Distribution

1

٦

The distribution of the synchronization timing signal is shown in the figure 3.10.

Figure 3.11. shows the typical timing signal distribution arrangement for the Central Ring.

Table 3.27. shows the synchronization source list for the NEs in the Central Ring.

<u>Table 3.27.</u>

1

•

Node	Source List
Kolonnawa	1. PRC (G.811)
	2. Line (2)
	3. Holdover
Kotmale	1. Line (1)
	2. PRC
	3. Holdover
Badulla	1. Line (1)
	2. SSU
	3. Holdover
Nuwara Eliya	1. Line (1)
	2. Line (2)
	3. Holdover
Laxapana	1. Line (2)
_	2. SSU
	3. Holdover

4. Protection Against Lightning

4.1. Fibre Protection

Although optical fibers, naturally, are immune against any Electromagnetic Interferences (EMI), especially the lightening surges, special attention is required with regard to OPGW, as it is meant to carry lightening and earth fault currents, as does an ordinary earth wire. Hence, OPGW specifications restrict variation in optical characteristic, under given fault current conditions (typically 20 kA or more) and duration (typically 0.1 seconds) and lightning currents (typically 200 kA peak).

The IEEE Std 1138-1994 requires that the fiber optic unit and the outer stranded conductors of the OPGW, to serve together as an integral unit to protect the fiber from degradations due to vibration and galloping, wind and ice loadings, wide temperature variations, *lightning and fault currents*. It also calls for a short circuit test to be performed on a sample of the complete cable and specifies the maximum temporary change in attenuation due to lightning, fault current and temperature cycling.

4.2. Equipment Protection

The OPGW cable is grounded at every tower along the line as done with ordinary ground wires, to sink all the lightning currents to earth through tower earth. However, there is the possibility of existence of dangerous induced voltages on the tail end of the OPGW, beyond the last earth point. This problem is addressed by the inclusion of the Fibre Optical Approach Cable (FOAC) between the equipment end and the OPGW. The FOAC, an essentially all dielectric cable, running between terminating box at the equipment housing and the tower, provides a separation not less than 500m and is spliced with OPGW at the tower leg. Figure 4.1, shows the photograph of OPGW/FOAC splicing and Figure 4.2, shows the photograph of the wall mounted FOAC Terminating Box (CEB, Kelanitissa Power Station).

Figure 4.1: OPGW/FOAC Splice Box on the Tower Leg

Figure 4.2: Wall Mounted FOAC Terminating Box

5. Cost Analysis

The total network cost basically includes three major components; the cost of the OPGW links, the cost of the end equipment and the civil infrastructure cost. The analysis of the civil infrastructure cost is beyond the scope of this project. The cost of OPGW links and the cost of the end equipment are analyzed here.

The cost of the OPGW links includes the material cost and the erection cost. The erection cost is significant in this case.

The end equipment at each node are the Optical Line Terminal Equipment (OLTE) such as SDH Multiplexers, the Digital Cross Connect (DXC) equipment, Centralized Supervisory Systems, Optical Terminal/Digital Distribution Frames, Power Supplies etc. The costing for power supplies is not included in the analysis as the power supply requirements at each node is different. Many of the latest substations are already equipped with rectified DC power, which are used for the substation control system. As they are very large in capacity it should be possible to make use of them for the communication requirements as well.

The typical cost figures for the cost analysis, were obtained from several local projects recently implemented by local agencies and are given below;

OPGW Links

12 Fiber core OPGW cable	=	US\$ 6500.00 /km
24 Fiber core OPGW cable	=	US\$ 8500.00 /km
FOAC/ Terminal Box/ Patch Code	=	US\$ 2700.00 /Lot
Erection cost	=	US\$ 2500.00 /km
Cost of Removal of Existing Earth Wire	=	US\$ 850.00 /km

Equipment Cost

STM-64 SDH Multiplexer	=	JP¥	25,000,000.00
STM-16 SDH Multiplexer	=	JP¥	10,000,000.00
STM-4 SDH Multiplexer	=	JP¥	4,500,000.00
DXC	University of Maratuwa, Electronic Theses & Dise	JP¥	25,000,000.00
Optical Terminal/ DDF	www.lib.mrt.ac.lk	JP¥	200,000.00
Centralized Supervisory Syst	em =	JP¥	25,000,000.00
Local Supervisory System	=	JP¥	1,000,000.00
STM-64 Regenerator	=	JP¥	10,000,000.00

The prices given above are FOB (Freight On Board).

5.1. Cost of the OPGW link

Table 4.1 list the cost of each link in the system;

<u>Table 5.1.</u>

No.	Link	Length	Cost (US\$)
- I.S.	a start to be the second start of the second s	/(km)	
1.	Ukuwela –Habarana	82.3	977,955.00
2.	Habarana- New Anuradhapura	50.4	599,940.00
3.	New Anuradhapura – Kotmale	163	1,934,250.00
4.	Kotmale – Kiribathkumbura	22.5	269,325.00
5.	Kiribathkumbura – Ukuwela	29.9	357,015.00
6.	Kolonnawa – Kotmale	85.2	1,012,320.00
7.	Kotmale – Badulla	82.6	981,510.00
8.	Badulla – Laxapana	74.2	881,970.00
9.	Laxapana – Kolonnawa	104.2	1,237,470.00
10.	Kolonnawa – Kotugoda	23.3	278,805.00
11.	Kotugoda Bolawatta	21	251,550.00
12.	Bolawatta – Chilaw	29.4	351,090.00
13.	Chilaw – Puttalam	68.2	810,870.00
14.	Laxapana – Balangoda	44.5	530,025.00
15.	Balangoda – Galle	102.5	1,217,325.00
16.	Balangoda – Embilipitiya	78	927,000.00
17.	Embilipitiya – Matara www.lib.mr.ac.lk	52	618,900.00
18.	Embilipitiya - Hambantota	35	417,450.00
19.	Kolonnawa – Panadura	11.7	141,345.00
20.	Habarana – Valaichchenai	99.7	1,184,145.00
21.	Kiribathkumbura – Kurunegala	34.6	412,710.00
22.	New Anuradhapura – Vavuniya	53.5	636,675.00
23.	New Anuradhapura – Trincomalee	103.3	1,226,805.00
24.	Badulla – Ampara	104.9	1,245,765.00
	Total (US\$)		16,601,815.00

These link costs were calculated for repeater-less transmission. However, there are six links in the network that are much larger than 80 km. Hence, additional cost should be included for Design-1 and Design-2 to include the cost of Regenerators, Booster Amplifiers, Pre-Amplifiers, DCM etc.

5.2. Cost of End Equipment

Table 4.2 list the cost of each node;

<u>Table 5.2.</u>

No.	Node	Equipment	Cost (JP¥)
	Central Ring (STM-64)		
1.	Kolonnawa	ADM/DDF/DXC	50,200,000.00
2.	Kotmale	ADM/DDF/DXC	50,200,000.00
3.	Badulla	ADM/DDF	25,200,000.00
4.	Nuwara Eliya	ADM/DDF	25,200,000.00
5.	Laxapana	ADM/DDF	25,200,000.00
<u> </u>	North Central Ding (STM 64)		
1	Kotmole		25 200 000 00
1.	Now Anurodhanur		
<u>2.</u>	Heberene		
<u>J.</u>	nauarana Kiribathlarmhura		25,200,000.00
<u>4.</u>			25,200,000.00
э.			25,200,000.00
	North Western Ping (STM 64)	Moratuwa, Sri Lanka	
1	Kolonnawa	ADM/DDF	25 200 000 00
<u>」</u> ク	Kotmale		25,200,000.00
<u>८.</u> २	New Anurodhanuro		25,200,000.00
<u> </u>	Puttalam		25,200,000.00
<u>т.</u> 5	Chilow		25,200,000.00
<u>J.</u> 6	Bolawatta		25,200,000.00
7	Koturodo		25,200,000.00
	Notugoua		20,200,000.00
	Spur Links (STM – 4)		
1.	Vavuniya	TMUX/DDF	4,700,000.00
2.	Trincomalee	TMUX/DDF	4,700,000.00
3.	Valaichchenai	TMUX/DDF	4,700,000.00
4.	Kurunegala	TMUX/DDF	4,700,000.00
5.	Amapara	TMUX/DDF	4,700,000.00
б.	Matara	TMUX/DDF	4,700,000.00
7.	Hambantota	TMUX/DDF	4,700,000.00
8.	Embilipitiya	TMUX/DDF	4,700,000.00
9.	Galle	TMUX/DDF	4,700,000.00
10.	Balangoda	TMUX/DDF	4,700,000.00
11.	Panadura	TMUX/DDF	4,700,000.00
	Total (JP¥)		555,100,000.00

To the above equipment cost the cost of the Supervisory system should be added. Assuming a local supervisory terminal for each node and a Centralized supervisory system for each ring, the cost of the Supervisory system is as follows;

Centralized Supervisory system	=	JP¥	25,000,000.00 X 3
	=	JP¥	75,000,000.00
Local Supervisory system	=	JP¥	1,000,000.00 X 28
	=	JP¥	28,000,000.00

Grand Total (Equipment) = $\underline{JP} \underline{F} \underline{658,100,000.00}$

5.3. Total Project Cost

The total project cost is the summation of OPGW link cost and the Equipment cost.

University of Moratuwa, Sri Lanka.

OPGW link cost	=	US\$	16,601,815.00
Equipment cost	=	JP¥	658,100,000.00

Grand Total (SLR equivalent) = SLR 2,024,381,795.00

Note: 1 US\$ = 93 SLR

1 JP¥ = 0.73 SLR

6. Further Discussion

6.1. Comparison of different methods of incorporating fibers on High Voltage transmission lines

On new lines the OPGW is the most obvious and economic choice. However, this requires the planning of the OPGW installation with that of the HV transmission line itself. This may not be possible in many circumstances. In order to plan for the OPGW, there should be an overall plan for the complete fibre transmission network before hand and it also requires the knowledge of the terminal equipment and their locations.

On the other hand, technologies have also been developed by many institutions to replace the existing ground wires with OPGW even on a 400kV line under live condition without any service interruptions. (Appendix A).

ADSS is simple to be introduced on an existing live line. As it is strung at a lower elevation, it is relatively easy to be drawn also, without additional precautions for the operator safety. However, ADSS is more prone to shot gun damages by bird hunters. This is a serious issue, as HV transmission lines usually pass forests. Some cable suppliers claim their product to be safe against shotgun damages.

In case the replacement of the existing earth wire by OPGW is considered costly and the ADSS is not preferred, then the next choice is the Wraparound Cable. Special wrapping tools are also available for wrapping under live line conditions.

6.2. Comparison of project cost

The total project cost of SLR 2,024,381,795.00 is compared with a recently completed island-wide SDH ring project of the Sri Lanka Telecom, based on underground optical fibre network (an unofficial copy of the network diagram is given under Appendix – F). The total contract price of this project (unofficial) JPY 3.5 billion (foreign component) plus SLR 800 million (local component). With the same conversion rate used above the project cost in local currency is SLR 3,355,000,000.00.

The equipment prices used for the analysis are same as those of the equipment used in the Sri Lanka Telecom (SLT) project. Therefore, it is evident that the price difference should largely be due the fiber cabling. In the SLT project the fiber cabling is underground in which the cost of the civil works is very high. Whereas, in this project, we are making use of the already existing civil infrastructure for HV transmission.

In addition, in this project the costing was done for a 24-fiber OPGW cable. However, the proposed network will only make use of four fibers for a Four Fiber BLSR protection system. Therefore, an additional count of eight fibers is available for further development. Hence, it is evident that the use of OPGW for high capacity data transmission is a very efficient and cost effective option for power utilities. Another factor to consider in the cost analysis is the fiber count. It can be seen from the unit prices that the percentage price difference between 12 core fiber cable and the 24 core fiber cable (doubling the fiber count) is only about 30%. This becomes further insignificant when compared with the total project cost of the transmission line. This is the scenario even with very large fiber count, the reason why many utilities tend to put higher and higher fiber counts, whether they plans to use them in the near future or not.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

6.3. A Case Study

The above study was based on assumed traffic for each node and the selection criteria was the coverage of the whole island as much as possible by the information superhighway.

For the purpose of simulation of the above design, a case study of an actual traffic situation is considered here. The forecasted traffic flows between major cities were obtained from Reference 31, which was also a research study for a masters program.

The Table 6.1 below lists the traffic flow between selected major cities;

		the second s
	a and a state of the second state of the secon	
NO.	Link	Accumulated Traffic
Ellin (k. K.		/(Mbps)
1.	Colombo – Gampaha	10,581
2.	Gampaha – Negombo	6,710
3.	Negombo – Kurunegala	5,678
4.	Kurunegala – Anuradhapura	1,671
5.	Anuradhapura – Jaffana	197
6.	Kurunegala – Kandy	1,814
7.	Kandy – Batticaloa	1,703
8.	Kandy – Matara	5,809
9.	Matara – Galle	5,809
10.	Galle – Kalutara	8,984
11.	Kalutara – Colombo	11,086

Table 6.1: Traffic Flow

These cities should be matched to the nodes in the power transmission network.

The Table 6.2 below lists the nearest nodes.

Table 6.2: Matching of Cities to Nodes

a for the state of the second s		
No.	City	Nearest Node
12		時,2個目的主義在各國的主義的主義
1.	Colombo	Kolonnawa
2.	Gampaha	Kotugoda
3.	Negombo	Bolawatta
4.	Kurunegala	Kurunegala
5.	Anuradhapura	New Anuradhapura
6.	Jaffna	Vavuniya
7.	Kandy	Kribathkumbura
8.	Batticaloa	Valaichchenai
9.	Matara	Matara
10.	Galle	Galle
11.	Kalutara	Panadura

Mapping these nodes on the power transmission network, the optimum network topology was selected by trial and error method.

Considering this topology and the original traffic flow input between cities, we can re-calculate the traffic between the nodes to determine the link capacities.

Table 6.3 lists the traffic flow between nodes and the selected SDH capacity. The links that exceed the STM-64 capacity can be served by a combination of one STM-64 capacity and other low order capacity on separate pairs of fibers, using the surplus fibers in the cable.

Figure 6.1: Network Topology

Table 6.3: Link Capacity Calculation

			NOTS OF STORY
No.	Link A data and the second second	Traffic	STM-N
		/(Mbps)	
1.	Kolonnawa – Kotugoda	10,581	STM-64
2.	Kotugoda – Bolawatta	6,710	<u>STM-6</u> 4
3.	Bolawatta – New Anuradhapura	5,678	<u>STM-6</u> 4
4.	New Anuradhapura – Kiribathkumbura	9,052	<u>STM-64</u>
5.	Kiribathkumbura – Kolonnawa	5,809	STM-64
6.	Kiribathkumbura – Kurunegala	9.163	<u>STM-6</u> 4
7.	New Anuradhapura – Vavuniya	197	STM-4
8.	New Anuradhapura – Valaichchenai	1,703	STM-16
9.	Kolonnawa – Panadura	20,070	2X STM-64
10.	Kolonnawa – Galle	14,793	2X STM-64
11.	Galle – Matara	11,618	STM-64 + STM-16

The longest link in the network is the Kolonnawa – Galle link, which is 219.3 km. This link can be designed as follows;

Design -1:

Considering the 80 km Regenerator interval, as above, two Regenerators will be required and they can be installed at New Laxapana and Deniyaya. The dispersion compensation modules also will be required at these locations and at Galle.

Design – 2:

This is a repeater-less transmission design and due to the available system gain limitation even with the Booster-Pre Amplifier combination, cannot be used for this distance, at this link capacity.

Out of the eleven links in the network, six links are much longer than 80 km and would require one or more of the regenerative repeaters.

Table 6.4 gives the line costs including the Regenerator costs;

		REED OF	an an ann an Anna an An	·····································	
No	Link	Distance	No of	Line Cost	Regen.
1. 197 A.		/(km)	Regen.	/ (US\$)	Cost /(JPY)
1.	Kolonnawa - Kotugoda	23.3	0	278,805.00	0.00
2.	Kotugoda – Bolawatte	21.0	0	251,550.00	0.00
3.	Bolawatte – New Anura.	159.0	1	1,886,850.00	10,000,000.00
4.	New Anura Kiribathku.	185.5	2	2,200,875.00	20,000,000.00
5.	Kiribathku. – Kolonnawa	96.4	1	1,145,040.00	10,000,000.00
6.	Kiribathku.– Kurunegala	34.6	0	412,710.00	0.00
7.	Kolonnawa – Panadura	24.0	0	287,100.00	0.00
8.	Kolonnawa – Galle	219.3	2	2,601,405.00	20,000,000.00
9.	Galle – Matara	213.5	2	2,532,675.00	20,000,000.00
10.	New Anura. – Vavuniya	53.5	0	636,675.00	0.00
11.	New Anura. – Valaichen.	150.1	1	1,781,385.00	10,000,000.00
	Grand Total	1180.2		14,015,070.00	90,000,000.00

Table 6.4: Line Cost

Table 6.5 gives the End Equipment costs;

Table 6.5: End Equipment Costs

No.	Node	Equipment	Equipment
			Cost /(JPY)
1.	Kolonnawa	ADM (STM-64)	25,000,000.00
2.	Kotugoda	ADM (STM-64)	25,000,000.00
3.	Bolawatte	ADM (STM-64)	25,000,000.00
4.	New Anuradhapura	ADM (STM-64)	25,000,000.00
5.	Kiribathkumbura	ADM (STM-64)	25,000,000.00
6.	Kurunegala	TMUX (STM-64)	25,000,000.00
7.	Panadura	TMUX (STM-64)	25,000,000.00
8.	Galle	TMUX (STM-64)	25,000,000.00
9.	Matara	TMUX (STM-64)	25,000,000.00
10.	Vavuniya	TMUX (STM-4)	4,500,000.00
11.	Valaichchenai	TMUX (STM-16)	10,000,000.00
	Grand Total		239,500,000.00

With the previous conversion rate, the total cost of the project can be calculated as;

Total Project Cost = Line Cost + Equipment Cost = SLR 1,543,936,510.00

This is in the same order as that of the previously calculated network cost.

6.4. Marketing Aspects

The optical fiber transmission capacity can be marketed in several ways, depending on the infrastructure, experience and the committed business policy and strategy of the utility company. Some of the commonly practiced ways of marketing the fiber capacity are discussed here;

a. Leasing the Right of Way

Under this method the utility leases its right of way to lay fibers in the high-tension lines to other potential company under a lease agreement or enter in to a partnership agreement with a company having the technical and business experience in the field to roll out the fiber network. The revenue is shared among the companies.

b. Leasing the Dark Fibers

The utility rolls out the fiber network with sufficiently large fiber counts. The dark fibers can be leased for other operators for a specific period of time under a leased agreement. The operator is free to squeeze the maximum capacity of the fiber using whatever the techniques available them.

c. Leasing the Wavelength

The utility employs WDM technology and leases out the capacity in the form of number of wavelengths to other operators. It would be required to impose clear guidelines to avoid any cross talks between wavelengths that originate from different sources of different operators.

d. Leasing Transmission Capacity

The utility can install all the required end equipment and lease out the transmission capacity in Mbps to other operators. Here, the utility has the responsibility of maintaining the reliability of the network, at the committed level.

e. The Utility as a Service Provider

The utility can up subsidiaries and become a telecommunication service provider. The possible services may be public telephony, data services, Internet services etc.

From a. to e. above, the technical complexity, business commitment, capital investment and also the revenue increase. Depending on the capacity of the utility, it can select one or combination of more than one business models given above.

Another option is to expand its business in a planned stage-by-stage way, starting from model with lower commitment to higher commitment. It this way the investment risk is avoided while still leaving room for future expansion of the business. This will also give sufficient time for the utility to build up its human resources and technical and marketing expertise, without loosing the opportunities.

7. List of Recommendations

From the findings of this paper, it is recommended that the power utility shall:

1. Make full use of the extremely valuable right-of-way, which is naturally available for her (and which is not easily available for other operators) to quickly and cost effectively establish an island-wide high capacity transmission network and extend these carrier services to other agencies, for the common benefit.

2. Introduce OPGW on all new transmission lines whether it is immediately used or not, as the incremental cost incurred in introducing OPGW in place of conventional ground wires is very minimal compared to the cost of the transmission line project. The cost of the OPGW cabling is a minor fraction when compared with the project cost of the transmission line. Hence, increase the fiber count as much as possible, even if there is no any plan to use them in the near future, considering marginal increase in cost with the fiber count and the very long life time of the fibers installed today.

3. Use SDH as the transmission protocol for such a high capacity transmission network, as this will make full use of the extremely large bandwidth available with optical fibers.

4. Employ ring architectures to increase the reliability of the network.

5. Lease the transmission capacity, rather than the dark fibers, as the former will produce more revenue, in the case of the commercial leasing to outside agencies.

6. Consider the following access technologies to extend the carrier services from grid substations/Substation to commercial customers;

- Another fiber optic access network based on the medium voltage distribution network
- Point-to-point microwave links

• High capacity Multi Access Radio (MAR) systems. (technical details of a typical high capacity multi access radio system is attached in the Appendix-B)

7. Break the total network plan in to number of implementation stages (a separate implementation plan will be required) and execute them in a stageby stage fashion according to the priorities determined by the market force, so as to save on the capital expenditure and to reduce the investment risk.

8. At the time this project was started the Puttalam – Anuradhapura line was not available and therefore this project attemted to design a microwave link between these nodes. As this line has now been constructed, it is recommended to use OPGW on this line also.

79

8. Drawbacks

The following drawbacks have been identified in this project;

1. In order to find the capacity requirement of each node, the traffic flow for each node in the ring has been assumed. However, in practice, market surveys have to be conducted among prospective customers, before deciding on the node capacities.

2. In the design of the Puttalam – Anuradhapura radio link, the specification of the radio used was that of a STM-1, 7/8 GHz radio. However, the same data was used for STM-64 capacity, due the difficulty of finding the relevant technical information for STM-64 radios.

3. The prices used in the cost analysis are FOB (Freight On Board) values. To find the actual cost of the project, the freight charges as well as the government taxes should be added to this cost.

9. References

- John M Senior; Optical Fiber Communications Principles & Practice, Second Edition, Prentice Hall, New Delhi, 1998.
- 2. Robert G. Winch; Telecommunications Transmission Systems, McGraw Hill Inc., Singapore, 1993.
- 3. IEEE Std. 1138; IEEE Standard Construction of Composite Fiber Optic Overhead Ground Wire (OPGW) for Use on Electric Utility Power Lines, New York 1994.
- 4. ITU/CCITT; Rec. G707; Synchronous Digital Hierarchy Bit Rates, Geneva, 1989.
- 5. ITU/CCITT; Rec. G708; Network Node Interface for the Synchronous Digital Hierarchy, Geneva, 1989.
- 6. ITU/CCITT; Rec. G.709; Synchronous Multiplexing Structure, Geneva, 1989.
- 7. ITU-T; Rec. G.811; Timing Characteristics of Primary Reference Clocks, Geneva, 1997.
- ITU-T; Rec. G.812; Timing Requirements of Slave Clocks Suitable for use as Node Clocks in Synchronization Networks, Geneva, 1998.
- 9. ITU-T; Rec. G.813; Timing Characteristics of SDH Equipment Slave Clocks (SEC), Geneva, 1996.
- ITU-T; Rec. 530-7; Propagation Data and Prediction Methods Required for the Design of Terrestrial Line of Sight Systems, Geneva, 1997.
- 11. ITU-T, Rec. G.803; Architecture of transport networks based on the Synchronous Digital Hierarchy (SDH), Geneva, 1997.

12. ITU-T; Rec. G.652; Characteristics of Single Mode Optical Fibre Cable, Geneva, 1997.

- 13. ITU-T; Rec. G.653; Characteristics of Dispersion Shifted Single Mode Fibre Cable, Geneva, 1997.
- 14. ITU-T; Rec. G.957; Optical Interfaces for Equipments and Systems Relating to the Synchronous Digital Hierarchy, Geneva, 1997.
- ITU-T; Rec. G.958; Digital Line Systems Based on the Synchronous Digital Hierarchy for Use on Optical Fibre Cables, Geneva, 1997.
- 16. ITU-T/CCITT, Optical Fibre Systems Planning Guide, Geneva 1989.
- 17. Ewbank Preece; Telecommunications Technical Guidelines- Microwave Propagation.
- 18. AOTS Japan training on Digital Telecommunications Technology, Training Document.
- 19. Joachim Vobis; Wavelength Division Multiplexing for Optical Amplifiers, Telecom Asia, Sep. 1995.
- 20. S. Bigo et al; Road to Ultra High Capacity Transmission, Alcatel Telecommunications Review, #rd Quarter 2001.
- M. Erman; Trends and Evolution of Optical Networks and Technologies, Alcatel Telecommunications Review, 3rd Quarter 2001.
- S. Bigo, W. Idler; Multi-terabit/s transmission over Alcatel Teralight fiber, Alcatel Telecommunications Review, 3rd Quarter 2001.

- 23. Fiber Optics Inc.; Learning About Options in Fiber, New York.
- 24. Wandal & Goltermann, SDH Pocket Guide, Communications Test Solutions.
- 25. Textronix Inc., SDH Telecommunications Standards Primer.
- 26. ABB Power Automation Ltd., Synchronous Transmission Systems, Switzerland.
- 27. NEC Corporation, SMS-150A, Add/Drop Multiplexer Manual, Japan.
- 28. NEC Corporation, NE 6067, Digital Branch & Cross Connect Equipment Manual, Japan.
- 29. E Alen Dowdell, High Data Rate Networks, The Latest Fiber Technologies for Long Haul, AMTC 1999.
- 30. Christopher Towery & E Alan Dowdell, Advanced Optical Fiber for Long Distance Telecommunication Networks, AMTC 2000.
- 31. K P Kandenaearachchi, Design, Modeling & Simulation of the Repeater-less Optical Fiber Network for Sri Lanka, M Eng Project, 2004.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

<u>APPENDIX – A:</u>

LITERATURE ON OPGW CABLE STRINGING

METHOD

OPGW CABLES

APPENDIX B

CRADLE BLOCK STRINGING OF FIBRE OPTIC EARTHWIRES

Power utilities are under increasing commercial pressure to maintain power connections and reduce outage times when installing Fibre Optic Earthwires.

The technique of live line "Cradle Block' stringing overcomes this problem. This technique has been used in Japan; Canada and others but not under live line conditions. New Zealand has some experience of live line installation but the technique has now been fairly refined and proven in the UK under 400 kV live line conditions?

The technique consists of setting out a number of cradle blocks to enable a new earthwire to be drawn in under live line working conditions. The general arrangement is shown in figure H. For safety reasons a cradle block is required every 10 metres on UK 400 kV lines. This ensures that any breakage of conductor or pulling rope will not contact a live conductor and cause a safety or power system problem.

CRADLE BLOCK AND MACHINERY HANDLING

(Electronic Theses & Dissertations

The key component to this technique is the Cradle Block itself illustrated in figure 5. It is required to have an extremely low rolling resistance to enable up to 6 km drum lengths to be installed as a single section. This will involve some 600 cradle blocks. Earth continuity must be maintained throughout the block to avoid capacitively induced voltage appearing on the long and parallel un-earthed components which will lead to flash over and damage. In addition operator safety would be jeopardised.

To assist in the handling of machinery at tower peaks it is normal to make use of a lifting jib **shown in figure** D. Also **for deployment** of cradle blocks suitable containers are also temporarily mounted near the tower peak and provides for uninterrupted attachment along each span.

CRADLE BLOCK STRINGING METHOD

The following numbers refer to the Process steps shown on 3 separate diagrams.

Positioning of cradle blocks - a Pulling Rope and conductor Connecting Rope are deployed using a tug unit along the existing earthwire. Cradle Blocks are attached to the enacting rope every 10 m as the Pulling Rope is deployed.

2 The new optical earthwire is attached to the Pulling Rope using a special high integrity connector shown in figure 7 and drawn in. Thus the cradle blocks and pulling rope are supported by the existing earthwire.

3 When pulling is completed the new earthwire is supported by the cradle blocks. The new earthwire is then sagged using conventional sighting techniques.

5 The final sagging ensures that the new earthwire turns the cradle blocks over and is now supporting the cradle blocks and old earthwire.

6 The old earthwire may readily be drawn OUI on the bottom rollers of the cradle block.

7 A Tail Rope is also drawn through the cradle blocks to control the 'runaway'' of the old earthwire.

8 The cradle blocks are then collected by pulling on the "Pulling Rappel and "Runaway" is controlled by a special friction braked roller unit shown in **figure 6**.

9 Should the hug unit become detective during the initial deployment of Cradle blocks it may be rescued with a second tug unit attached to a Rescue Rope.

EQUIPOTENTIAL EQUIPMENT ZONES

It is most important for all operators to be working within the equipotential ground plane of the towers and in all circumstances there shall be an effective earth between any operator who may be handling equipment and the source of induced voltage. This is taken care of by deploying special ring fenced earthing mats and bonding all metal parts to the power system earth as shown in the general arrangement sketches of **figure Q1**.

SUMMARY

Cradle block stringing provides rapid deployment of composite conductors on high voltage transmission lines without the need for circuit outages.

April 1997

OPGW Cables

1

¥

Â.

1

OPGW CABLES

April 1997

.

500 E

1

4

É.

OPGW Cables

April 1997

*

OPGW CABLES

ý

4

•

April 1997

FIG 5 CZADLE BLOCK

April 1997

OPGW Cables

OPGW CABLES

April 1997

9

OPGW Cables

Ĵ

.

<u>APPENDIX – B:</u>

4

٠

SPECIFICATION SHEETS FOR ANTENNAS, Electronic Theses & Dissertations www.lib.mrt.ac.lk

FEEDERS AND MICROWAVE RADIOS

Frequency GHz	Input Flanges	Type Number	Diameter ft (m)	Bottom	Gain, dBl Mid-Band	Тор	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L., dB)
High Performa	nce Antennas - I	Planar Radome	Included					يوهو وي من وي ال		
7.750-8.4* Single Polarized	CPR112G	HP6-77GE HP8-77GE HP10-77GE HP12-77GF HP15-77GE	6 (1.3) 8 (2.4) 10 (3.0) 12 (3.7) 15 (4.6)	40.3 42.9 44.8 46.3 48.2	40.8 43.3 45.2 46.7 48.5	41,1 43.6 45.5 47.1 48.9	1.5 1.1 0.9 0.7 0.6	30 30 30 30 30 30	68 68 70 71 71	1.06 (20.7) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2)
Low VSWR Sta	indard Antennas									
7.750-8.4* Single Polarized	CPR112G	PL4-77GD PL6-77GE PL8-77GE PL10-77GD PL12-77GF PL15-77GD	4 (1.2) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 15 (4.6)	36.8 40.3 42.9 44.8 46.3 48.2	37.2 40.8 43.3 45.2 46.7 48.5	37.5 41.1 43.6 45.5 47.1 48.9	2.2 1.5 1.1 0.9 0.7 0.6	30 30 30 30 30 - 30	45 48 50 58 54 57	1.06 (30.7) 1.06 (30.7) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2)

.750-8.4 GHz Antennas - Electrical Characteristics

•7.725-8.275 or 7.725-8.5 GHz available on request.

7.125-8.4 GHz Antennas - Electrical Characteristics

Frequency GHz ·	Input Flanges	Type Number	Diameter ft (m)	Bottom	Gain, dB Mid-Band	i i Top	8eamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L., dB)
High Performa	nce Antennas - I	Planar Radome	Included							
7.125-8.4 Single Polarized	CPR112G	HP6-71W HP8-71W HP10-71W	6 (1.8) 8 (2.4) 10 (2.0)	39.7 42.3 44.0	40.3 42.9 44.8	41.1 43.6 45.5	1.5 1.1 0.9	30 30 30	66 68 70	1.06 (30.7) 1.06 (30.7) 1.06 (30.7)
Standard Ante	nnas		Www.lik	mirt ac ik						
7.125-8.4 Single Polarized	UG-52B/U	P4-71GD P6-71GD P8-71GE P10-71GE P12-71GF P15-71GD	4 (1.2) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 15 (4.6)	36.2 39.7 42.3 44.0 45.6 47.5	36.8 40.3 42.9 44.8 46.3 48.2	37.5 41.1 43.6 45.5 47.1 48.9	2.2 1.5 1.1 0.9 0.7 0.6	30 30 30 30 30 30	45 48 50 52 54 57	1.10 (26.4) 1.10 (26.4) 1.10 (26.4) 1.10 (26.4) 1.10 (26.4) 1.10 (26.4) 1.10 (26.4)

7.125 - 7.725 GHz Antennas - Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter ft (m)	Bottom	Gain, dBi Mid-Band	Тор	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L, dB)
Focal Plane Ant	ennas**									
7.125-7.725 Single Polarized	PDR70	FP4-71 FP6-71 FP8-71 FP10-71 FP12-71	4 (1.2) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7)	34.9 38.8 42.0 44.1 45.7	35.2 39.2 42.3 44.4 46.1	35.4 39.5 42.4 44.5 46.2	2.2 1.5 1.1 0.9 0.7	25 25 26 26 28	52 58 65 67 69	1.10 (26.4) 1.07 (29.4) 1.06 (30.7) 1.04 (34.2) 1.04 (34.2)
7.125-7.725 Dual Polarized	PDR70	FPX6-71 FPX8-71 FPX10-71 FPX12-71	6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7)	38.8 41.8 43.9 45.5	39.2 42.1 44.2 45.9	39.5 42.3 44.3 46.0	1.5 1.1 0.9 0.7	25 26 26 28	58 65 67 69	1.08 (28.3) 1.07 (29.4) 1.06 (30.7) 1.06 (30.7)

**Focal plane antennas are manufactured and stocked at our factory in Great Britain and manufactured on special order in Australia. They are not manufactured or stocked in the United States or Canada.

ANDREW

60

ave Antenna -

1.425 • 7.900 GHz Antennas • Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter ft (m)	Bottom	Gain, dBi Mid-Band	Тор	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L, dB)	
High Performar	ice Antennas -	Planar Radome	Included								-
7.425-7.900 Single Polarized	CPR112G	HP4-74G HP6-74G HP8-74G	4 (1.2) 6 (1.8) 8 (2.4)	36.5 40.1 42.5	36.7 40.4 42.8	37.0 40.6 43.0	2.3 1.5 1.2	32 32 32	63 64 71	1.06 (30.7) 1.06 (30.7) 1.04 (34.2)	-

7.725-8.275 and 7.725 - 8.5 GHz Antennas - Electrical Characteristics

Frequency GHz	Input Flanges	Type Number	Diameter ft (m)	Bottom	Gain, dBl Mid-Band	Тор	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L., dB)
UHX [®] Ultra High	n Performance	Antennas - Plana	r Radome li	ncluded						
7.725-8.275*	CPR112G	UHX6-77GD	6 (1.8)	40.5	41.0	41.2	1.5	30	67	1.06 (30.7)
Dual		UHX8-77GD	8 (2.4)	43.1	43.5	43.7	1.1	30	68	1.06 (30.7)
Polarized		UHX10-77GD	10 (3.0)	44.9	45.2	45.4	0.9	30	70	1.06 (30.7)
		UHX12-77GD	12 (3.7)	46.4	46.7	46.9	0.7	30	75	1.06 (30.7)
Polarized		UHX15-77GD	15 (4.6)	48.4	48.7	48.9	0.6	30	70	1.06 (30.7)
^{Li} gh XPD Antenr	nas - TEGLAR	e Long Life Rado	ne Included							<u></u>
:5-8.275*	CPR112G	HXPD6-77GC	6 (1.8)	40.5	40.7	41.0	1.5	35†	70	1.06 (30.7)
Dual		HXPD8-77GC	8 (2.4)	43.1	43.4	43.7	1.1	36†	70	1.06 (30.7)
Polarized		HXPD10-77GC	10 (3.0)	44.9	45.2	45.6	0.9	37†	75	1.06 (30.7)
		HXPD12-77GC	12 (3.7)	46.4	46.7	47.0	0.7	37†	75	1.06 (30.7)
Focal Plane Ante	ennas**									
7.725-8.5	POR84	FP6-77G	6 (1.8)	40.2	40.6	40.8	1.5	30	60	1.07 (29.4)
Single		FP8-77G	8 (2.4)	42.9	43.3	43.5	1.1	26	64	1.06 (30.7)
Polarized		FP10-77G	10 (3.0)	44.9	45.3	45,4	0.9	30	66	1.04 (34.2)
		FP12-77G	12 (3.7)	46.5	46.5	47.0	0.7	28	68	1.04 (34.2)
7.725-8.5 Dual Polarized	PDR84	FPX6-77G	6 (1.8)	40.2	40.4	40.6	1.5 nka	30	58	1.08 (28.3)

Meets Canadian DOC Standard SRSP306. VSWR 1.06 (30.7), www.lib.mrt.ac#Focal plane antennas are manufactured and stocked at our 7.725-8.5 GHz on request. †Isolation is 50 dB minimum. factory in Great Britain and are manufactured on special order

in Australia. They are not manufactured or stocked in the United States or Canada.

8.2 · 8.5 GHz Antennas · Electrical Characteristics

Frequency	Input Flanges	Type Number	Diameter ft (m)	Bottom	Gain, dBi Mid-Band	Тор	Beamwidth Degrees	Cross Pol. Disc., dB	F/B Ratio dB	VSWR max. (R.L., dB)
Jh Performa	nce Antennas - I	Planar Radome I	ncluded							
8.2-8.5 Single	CPR112G	HP6-82C HP8-82C	6 (1.8)	40.6 43.4	40.8 43.5	41.0	1.5	30 30	68 68	1.04 (34.2) 1.04 (34.2)
Polarized		HP10-82C HP12-82C HP15-82C	10 (3.0) 12 (3.7) 15 (4.6)	45.3 46.8 48.6	45.5 47.0 48.8	45.7 47.1 48.9	0.9 0.7 0.6	30 30 30	70 71 71	1.04 (34.2) 1.04 (34.2) 1.04 (34.2)
8.2-8.5 Dual Polarized	CPR112G	HPX6-82C HPX8-82C HPX10-82C HPX12-82C HPX12-82C HPX15-82C	6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 15 (4.6)	41.0 43.5 45.5 47.1 48.7	41.1 43.6 45.6 47.2 48.8	41.2 43.7 45.7 47.3 48.9	1.3 1.0 0.8 0.7 0.6	30 30 30 30 30 30	58 67 70 70 70	1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (20.7)
Low VSWR Sta	indard Antennas	}		· · · · · · · · · · · · · · · · · · ·						
8.2-8.5 Single Polarized	CPR112G	PL6-82C PL8-82C PL10-82C PL12-82C PL12-82C PL15-82C	6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 15 (4.6)	40.6 43.4 45.3 46.8 48.6	40.8 43.5 45.5 47.0 48.8	41.0 43.7 45.7 47.1 48.9	1.5 1.1 0.9 0.7 0.6	30 30 30 30 30 30	48 50 58 54 57	1.06 (30.7) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2) 1.04 (34.2)
8.2-8.5 Dual Polarized	CPR112G	PXL6-82C PXL8-82C PXL10-82C PXL12-82C PXL12-82C PXL15-82C	6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 15 (4.6)	41.0 43.7 45.7 47.3 48.5	41.1 43.8 45.8 47.4 48.6	41.2 43.9 45.9 47.5 48.7	1.3 1.0 0.8 0.7 0.6	30 30 30 30 30 30	48 55 57 63 65	1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7)

Customer Support Center + U.S. 1-800-255-1479 + Canada 1-800-263-2668

Types EWP77 and EW77

Flexibility and High Strength

Precision formed and corrugated from high conductivity copper

Long Continuous Lengths

Low installation cost and ease of system planning

Low Attenuation

Optimized for specific user band

Advanced Connectors and Accessories

Full line of connectors and accessories designed to simplify system planning and reduce cost of installation

Proven Performer

EWP77 is proven in thousands of demanding microwave systems

Connector Material: Investment Cast Silicon Brass

Connectors • Flange dimensions on pages 179 and 180.

Type	L	W	A	Weight
No.	in (mm)	ia (mm)	in (mm)	Ib (kg)
177DC, 177DCT	4.8	2.8	3.1	2.8
177DCP	(122)	(71)	(78)	(1.3)
177DE. 177DET	4.8	2.8	3.1	2.8
1770EP	(122)	(71)	(78)	(1.3)

Characteristics

Type Numbers	
Premium Waveguide Standard Waveguide	EWP77 EW77
Electrical	
Max. Frequency Range, GHz* •TE11 Mode Cutoff Frequency, GHz Group Delay at 7.8 GHz, ns/100 ft (ns/100 m) Peak Power Rating at 7.8 GHz, kW	6.1-8.5 4.722 128 (419) 63
Mechanical	
Minimum Bending Radii, without rebending, inches (mm) E Plane H Plane Minimum Bending Badii, with rebending, inches (mm)	7 (180) 20 (510)
E Plane	9 (230)

H Plane	25 (635)
Maximum Twist, degrees/foot (m)	1 (3
Dimensions over Jacket, in (mm)	1.72 x 1.00 (43.6 x 25.4
Weight, pounds per foot (kg/m)	0.45 (0.67
thety of weaple reage is limited by the	connecting rectangular

 Actual usable range is limited by the connecting rectangular waveguide.

Attenuation, Average Power, Group Velocity

Frequency GHz	Attenuation dB/100 ft (dB/100 m)	Average Power Rating, kW	Group Velocity of Propagation, %
7.1	1.91 (6.28)	3.11	74.7
7.2	1.89 (6.20)	3.15	75.5.
7.3	1.87 (6.13)	3.19	76.3
7.4	1.85 (6.06)	3.22	77.0
7.5	1.83 (6.00)	3.26	77.7
7.6	1.81 (5.94)	3.29	78.4
7.7	1.79 (5.89)	3.32	79.0
7.8	1.78 (5.84)	3.35	79.6
7.9	1.77 (5.80)	3.37	80.2
8.0	1.75 (5.75)	3.40	80.7
8.1	1.74 (5.71)	3.42	81.2
8.2	1.73 (5.68)	3.44	81.8
8.3	1.72 (5.64)	3.47	82.2
8.4	1.71 (5.61)	3.49	82.7
8.5	1.70 (5.58)	3.51	83.1

Ordering Information for Waveguide Assemblies

Frequency* Band, GHz	Waveguide Type No.	Connector Type No.	Connector Tuning‡	Connector Mates with U.S.	n Flange Type‡‡ IEC	VSWR, max.** (R.L., dB) up to 300 ft (90 m)
Premium Wa	veguide Assem	blies			······································	
7.125-7.750	EWP77	177DCT 177DCP-1 177DET 177DEP-1	Tunable Pre-Tuned Tunable Pre-Tuned	UG-528/U, UG-51/U UG-528/U, UG-51/U CPR112G CPR112G	CSR84, UBR84, PBR84 CSR84, UBR84, PBR84 PCR84 PDR84 PDR84	1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7)
7.725-8.275	EWP77	177DCT 177DET	Tunable Tunable	UG-528/U. UG-51/U CPR112G	CSR84, UBR84, PBR84 PDR84	1.06 (30.7) 1.06 (30.7)
7.725-8.500	EWP77	177DCT 177DET	Tunable Tunable	UG-528/U, UG-51/U CPR112G	CER84, UBRS4, PBR84 PDR84	1.06 (30.7) 1.06 (30.7)
7.750-8.500	EWP77	177DCT 177DCP-2 177DET 177DEP-2	Tunable Pre-Tuned Tunable Pre-Tuned	UG-528/U, UG-51/U UG-528/U, UG-51/U CPR112G CPR112G	CSR84, UBF34, PBR84 CSR84, UBF84, PBR84 PDF84 PDF84	1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7) 1.06 (30.7)
Standard Wa	iveguide Assem	blies				
7.125-7.750	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-528/U. UG-51/U CPR112G	CSR84, UBR84, PBR84 PDR84	1.15 (23.1) 1.15 (23.1)
7.125-7.850	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-528/U, UG-51/U CPR112G	CER84, UBRS4, PBR84 PCR84	1.15 (23.1) 1.15 (23.1)
7.425-7.725	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-528/U, UG-51/U CPR112G	CBR84, UBR84, PBR84 PDR84	1.15 (23.1) 1.15 (23.1)
7.425-7.900	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-528/U, UG-51/U CPR112G	CBR84, UBR84, PBR84 PDR84	1.15 (23.1) 1.15 (23.1)
7.725-8.500	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-52B/U, UG-51/U CPR112G	CSR84, UER84, PBR84 PDR84	1.15 (23.1) 1.15 (23.1)
7.750-8.500	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-528/U, UG-51/U CPR112G	CER84, UBR84, PBR84 PDR84	1.15 (23.1) 1.15 (23.1)
8.2-8.5	EW77	177DC 177DE	Non-Tunable Non-Tunable	UG-528/U, UG-51/U CPR112G	CBR84, UBR84, PBR84 PDR84	1.15 (23.1) 1.15 (23.1)

*Contact Andrew for information on other frequency bands. **The indicated maximum VSWR characteristics are guaranteed for factory assemblies and are typical for field assemblies. #Tunable" connectors ordered with factory asemblies are factory tuned. "Pre-tuned" connectors are for field attachment only. #For detailed information on mating flanges, refer to pages 179 and 180.

Accessories • Photos and detailed descriptions on pages 156-162

Description	Type No.	Description		Type N
Hangers and Adaptors		Tower Standoff Kit o	of 10. 2.5 in (60 mm) stand	off
Hanger Kit of 10, Maximum spacing 4 ft (1.2 m) Hardware Kit of 10, 3/8" bolts, lock washers, nuts 3/4" (19 mm) long	42396A-11 31769-5	3-4 (75-100) 4-5 (100-125) 5-6 (125-150)	, in (тт) 	411084 411084 411084
1" (25 mm) long Angle Adaptor Kit of 10 Stainless steel	31769-1 31768 A	Other Accessories		
Angle Adaptor Kit of 10. Stainless steel Round Member Adaptor Kit of 10. Stainless steel Member Diameter, in (mm) 1-2 (25-50) 2-3 (50-75) 3-4 (75-100) 4-5 (100-125) 5-6 (125-150) 45° Adaptor Kit of 10. Galvanized steel Threaded Rod Support, 3/8" rod, nuts, washers, ceil 12 in (305 mm) long, kit of 1 12 in (305 mm) long, kit of 5 24 in (610 mm) long, kit of 5 Tower Standoff Kit of 10. 1 in (25 mm) standoff Member Diameter, in (mm) 0.75-1.5 (20-40) 1.5-3.0 (40-75) 3-4 (75-100) 4-5 (100-125) 5-6 (125-150)	31670-1 31670-2 31670-3 31670-3 31670-5 42334 ing bracket 31771 31771-4 31771-9 31771-6 30848-5 30848-4 30848-1 30848-2 30848-3	Flaring Tool for Con Splice Grounding Kit with f Grounding Kit with f Grounding Kit with f Crimping Tool to fie Hoisting Grip Bending Tool Kit. O Connector Reattacl Wall-Roof Feed Thr Waveguide Boot for Feed-Thru Plate for Openings 1 1 2 3 4	nector Attachment actory attached lug ield attachable screw-on lu ield attachable crimp-on lu Id attach lug to Grounding ne each E and H Plane too ment Kit u Plates (below), 4 in (102 m 5 in (127 m 5 in (127 m 204673-1 204673-4	202421 177DZ 204985 204985 204985 204985 Xit 207270 192561 33584- 33544- 35849- nm) dia. 204675 48940-1 48940-2 48940-3 48940-4 48940-6
3-4 (75-100) 4-5 (100-125) 5-6 (125-150)	30848-1 30848-2 30848-3	2 3 4 6	204673-4	48940 48940 48940 48940

To Order

- A sample order is shown on page 273.
- Specify waveguide Type Number, frequency band in GHz and length in feet or metres. See "Waveguide Assemblies" table.

• Specify connector Type Numbers and "attached" or "unattached". See "Waveguide Assemblies" table. When attached connectors on an assembly are different, specify which is "first off" reel.

Further Information

For general information on HELIAX elliptical wavewguide, see pages 120-123.

Customer Support Center + U.S. 1-800-255-1479 + Canada 1-800-263-2668

HARRIS CORPORATION Farinon Division

MegaStar™ 6/7/8 GHz, 155 Mb/s SDH Microwave Radio

Section 3 TECHNICAL SPECIFICATIONS

	MegaStar Specif	ications		
Frequency Range	5925 - 5425 MHz 5915 - 6930 MHz 7125 - 8500 MHz 7725 - 8275 MHz	U.S. Private/Common Carrier Canada U.S. Government Canada		
Frequency Stability	0°C to +50°C: <u>+</u> 3 PP	ví		
Channel Bandwidth	30 MHz			
Channel Spacing	29.65 MHz			
Transmission Rate	155.52 Mb/s			
Modulation Type	128-state non-staggere	ed QAM with Forward Error Correction		
Bandwidth Efficiency	> 5.2 b/s Hz			
Configurations	The MegaStar radio is available in the following configurations: Terminal Add/Drop Repeater Hubbing Add/Drop Repeater Ring Add/Drop Repeater			
Protection	The MegaStar radio is Hot Standby, Space Frequency Divers Non-Protected Unidirectional Pa	available with the following protection: ce Diversity ity, Hybrid Diversity th Switched Ring		
Transmitter Power	High, HS Standard, HS Standard, FD, NP	+30.5 dBm +28.0 dBm +28.8 dBm		
Output Power Stability	Over a 12 month perio	bd: $\pm 0.25 \text{ dB}$ at maximum power output $\pm 1 \text{ dB}$ at minimum power output		
ATPC Range	10 dB (with HS, FD T	ransmitter)		
Diversity Antenna Delay Equalization (DADE) Range	±480 nsec			
Error Floor	One hop basis: 10 ⁻¹¹ ≤ Five hop system: 10	⁻¹³ (average per hop, measured end to end)		

Page 3-1

VOLUME II: REFERENCE MANUAL

A STATE OF A

The second second second second

CALARA LANGUER CONTRACTOR

MegaStar™

R

	HS (1) HS (2)	-70.0 dBm -69.0 dBm -63 dBm	-68.5 dBm -67.5 dBm -61.5 dBm
Receiver Overload Point	At 10^{-6} : ≥ -17 dE	3m	
Receiver Switching	Errorless, Stress	Initiated	
Receiver Image Rejection	> 75 dB		
System Gain	High power at Bl High power at Bl * NP, SD, FD rec	ER 10 ⁻³ is 100.5 dB* ER 10 ⁻⁶ is 99.0 dB* ceiver only.	
Dispersive Fade Margin	48 dB at 10 ⁻³ BE	R	
Threshold-to- Interference	Cochannel: 37 dE Adjacent channel	3 l: 0 dB (±30 MHz)	
	University of Moratuv Electronic Theses & D www.lib.mrt.nc.lk	va, Sri Lanka. Dissertations	ETSTV CA
Page 3-2			CHUNNED ST

SECTIONS

=

	External Connect	tion Specif	ications		
Payload Interface	STM1 optical				
	Optical signal specifics	ations:			
	Parameter	Symbol	Minimum	Typical	Maximum
	Receiver specifications				
	Optical input sensitivity	PIN	-32.5 cBm		-14.0 nBm
	Optical wavelength	 کراN	1270 nm		1380 nm
]	Transmitter specifications				
i i i i i i i i i i i i i i i i i i i	Optical output	Pout	-19 cBm	· ·-	14 dBm
	Optical wavelength	λ _{OUT}		1330 nm	
	SPU Controller				
SPUR Connector	Link to other SCAN ec	luipment			
CIT Connector	FarScan port				
	Alarm Display				
FarScan Connector	Provides customer acce	ess to FarScan			
CUSTOMER CONNECT Connector	Provides customer acce eight opto-isolated sign	ess to nine soli nal lines:	d-state on-b	oard Form C	relays and
	Five Relays-Alarms	System Majo System Mino Major Visible Major Audib Minor	r or 60V e } Stra le or a	/ DC max, 25 appable for ala larm = CLOS	0mA arm = OPEN ED
	Four Relays	Site Comma	nds (Op	en-collector b	ouffer [use
	Eight Opto-Isolated	Site Alarms	F	- <u>F</u>	
	SCU Data Orderwire				
RS232 Connector	External connection to channel)	the two RS23	2 ports (<u><</u> 4.8	3 kb/s asynchi	ronous data

B

VOLUME II: REFERENCE MANUAL

MegaStar™

	SCU VF Orderwire
4W PORTS Connector	External connection to the four four-wire ports (VF Orderwire with signaling.)
	Two four-wire 600 ohm VF ports
	VF port 1 has choice of 0 dBm or -16 dBm input levels and 0 dBm or +7 dBm output levels
	VF port 2 has choice of 0 dBm or +7 dBm input levels and 0 dBm or -16 dBm output levels.
	Antenna Coupling Unit
Antenna Connector	CPR-137/UG 344 waveguide flange
Waveguide Connector	WR 137
	Signal Designations and Pin Assignments
	Refer to the schematic drawings in the Appendix.
	•
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk
	•
	TAN DE
	CALCULATION OF
	LIEBARY E
ge 3-4	A LANNA

Pag

MegaStar™

Section 3: TECHNICAL SPECIFICATIONS

時期の時間の時間に

•••

	Environment and Power Characteristics	
Ambient Temperature Range	Full performance: 0° C to $+50^{\circ}$ C No outage, error performance $\leq 10^{-6}$: -5° C to $+55^{\circ}$ C Storage and transportation: -40° C to $+65^{\circ}$ C	
Humidity	5 to 95% non-condensing	
Altitude	0 to 4572 m AMSL	
Standard Power Source	-56V DC to -21V DC or +21V DC to +56V DC with res	pect to ground.
Power Consumption	Terminal425 WattsLinear Add/Drop Repeater800 WattsRing Add/Drop Repeater465 Watts	
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
]	

AGILINK SDH RADIO

DESCRIPTIONS A

ADR series of microwave Radios from Agilis Communication Technologies represents the latest in the high performance Radios that can be used for high capacity wireless solutions. Offered for SDH broadband applications, this series of microwave Radios are designed to be used with high data rate

modems with QAM modulations.

- FEATURES
- · Broad frequency coverage from 7 GHz to 26 GHz
- Low component count and innovative design for flexibility and Reliability
- Conforms to ETSI grade A standards.
- Low Cost
- Competitive Performance
- Support STM0, 21 E1/T1, 16 E1/T1, 8 E1/T1 & 4 E1/T1 Applications
- Stand Alone (1+0) Configuration
- Hot-Standby (1+1) Configuration Protection of Traffic
- Field Proven and Reliable
- · Compact and Ruggedized for Outdoor

• Easy and quick Installation

Remote M&C

Agilis Communication Technologies Pte Ltd

A company of Singapore Technologies Electronics 100 Jurong East Street 21, Singapore Technologies Building, Level 4, Singapore 609602

*" Singapore Technologies

POPULAR BANDS FREQUENCY RANGE (GF	{z)	7/8GHz 7.1-8.5	13GHz 12.75-13.2	15GHZ 5 14.4-15.35	18GHz 17.7-19.7	23GHz 21.2-23.6	26GHz 24.5-26.5
FLANGE TYPE		N-Female	WR-62	WR-62	WR-42	WR-42	WR-42
TRANSMITTER		7/8GHz	13GHz	15GHZ	18GHz	23GHz	26GHz
POWER OUTPUT		(Guaranteed a	at RF Unit ante	enna port over temp	erature range	·)-	
PtdB		+32dBm	+31dBm	+31dBm	+28dBm	+26dBm	+26dBm
STMO - 256QAM - 8MHz		+22dBm	+20dBm	+20dBm	+18dBm	+16dBm	⊦l6dBm
21xE1/T1 - 256QAM - 8M	lHz	+22dBm	+20dBm	+20dBm	+l8dBm	+16dBm	+16dBm
- 16xE1/T1 - 256QAM - 6М	IHz	+22dBm	+20dBm	+20dBm	+18dBm	+16dBm	+16dBm
16xE1/T1 - 128QAM - 7M	lHz [+23dBm	+21dBm	+21dBm	+19dBm	+17dBm	+17dBm
16xE1/11 - 64QAM - 8MH	-lz	+23dBm	+21dBm	+21dBm	+19dBm	+17dBm	+17dBm
8xE1/I'1 - 256QAM - 3.5M	4Hz	+22dBm	+20dBm	+20dBm	+18dBm	+16dBm	+16dBm
8xE1/T1 - 160AM - 7MH	7	+24dBm	+22dBm	+22dBm	+20dBm	+18dBin	+18dBm
4xE/T1 - 16QAM - 3.5MH	z	+24dBm	+22dBm	+22dBm	+20dBm	+18dBm	+18dBm
PECEIVED		7/80117	136.47	150-17	18CH-	236114	266.112
SENSITIVITY @ LE-6 BER	ξ	(Guaranteed a	at RF Unit anto	enna port over temp	erature range	253311Z	2003112
STMO - 2560AM - 8MHz		-68dBm	-64dBm	-64dBm	-64dBm	-6-kiBm	-64dBm
21xE1/TL - 2560AM - 8M	ін,	-68dBm	-64dBm	-64dBm	-64dBm	-64dBm	-64dBm
16xE1/F1 - 2560AM - 6M	H7	-69dBm	-65dBm	-65dBm	-65/IRm	-65dRm	-65dRm
	1117	.70/10	.68.40	.68/18	.68410	-0501011	-68.10
	1	-75,00	-0001111	71/10	-000011	~\\QUDHI 71.4D	-00upui 71.10
	1.6 AU -	-7.30pm			-710003	-/1000	-710011
- 0.51/11 - 200QAM - 3.5N	ALLY	-/20BM	-080BM	-080010	-08080	-0801010	-080BM
OXELAL - TOUAM - AMH			-//aBm	-//usm	-//uBm	-//dBm	-//uBm
4XE1/11 - 16QAM - 3.5MH	17.	-84dBm	-80dBm	-80dBm	-80dBm	-80ktBm	-souBm
FREQUENCY STABILITY		+/- 5ppm	+/- 5ppm	+/- 5ppm	+/- 5ppm	+/- 5ppm	+/- 5ppm
RECEIVER TYPE		Double Conv	ersion				
DYNAMIC RANGE		> 60dB					
RECEIVER UNFADED BE	к	> 1E-12		• ·			
SYSTEM GAIN		7/8GHz	13GHz	15GHZ	18GHz	23GHz	26GHz
SYSTEM GAIN @ Thresho	ld	(Guaranteed a	at RF Unit ante	enna port over temp	erature rango	:)	
STMO - 256QAM - 8MHz		92dB	86dB	864B	84dB	82dB	82dB
21xE1/T1 - 256QAM - 8M	IHz l	92dB	86dB	86dB	84dB	82dB	82dB
16xE1/T1 - 2560AM - 6M	IHz	93dB	87dB	87dB	85dB	83dB	8.3dB
16xE1/T1 - 1280AM - 7M	H ₇	97dB	91dB	91dB	89dB	87dB	87dB
16xE1/T1 - 640AM - 8MH	17	100dB	94dB	94dB	97dB	90/dB	90dB
8xF1/T1 - 2560AM - 3.5N	4H7	96dB	90.18	90dB	96dB	9.1.4B	0.1.(B
SVELTI 160AM 7MH	·····,	107.10	10140	10240	00.40	07/10	0740
4xE1/F1 -160AM - 3 5ME	/. -{7	TUTUB	10448	104dB	10248	970D	970B
ENERAL ystem Configureation	1+0 or 1+1	Electrony www.	onic Theses & lib.mrt.ac.lk	Relative Humidity	ODU IDU	() ~ 100% () ~ 95%	
Journation Type		703		MEODIUNTER	CONNECT	NON	
Digital Line Code		. 103	l	DU-UDU IN IEK Pobla	CUMPECI		
Neitel VO Liter				Lable		1	
ligital I/O Interface	7512 Unbalance	0	[mpedance		2001	
Anna line - El	BNC-F (DB-25	Optional)	ľ -	viax distance		SUUM	
mermediate Prequency	TX:04UMIIIZ;	or Defined	1	merconnection		SMA Male- N Ma	ie Cable
FOODDAL SOUTCO	December 2011	er ijenned)	ſ	EDVICE CUL	NELC		
E Channel Selant	Programmable S	ysnuiesizer		DERVICE UHAN.	INELS	CHZL DOM	
Cr Unannel Select	Selected by NM.	ა ი	(oue Format		04K0ps PCM	
tr rower Select	Selected by NM	5	\ -	voice Bandwidth		300~3400Hz	
requency Stability	±5 ppm		I	inpedance		00052	
Loopbacks	IDU. ODU, Loc	al & Remote	S	Signaling		DIMF	
ower Supply	-36 to -72 V DC		N	Monitor		LED indicate	
ower Consumption	35 Watt for (1+0))				BER(10 ⁻³ ,10 ⁻⁶)	
	70 Watt for (1+1)				ODU Alarm	
AECHANICAL						IDU Alarm	
DU	Standard FTSL3	U (19")		MONITOR CHAP	NNEL.	2 x Ethernet 10RT	RG-45
	130x483x250	/ /	1	Invitonment monit	tor input:		
Veight	8 Kg		L	Type	or input.	8 dry contacte + 7	analog
	120+210+210-	*1		Interface		0 ary contacts + 2 25 nin D + 0 max	anarog
	Customicstics !	n Doccielas	r		al	int D-type در pitt د	
Vaight	Customisation I	rossine)	t.	Ture	on output:	d day an an a	
vergin	ONG			rype Interface		4 ary contacts 25 pin D-type	
ENVIRONMENTAL				menace		-o più io-cype	
emperature Range ODU	-30 ~ 60°C			NETWORK MAN	AGEMEN'	Г	
ĪDU	0 ~ 50°C		·	nterface		2 x Ethernet 10BT	RG-45
			E	Protocol		SNMP	
a 181 an							
Agilis Communii	cation			halan Carriente et ant	a and take or	anticant and a	terre int
~			~ ~	ore: Customixed option	ns available / St	eculcations subject to c	nange without n

Agilis Communication Technologies Pte Ltd

A company of Singapore Technologies Electronics

100 Jurong East Street 21, Singapore Technologies Building, Level 4, Singapore 609602

2"2 Singapure Technologius

-

System and Equipment Parameters

System Parameters (64QAM)

Radio Frequency	4 GHz	5 GHz	U6 GHz
Frequency Range	3,600 - 4,200 MHz	4,400 - 5,000 MHz	6,430 - 7,110 MHz
Channel Spacing	40 MHz	40 MHz	40 MHz
Modulation Scheme		64QAM MLCM + RS	
TX Output Power (excluding BR CKT Loss)	33 dBm	33 dBm	33 dBm
System Gain at BER=10 ⁻³ (excluding BR CKT Loss)	109.1 dB	109.1 dB	109.1 dB
		· · · · -	
Radio Frequency	8 GH7	11 GHz	

Radio Frequency	8 GHZ	11 GHZ	ĺ
Frequency Range	7,725 - 8,275 MHz	10.700 - 11,700 MHz	
Channel Spacing	40.74 MHz	40 MHz	
Modulation Scheme	64QAM MLCM + RS		
TX Output Power (excluding BR CKT Loss)	33 dBm	30 dBm	
System Gain at BER=10-3 (excluding BR CKT Loss)	108.6 dB	105.6 dB	

System Parameters (128QAM)

Radio Frequency	4 GHz	L6 GHz	7 GHz
Frequency Range	3,803.5 - 4,203.5 MHz	5,925 - 6,425 MHz	7,125 - 7,725 MHz
Channel Spacing	29 MHz	29.65 MHz	28MHz
Modulation Scheme	ctronic Theses & Dissertations	128QAM MLCM	
TX Output Power (excluding BR CKT Loss)	w.lib.mrt.ac32 dBm	32 dBm	32 dBm
System Gain at BER = 10 ⁻³ (excluding BR CKT Loss)	105.7 dB	105.7 dB	105.2 dB

Radio Frequency	8 GHz
Frequency Range	7,725 - 8,275 MHz
Channel Spacing	29.65 MHz
Modulation Scheme	128QAM MLCM
TX Output Power (excluding BR CKT Loss)	32 dBm
System Gain at BER=10-3 (excluding BR CKT Loss)	105.2 dB

System Parameters

Transmission Capacity	STM-1 or OC-3 (155.520 Mbit/s, electrical or optical interface)
Meyside Capacity (in RECOU)	64QAM System: 2 x 2.048 Mbit/s or 2 x 1.544 Mbit/s
	128QAM System: 1 x 2.048 Mbit/s or 2 x 1.544 Mbit/s
Service Channel Capacity (in RFCOH)	1 x (192 or 64 kbit/s) and 4 x 64 kbit/s
Power Supply Pequirement	-48V DC (-36 to -72V DC)/-24V DC (-20 to -35V DC)/
rower Supply Requirement	+24V DC (+20 to +35V DC)
Total Power Consumption	Approx. 315W (for 4-U6 GHz, 1+1 Terminal, 10W FET type, e/w SD)
Mounting Rack	ETSI - Rack
Dimensions (W x D x H)	600 x 300 x 2,200 mm
Operating Temperature (Guaranteed)	-5°C to +50°C

Specifications are subject to change without notic

Technical Specifications

Frequency Band (M	Hz)	. U4 🤊	- L6	L7	U7	L8	13
		3803.5-4203.5	5925-6425	7125-7425	7425-7725	7725-8275	12750-13250
Modulation Type		128 QAM-MLCM					
ITU-R Series Rec. 1	No.	F. 382-6 F. 383-5 F. 385-6 F. 385-6 F. 386-4 F. 497-					
Channel Spacing (M	29	29.65	28	28	29.65	28	
Protection System	Alternated	5+1	7+1	4+1	4+1	7+1	7+1
10 St. 10	Co-channel	$2 \times (5+1)$	$2 \times (7+1)$		-	$2 \times (7+1)$	
RF output power (dBm) (+/-1dB)		32	32	32	32	32	27
System Gain (dB) *		106	106	106	106	105.5	97.5
Wayside		$2 \times N$ where N is the number of RF channels					

Frequency Band (M	(Hz)	4	5	U6	11	
		3600-4200	4400 - 5000	6430-7110	10700-11700	
Modulation Type		64 QAM-MLCM				
ITU-R Series Rec.	No.	F. 635-3 Annex-1	F. 1099-1 Annex-1	F. 384-6	F.387-7	
Channel Spacing (M	IHz)	40	40	40	40	
Protection System	Alternated	6+1	6+1	7+1	7+1	
	Co-channel	$2 \times (6+1)$	$2 \times (6+1)$	$2 \times (7+1)$	$2 \times (7+1)$	
RF output power (d	RF output power (dBm) (+/-1dB)		32	32	29	
System Gain (dB) *		108.5	^{sity} 108.5	Sri 108.5	104.5	
Wayside	10 ¹ - 1	2×N wh	ere N is the r	umber of RI	F channels	

-		
	Interface	 SDH: 155.52 Mb/s Electrical, 155.52 Mb/s Optical (Optional) PDH: 139.264 Mb/s (Optional)
1 1 1 1	Service Channel	• SOH: 64 kb/s \times N (N: Number of RF channels) • RECOH: 64 kb/s \times 2 (Optional)
1	· 1722 · ·······························	• $\Lambda FCOH: 04 \text{ kb/s} \times 2 \text{ (Optional)}$
0	SDH management network	 Local management interface: V24
1	facilities	 Network management interface: X.25/LAN
101	Primary input voltage	$\bullet-19V$ to $-36V$ (for $-24V$ input) or $-36V$ to $-72V$ (for $-48V$ input)
	Power consumption	• 370 Watts (1+1, STM-1 Electrical interface)
	Mechanical dimensions (mm)	+ 600 (W) \times 300 (D) \times 2200 (H) $$ (7+1 Alternated operation system)
101	Environmental conditions	• Temperature (°C): 0 to +45, Humidity (%): 10 to 95

*: This is a typical figure, excluding losses in the Branching Network Unit.

General

Access networks are important building blocks used to close the gap between the classical transport (backbone) networks and the end user. The Bosch Access Network is the optimum solution for this purpose as it supports all physical media (fiber, copper, and radio) in one single system and is monitored and configured via one common network management system. Thus, the customer can select any suitable solution (or mixtures thereof) to optimize his specific needs.

As an integral part of the Bosch Access Network, the DMS (Digital Multipoint System) forms the broadband wireless part of the network. This system solution is of special importance, if a quick deployment is required and the installation of a wired network is not possible or too expensive. Consequently, no compromise in quality can be accepted for the wireless solution.

Access Network (all technologies)

2

DMS - a highly flexible system concept

Main features:

- Point-to-Multipoint system concept
- Single and multiple cell configurations
- Flexible sectorization topologies, overlapping sectors
- Seamless integration into the Bosch Access Network
- Open and standardized interfaces
- Full network management control (OPEN NSÜ)

- Efficient bandwidth utilization
- Dynamic assignment of traffic capacity for voice and data
- High system capacity in cellular environment
- Configurable for business and residential access
- Wide range of RF frequencies
- Fixed network quality and availability
- Advanced adaptive modem technology

- Integrated RF and microwave radio technology
- Software-controlled system functions
- Quick and easy installation and setup
- Planning tools for optimum coverage
- Online interference manageinent (OIM) for further capacity optimization

System block diagram .

DMS applications and configurations

Typical applications	System configuration	Customer Services and
	Network Interfaces	Interfaces
	Network units	
RTTB/C	FDMA/FBA or DBA	Multiple POTS
(Radio to the building/curb)	STM-1/4, 10 BaseT	Multiple ISDN (U ₂ , S ₀)
Residential access	V5.1, V5.2	Dial-in Internet access (ISDN)
	RNU 8	High speeed Internet access
	RNU 30	
RTTB	FDMA/FBA or DBA	Multiple POTS
(Radio to the building)	STM-1/4, 100 BaseT	Multiple ISDN (U ₂ , S ₀)
Small business access	V5.1, V5.2	High speeed Internet access
	RNU 8	10 BaseT LAN connectivity
	RNU 30	
RTTO	FDMA/FBA or DBA	Multiple POTS
Radio to the office)	STM-1/4, 100 BaseT	Multiple ISDN (U _a , S _a)
Small business access	V5.1, V5.2	High speeed Internet access
	RNU 8	10 BaseT LAN connectivity
	RNU 30	V.35/X.21 router connections
	RNU 2M	E1/fractional E1 PABX connections
RTTO	FDMA/FBA	10 BaseT LAN connectivity
(Radio to the office)	STM-1/4, 100 BaseT	V.35/X.21 router connections
Large business access	RNU 2M	E1, fractional E1 PABX connections
	RNU nx2M www.lib.mrt.ac.lk	multiple E1 (up to 8)
Leased lines	FDMA/FBA	nx64 kBit/s
	STM-1/4	V.35, X.21
	RNU 2M	E1, fractional E1
	RNU nx 2M	multiple E1 (up to 8)
Microcell networking	FDMA/FBA	E1, fractional E1
(GSM, DECT, UMTS)	STM-1/4	multiple E1 (up to 8)
	RNU 2M	
	RNU nx2M	

Example of a radio cell with overlapping sectors (15°, 45°, $2 \times 90^{\circ}$)

DMS system capacity

Switched services mode

	FBA			DBA		
	mode			mode		
Frequency range [GHz]	3.5	10.5	24/26/28	3.5	10.5	24/26
RF bandwidth [MHz]	14	30 .	28	14	30	28
Sectorization [°]	60	45	45	60	45	45
Number of terminals with 4 lines/CPE	282	832	776	534	1760	1640
Total number of lines	1128	3328	3104	2136	7040	6560
Trunk capacity [Mbit/s]	STM-1	2xSTM-1	2xSTM-1	STM-1	2xSTM-1	2xSTM-1
Number of terminals with 30 lines/CPE	72	216	200	138	432	408
Total number of lines	2160	6480	6000	4140	12960	12240
Trunk capacity [Mbit/s]	2xSTM-1	STM-4	STM-4	STM-1	STM-4	STM-4

Boundary conditions for capacity calculation: typical cellular coverage (with interference)

BER < 10-7

for DBA: blocking: < 0.01% traffic: 0.2 Erl/subscriber

Leased line mode

Frequency range [GHz]	Chiversity of Moratuwa, Sri Lanka. Electronic Theses 3.50issertations	10.5	24/26
RF bandwidth [MHz]	www.lib.mrt.ac.lk ₁₄	30	28
Sectorization [°]	60	45	45
Number of E1 per sector	12	27	25
Number of E1 per cell (6/8 sectors)	72	216	201
Trunk capacity [Mbit/s]	2×STM-1	STM-4	STM-4
Total capacity of all channels	880 Mbit/s	2.6 Gbit/s	7.4 Gbit/s
in the frequency band [Mbit/s] (duplex)			at 26 GHz

Boundary conditions for capacity calculation: typical cellular coverage (with interference)

BER < 10-7

mix of available modulation schemes

Internet traffic

Frequency range [GHz]	3.5	10.5	24/26
RF bandwidth [MHz]	14	30	28
Sectorization [°]	60	45	45
Number of active Internet users per sector	900	3240	3000
Number of active Internet users per cell	5400	25920	24000

Boundary conditions: Peak rate: 2 Mbit/s, duty cycle: 3%, symmetric traffic

Remark: all values are typical

Technical characteristics

	0.4. 0.0	10.15 10.05	
Frequency band [GHz]	3.4 - 3.6	10.15 - 10.65	24.5 - 26.5
Multiple access scheme	FDMA	FDMA	FDMA
Air interface protocol	FBA and DBA	FBA and DBA	FBA and DBA
Modulation schemes	QPSK	QPSK	QPSK
(software-configurable)	8-TCM	8-TCM	8-TCM
	16-TCM	16-TCM	16-TCM
Channel coding	Convolutional	Convolutional	Convolutional
(software-configurable)	Trellis Trellis	Trellis	
	Reed solomon	Reed solomon	Reed solomon
Demodulation	Coherent	Coherent	Coherent
	Viterbi decoder	Viterbi decoder	Viterbi decoder
Channel bandwidth [MHz]	14 30	28	
Channel allocation	dupiex	duplex .	duplex
Compliance with standards	ETSI DEN/TM	ETSI DEN/TM	ETSI DEN/TM
	04040,	04040.	04040,
	CEPT REC T/R	CEPT REC T/R	CEPT REC T/R
	14-03 E	12-05 E	13-02 E
Base station	E University o	other frequency bands upon request	
Base station	University o	other frequency bands upon request	245 - 265
Base station Frequency band [GHz]	3.4 - 3.6 University of 3.4 - 3.6	Moratuwa, Sri Lanka. 10.15 – 10.65	24.5 - 26.5
Base station Frequency band [GHz] Architecture	3.4 - 3.6 Modular, scaleable, fr	other frequency bands upon request Montuwa, Sri Lanka, 10.15 – 10.65 equency-independent indoor units, outdoor units	24.5 - 26.5
Base station Frequency band [GHz] Architecture	3.4 - 3.6 Modular, scaleable, fr frequency-dependent	Montuwa, Sri Lanka. 10.15 – 10.65 equency-independent indoor units, outdoor units 15° 45° 90°	24.5 - 26.5
Base station Frequency band [GHz] Architecture Antenna sectorization	University of 3.4 - 3.6 Modular, scaleable, from frequency-dependent 60° (30°) 1 - 6 (12)	other frequency bands upon request Montuwa, Sri Lanka, 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24)	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) ow sidelobes, low cross-polarization	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable	Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) ow sidelobes, low cross-polarization	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1 STM-4 34 Mi	other frequency bands upon request Morntuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization hit/s 2 Mbit/s 10/100 Base [24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces	University of 3.4 - 3.6 Modular, scaleable, fri- frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, I Single coaxial cable STM-1, STM-4, 34 MI CAS, V51, V5.2, VBE	other frequency bands upon request Moratuwa, Sri Lanka, 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols	University of 3.4 - 3.6 Modular, scaleable, fro- frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5	other frequency bands upon request Moratuwa, Sri Lanka, 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base F 5, IP	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols	University of 3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T 5, IP	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T 5, IP	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5	Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base Г 5, IP	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24)
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz]	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, I Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5	Image: constraint of the second se	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz] Architecture	University of 3.4 - 3.6 Modular, scaleable, fro- frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, I Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5 3.4 - 3.6 Modular, scaleable, fro-	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T 5, IP 10.15 – 10.65 equency-independent indoor units	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz] Architecture	University of 3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, I Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5 3.4 - 3.6 Modular, scaleable, fr frequency-dependent	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T 5, IP 10.15 – 10.65 equency-independent indoor units, outdoor units	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz] Architecture	University of 3.4 - 3.6 Modular, scaleable, from frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5 3.4 - 3.6 Modular, scaleable, from frequency-dependent Single coaxial cable	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T 5, IP 10.15 – 10.65 equency-independent indoor units, outdoor units	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz] Architecture Interconnection indoor/outdoor Antennas	3.4 - 3.6 University of a scale able, from frequency-dependent for frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, l Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5 CAS, V5.1, V5.2, VB5 3.4 - 3.6 Modular, scale able, from frequency-dependent Single coaxial cable Single coaxial cable	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) low sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base T 5, IP 10.15 – 10.65 equency-independent indoor units, outdoor units Planar bich cain	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5 Planar high gain
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz] Architecture Interconnection indoor/outdoor Antennas	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, I Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5 3.4 - 3.6 Modular, scaleable, fr frequency-dependent Single coaxial cable Planar, high gain, low sidelobes	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units, 10.5 °, 45°, 90° 1 – 8 (24) ow sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base Г 5, IP 10.15 – 10.65 equency-independent indoor units, outdoor units Planar, high gain, Jow sidelobes	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5 Planar, high gain, low sidelobes
Base station Frequency band [GHz] Architecture Antenna sectorization Number of sectors per cell Antenna type Interconnection indoor/outdoor Network interfaces Network protocols User terminal Frequency band [GHz] Architecture Interconnection indoor/outdoor Antennas	3.4 - 3.6 Modular, scaleable, fr frequency-dependent 60° (30°) 1 - 6 (12) Planar, sector beam, I Single coaxial cable STM-1, STM-4, 34 MI CAS, V5.1, V5.2, VB5 3.4 - 3.6 Modular, scaleable, fr frequency-dependent Single coaxial cable Planar, high gain, low sidelobes, low cross-polarization	other frequency bands upon request Montuwa, Sri Lanka 10.15 – 10.65 equency-independent indoor units, outdoor units 15°, 45°, 90° 1 – 8 (24) ow sidelobes, low cross-polarization bit/s, 2 Mbit/s, 10/100 Base Γ 5, IP 10.15 – 10.65 equency-independent indoor units, outdoor units Planar, high gain, low sidelobes, low sidelobes,	24.5 - 26.5 15°, 45°, 90° 1 - 8 (24) 24.5 - 26.5 Planar, high gain, low sidelobes, low cross-coloriset

User interfaces (depending on network unit) nxPOTS, nxISDN (Uo, So), V.35/X.21, V.11, nx64 kbit/s, 10BaseT, E1, fractional E1, nxE1 (n up to 8), Local PC element manager, remote login

30 cm parabolic 60 cm parabolic

10.65 24/26 0 km 3 - 5 km 0 km 3 - 5 km 0 km 3 - 5 km
0 km 3 - 5 km 0 km 3 - 5 km 0 km 3 - 5 km km 1 - 3 km (') range limited by interference : 3.1 : 4.1 onfiguration onfiguration 35 GHz: 220 x 280 x 20
2) km 3 – 5 km km 1 – 3 km (*) range limited by interference 3.1 4.1 priguration priguration 3.5 GHz: 220 × 280 × 20
2 km 3 – 5 km km 1 – 3 km (*) range limited by interference i 3.1 i 4.1 priguration priguration 3.5 GHz: 220 × 280 × 20
2 km 3 – 5 km km 1 – 3 km (*) range limited by interference 3.1 4.1 2012280 × 20
3 – 5 km km 1 – 3 km (*) range limited by interference 3.1 (4.1 parfiguration parfiguration 3.5 GHz: 220×280×20
km 1 – 3 km (*) range limited by interference 3.1 : 4.1 parfiguration parfiguration 3.5 GHz: 220 x 280 x 20
km 1 – 3 km (*) range limited by interference 3.1 4.1 priguration priguration 3.5 GHz: 220×280×20
km 1 – 3 km (*) range limited by interference 3.1 4.1 phiguration 20 × 280 × 20
km 1 – 3 km (*) range limited by interference 3.1 : 4.1 phiguration 3.5 GHz: 220×280×20
(*) range limited by interference 3.1 4.1 2nfiguration 20 × 280 × 20
(*) range limited by interference 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
(*) range limited by interference 3.1. 4.1. 2nfiguration 2.5 GHz: 220×280×20
(*) range limited by interference 5 3.1 5 4.1 phiguration phiguration 3 5 GHz: 220 × 280 × 20
3.1 3.1 anfiguration anfiguration 3.5 GHz: 220×280×20
3.1 4.1 priguration priguration 3.5 GHz: 220×280×20
a 4.1 anfiguration anfiguration 3.5 GHz: 220×280×20
onfiguration
onliguration onfiguration 3.5 GHz: 220+280+20
3.5 GHz: 220×280×70
10 GHz: 275×460×60
26 GHz: 273 x 400 x 00
RNU 30 · 435×305×249
2NIL8: 268×305×249
RNU2M: 19" rack mount 1 HU
RNU ax 2M: 19" rack mount 7 Hill
3.5 GHz: 280x420x70
10 GHz: 275x460x110
26 GHz: 212 x 389 x 94
19" rack mounting
acc. to system capacity
082-1, EN 55022, DIN VDE 0878, Part 1/3
RNU RNU 3.5 (10 C 26 C

Installation and alignment kit

Planning tools for business and cell/link planning upon request

Alignment tool

Planning tools

11

<u>APPENDIX – C:</u>

Þ

SPECIFICATION SHEETS FOR OPTICAL

www.lib.mrt.ac.lk

FIBERS AND CABLES

YAHOO! search

« back to results for "G.655 Fiber Specifications"

Below is a cache of http://www.corningcablesystems.com/web/library/AENOTES.NSF/ \$ALL/PGSF01/\$FILE/PGSF01.pdf. It's a snapshot of the page taken as our search engine partner crawled the web. We've highlighted the words. g 655 fiber specifications The website itself may have changed. You can check the current page (without highlighting).

Yahoo! is not affiliated with the authors of this page or responsible for its content.

Page 1

CORNING CABLE SYSTEMS GENERIC SPECIFICATION FOR SINGLE-MODE OPTICAL FIBER IN LOOSE TUBE AND RIBBON CABLES

April 2003

Revision 8

Corning Cable Systems reserves the right to update this specification without prior notification. Not all **fiber** types listed below available in every cable design offered. Please see relevant Generic Cable Specification for the available **fiber** types.

l	General	Fiber	Specifications	
		22	www.lib.mrt.ac.lk	

- 1.1 All fibers in the cable must be usable and meet required **specifications**.
- 1.2 Each optical fiber shall be sufficiently free of surface imperfections and inclusions to meet the optical, mechanical, and environmental requirements of this specification.
- 1.3 Each optical **fiber** shall consist of a germania-doped silica core surrounded by a concentric glass cladding. The **fiber** shall be a matched clad design.
- 1.4 Each optical **fiber** shall be proof tested by the **fiber** manufacturer at a minimum of 100 kpst (0.7 GN/m ⁻⁻⁻).
- 1.5 The **fiber** shall be coated with a dual layer acrylate protective coating. The coating shall be in physical contact with the cladding surface.
- 1.6 The attenuation specification shall be a maximum value for each cabled fiber at $23 \cdot 5 = C$ on the original shipping reel.

http://216.109.117.135/search/cache?p=G.655+Fiber+Specifications&ei=UTF-8&.../PGSF01.pd 2/12/04

Single-mode (Dispersion Un-shifted)

The single-mode fiber shall meet EIA/TIA-492CAAA. "Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers." and ITU recommendation G.652, Characteristics of a single-mode optical fibre cable.

Geomet	ry	•		
2.1	Cladding Diameter		(m)	125,0.0,7
2.2	Core-to-Cladding Concentricity		(m)	= 0.5
2.3 Clad	ding Non-Circularity			$\simeq 1.0^{-0}$ o
	Mode Field Diameter		(III)	
2.4		1310 nm		9204
		1550 nm		10,4-0,8
2.5	Coating Diameter		(III)	245 5
2.0	Colored Fiber Nominal Diameter		(m)	253 - 259
2.7	Fiber Curl radius of curvature		$(m) \ge 4 \ 0 \ m$	

PGSF01

Page 2

Cables April, 2003, Revision 8 Page 2 of 4

Corning Cable Systems Generic Specification for Single-Mode Optical Fiber in Loose Tube and Ribbon Electronic Theses & Dissertations www.lib.mrt.ac.lk

Optical				
	Cabled Fiber Attenuation		(dB/km)	= 0.4
2,8		1310 nm		
		1550 nm		= 0.3
	Point discontinuity		(dB)	= 0, 1
2.9		1310 nm		
		1550 nm		= 0, 1
	Macrobend Attenuation		(dB)	
		Turns Mandrel O	D	
210		l	32-2 mm	< 0,50 at 15:
$\mathbb{Z}_{+} \mid O$		100	50.2 mm	< 0.05 at 13
		100	50.2 mm	< 0,10 at 15;
		100	60-2 mm	0.05 at 15:
2.11 Cat	ble Cutoff Wavelength (? _{cet})	(nm)	- 1260
2.12 Zer	o Dispersion Wavelength (?o)		(nm) 1302	= ?c

http://216.109.117.135/search/cache?p=G.655+Fiber+Specifications&ei=UTF-8&.../PGSF01.pd _2/12/04

2

2.13 Zero Dispersion Slope (So) (ps/(nm	$\operatorname{km})) = 0.$	092
(ps/(nm k	sm))	= 3.5
2.14 Total Dispersion 1285-1330 nm		
1550 nm		= 18
2.15 Cabled Polarization Mode Dispersion (ps	km)	= 0.5
2.16 IEEE 802.3 GbE - 1300 nm Laser Distance (m)		up to 5000
2.17 Water Peak Attenuation: 1383-3 nm (dB/km)		= 2.1

Single-mode (Dispersion Un-shifted) with Low Water Peak

The single-mode Low Water Peak **fiber** utilized in the optical **fiber** cable shall meet EIA/TIA-492CAAB. "Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers with Low Water Peak." and ITU recommendation G.652.C. Characteristics of a single-mode optical fibre cable. These fibers shall have the same specified performance and geometry values as standard dispersion un-shifted **fiber** (Section 2) except as noted below.

2.1	Mode Field Diameter	(11)	
2.4		1550 nm	10,4-0,5
	Point discontinuity	(dB)	= 0,05
2.9		1310 nm	
		1550 nm	= 0.05
	Macrobend Attenuation	(dB)	
2.10	. Turns i	Mandrel OD	
	[()()	60.2 mm	< 0.05 at 16.
2.14 Tot	al Dispersion	(ps/(nm=km))	22
	1625 n	m	= 22
3.1	Cabled Fiber Attenuation: 1383-3 nm	(dB/km)	$= ()_{+} +$

PGSF01

3

Page 3

Corning Cable Systems Generic Specification for Single-Mode Optical Fiber in Loose Tube and Ribbon Cables April, 2003, Revision 8 Page 3 of 4

4 Non-zero Dispersion-shifted Fiber for Long-haul Telecommunications Applications

http://216.109.117.135/search/cache?p=G.655+Fiber+Specifications&ei=UTF-8&.../PGSF01.pd 2/12/04

meet JTU recommendation G.655, Characteristics of a Non-Zero Dispersion Shifted Single-Mode Optical Fibre Cable. (Ref Table 1/G.655-G.655A)

Geometry

4.1	Cladding Diameter	(m)	125.0.0.7
4.2	Core-to-Cladding Concentricity	(m)	= (),5
4.3 Clad	ding Non-Circularity		= 1,0 °%
4.4	Mode Field Diameter 1550 nm	(m)	92-100
4.5	Effective Area, $A = -\frac{1}{24}$ (Characterized).	(m)	72
4.6	Coating Diameter	(m)	245.5
4.0	Colored Fiber Nominal Diameter	(m) .	253 259
4.8	Fiber Curl radius of curvature	(m) > 4.0 m	

Optical

4.9 Cabled Fiber Attenua	ition 1550 nm	(dB/km)	= 0.3
4.10 Point discontinuity 1550 n	m	(dB)	= 0,1
. Macrobend Attenuation	ш	(dB)	
	Turns Mandrel	OD	
4.11	l	32.2 mm	< 0.50 at 15:
	1	32.2 mm	< 0.50 at 16.
	100	60.2 mm	< 0.05 at 15;
	į 00	60.2 mm	< 0.05 at 16]
4.12 Cable Cutoff Wavelength	uwa, Sri Lanka. ?	<u>(nm)</u>	< 1480
www.lib.mrt.ac.lk		(ps/(nm=km))	
4.13 Total Dispersion	1530 - 1565 nr	າາ	2.0 to 6.0
	1565 - 1625 m	11	4.5 to 11.2
4.14 Cabled Polarization Mode	Dispersion (ps km)	= () 5

http://216.109.117.135/search/cache?p=G.655+Fiber+Specifications&ei=UTF-8&.../PGSF01.pd=2/12/04

at 15: at 160 at 15: at 160

Corning Cable Systems Generic Specification for Single-Mode Optical Fiber in Loose Tube and Ribbon Cables April, 2003, Revision 8 Page 4 of 4

5 Non-zero Dispersion-shifted Fiber for Metropolitan Telecommunications Applications

The non-zero dispersion-shifted single-mode fiber utilized in the optical fiber cable shall meet ITU recommendation G.655. Characteristics of a Non-Zero Dispersion Shifted Single-Mode Optical Fibre Cable. (Ref Table 2, G.655-G.055B)

Geometry

5.1	Cladding Drameter	(m)	125.0 1.0
52	Core-to-Cladding Concentricity	(m)	= 0.5
5.3 Clad	ding Non-Circularity		$= 1.0^{+0.5}$
5.4	Mode Field Diameter 1550 nm	(m)	7,60 to 8,60
5.5	Coating Diameter	(m)	245 5
5.6	Colored Fiber Nominal Diameter	(m)	253 - 259
5.7	Fiber Curl radius of curvature	(m) > 4(0)m	
Optical			

4.9	Cabled Fiber Attenuation	1550 nm	(dB/km)	= 0,3
4.10 P	Point discontinuity 1550 pm		(dB)	= 0.1
	Macrobend Attenuation		(dB)	
		Turns Mandrel	OD	
1.1.1		1	32.2 mm ⁺	< 0,50 ;
- 4 , f l		1	32.2 mm	< 0.50 ;
		00	60.2 mm	< 0.10 :
		100	60.2 mm	< 0.10 ;
4.12 0	Table Cutoff Wavelength (?	(נונונו)	< 1260
4.13 T	fotal Dispersion - 1530 to 1605	5 nm (ps/(nm	km)) -	0.0 to - 1.0
4.14 C	Cabled Polarization Mode Disp	ersion (ps km)	= 0.5

http://216.109.117.135/search/cache?p=G.655+Fiber+Specifications&ei=UTF-8&.../PGSF01.pd 2/12/04

PowerForm™ DCM[®] Modules for +NZ-DSF Fibers

MAVANEX2

C-Band, Chromatic Dispersion Compensation

Based on negative dispersion compensation fiber technology, these field-proven DCM* Modules for +NZ-DSF fibers efficiently counteract the effects of chromatic dispersion across the C-Band wavelengths and facilitate dispersion compensation for a variety of -NZ-DSF fiber types. Standard modules are available with 1545 nm center wavelength, and dispersion values corresponding to typical -NZ DSF fiber lengths. Other center wavelength and dispersion values values are available upon recuest.

FEATURES

- Provides Optimized Dispersion
 Compensation Across the 1525 nm
- to 1565 nm Passband on Non-Zero
- **Dispersion-Shifted Fibers**
- Low Polarization Mode Dispersion
- Enhances DWDM System
- Ferformance by Reducing
- Accumulated Residual Dispersion
- · Environmentally Robust and
- Fully Passive

APPLICATIONS

Systems using LEAF* Fiber

or Any Positive Non-Zero Dispersion-Shifted Fiber

Wavelength Range

DWDM Systems

• Multi-Channel High-Bit-Rate

 Long-Haul and Ultra-Long-Haul Communications Systems Operating in the 1525 nm to 1565 nm

 Variety of Connector Types and Pigtail Lengths Available

DEFINITION OF DISPERSION SLOPE COMPENSATION

To efficiently manage the dispersion and the dispersion slope of a transmission fiber, the dispersion compensating fiber should satisfy the following equation:

S MZOSE: Dispersion slope of NZ-DCF fiber @ 1545 nm.

D 1545 NZDSF : Dispersion of NZ-DOF liber @ 1545 nm.

LEAF^a fiber Typical Value of K ¹⁵⁴⁶/_{M2056} equals 45 nm.

Longer Reach Metropolitan Networks

LEAF² and DCM⁴ are registered trademarks. of Corning Incorporated, Corning, NY 14831

D001DC02/04::

KEY OPTICAL PARAMETERS FOR COMMON MODULE LENGTHS

Module Description	Approximate Span Length (km)	Nominal Chromatic Dispersion (ps/nm @ 1545 nm)	@15 Min	Mea SC nm Max	sined the Girs Min	persion" (45 nm Max	osv(rim) @15 Min	65 mm Mark
60% LC-40-153	40 km LEAF ^a Fiber	- 153	140	7	'	-145	-217	- 177
NZ-DSF-40-168	10 km NZ-DSF	-168	-154	+129	-176	-160	-237	- ' 90
60% LC-80-306	80 km LEAF* Fiber	-306	-280	-234	-321	-291	-432	: -35 6
NZ-DSF-80-336	80 km NZ-DSF	-336	-08	-250	-353	-,19	-4/5	- 390
60% LC-120-459	120 km LEAF* Fiber	-459	-+20	-350	-482	-436	-648	-533
NZ-DSF-126-504	120 km NZ-DSF	-5U4	-461	-385	-529	-479	-211	-536

1. Al com temperature.

SPECTRAL CHARACTERISTICS

Madule Description	Kappa' K 1545 OCAJ (mm)	* Insertion Lose* (dB)	Polarization Mode Dispersion' (ps)
60% LC-40-152	< 100	9	0.3
NZ-DSF-40-168	< 100	5.1	0.3
60% LC-80-304	< 100	ఓ పి.2	Q4
NZ-DSF-80-336	< 100	× 6.5	0.4
80% LC-120-456	< 100 University	of Moratuwa, Sri I⊴∂16a.	0.5
NZ-DSF-120-504	Electronic www.lib.r	Theses & Dissettal, 8.0 nrt ac lk	0.5

1. Kappa is defined as D_{DCM}/S_{DCM}, where Direters to dispersion and Silieters to dispersion slope of the module.

2. This is the maximum optical loss incurred, including one pair of connectors, over wavelength range and temperature range.

3. As measured, average differential group delay over 1510–1565 nm wavelength range using the Jones Matrix method, in 1 nm increments at room temperature.

D001DC02/04

NONLINEAR PROPERTIES

Nonlinear Coefficient (n ₂ /A ₂₁)	1.75 x 10 11 W 1 (Typical)
Effective Area (A _{nt}) @ 1550 nm	15 µm (Typical)

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature Range	-5°C to 55°C
Environmental/Reliability Testing	Telcordia GR-2854 Qualified
Storage Temperature Rance	40°C to 85°C

PACKAGING OPTIONS

Package:Ţype	Nominal, Olmensiohs (mo)* _C	Moximum Dispersion ompensation (gs/nm) @ 1545 mm	Mpdule Standard Connector	Interrace Standar Diameter	s Pigteil - Length
0	267 × 267 × 40	1350	SC/UPC	0.0 mm	1.5 m
 Other packaging Other pigtail and 	Ibpes evalable upon returst I connector options available				

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

D Package

ORDERING INFORMATION

When ordering, please specify the following: Module description Compensated length (km) and/or requisite compensation (ps/nm) Package type Connector type/pigtail length

40919 Encyclopedia Circle, Fremont, CA 94538 USA • Telephone 510-897-4186 • Fax 510-897-4180

772004 Avanez Corporation, Actual data well view according to the ipentific product another pendic spate and

D001DC02/04

					·····	
Ti	itle:	0.469 " O	PGW		Drawn By:	
ECCAS D	esign No:	F-469N-2	97T-024		Approved B	y:
SkyLite™	ił RED II BLAC check) (his is a.control CK it is an unco for latest issue	led document htrolled copy		Issue Date:	،12/7
Re	ev. No.	0	Scale 1"	= 1/4"	Rev. Date:	
Aluminum Clad					Aluminum Ta	рө
		P)		Buffer Tube	S
	Iniversity of M Rectronic These	Ioratuwa, Sri Lani res & Dissertation	ka. s		Aluminum Al Core	loy
SPECIFICATIONS	University of M Rectronic Thes www.lib.mrt.ac	foratuwa, Sri Lani es & Dissertation ilk	ka. 5		Aluminum Al Core	loy
SPECIFICATIONS	Jniversity of M Rectronic Thes oww.lib.mrt.ac	English	ka. s	Metr	Aluminum Al Core ic	loy
SPECIFICATIONS Cable Diameter:	University of M Electronic Thes www.lib.mrt.ac	English 0.469 in	ka. 5	Metr 11.9	Aluminum Al Core ic i mm	
SPECIFICATIONS Cable Diameter: Core Diameter:	Jniversity of M Rectronic Thes roww.lib.mrt.ac	English 0.469 in 0.297 in	ka. 5	Metr 11.9 7.54	Aluminum Al Core ic <u>i mm</u> mm	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area:	Jniversity of M Rectronic Thes www.lib.mrt.ac	English 0.469 in 0.297 in 0.0468 sc	a in	Metr 11.9 7.54 30.1	Aluminum Al Core ic i mm mm 9 sq mm	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding:	Iniversity of M Rectronic Thes row lib mrt ac	English 0.469 in 0.297 in 0.0468 sc	a. s	Metr 11.9 7.54 30.1	Aluminum Al Core ic i mm mm 9 sq mm	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding: Aluminum Clad Steel Wire No	Diversity of M Rectronic Thes www.lib.mrt.ac	English 0.469 in 0.297 in 0.0468 sc 14/0.083	a in	Metr 11.9 7.54 30.1	Aluminum Al Core ic i mm 9 sq mm .11 mm	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding: Aluminum Clad Steel Wire No Rated Breaking Strength: Rated Eault Current @20000	Dectronic These over lib mrt ac	English 0.469 in 0.297 in 0.0468 sc 14/0.083 13,294 lb	a in in s	Metr 11.9 7.54 30.1 14/2 6,02	Aluminum Al Core ic i mm mm 9 sq mm .11 mm 8 kgf	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding: Aluminum Clad Steel Wire No Rated Breaking Strength: Rated Fault Current @20°C:	Dectronic These reversity of M Dectronic These reversition in the reversition in the reve	English 0.469 in 0.297 in 0.0468 sc 14/0.083 13,294 lb 40(kA) sc 0.284 lb/f	q in in s sec	Metr 11.9 7.54 30.1 14/2 6,02 40 (k	Aluminum Al Core ic i mm 9 sq mm .11 mm 8 kgf (A) sq sec 5 kg/m	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding: Aluminum Clad Steel Wire No Rated Breaking Strength: Rated Fault Current @20°C: Unit Weight: Modulus of Elasticity:	Difference of Market and Mar	English 0.469 in 0.297 in 0.0468 sc 14/0.083 13,294 lb 40(kA) sc 0.284 lb/f 18 34 E+	a in in s sec t	Metr 11.9 7.54 30.1 14/2 6,02 40 (k 0.42 12 80	Aluminum Al Core ic i mm 9 sq mm 9 sq mm .11 mm 8 kgf (A) sq sec 5 kg/m 98 kg/sq mm	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding: Aluminum Clad Steel Wire No Rated Breaking Strength: Rated Fault Current @20°C: Unit Weight: Modulus of Elasticity: Coefficient of Thermal Expansion	Dectronic These reversity of M Rectronic These reversition in the p./Dia.	English 0.469 in 0.297 in 0.0468 sc 14/0.083 13,294 lb 40(kA) sc 0.284 lb/f 18.34 E+4 8 37 E -6	q in in s sec t 5 psi / Deg F	Metr 11.9 7.54 30.1 14/2 6,02 40 (k 0.42 12,8 15 0	Aluminum Al Core ic in mm 9 sq mm .11 mm 8 kgf (A) sq sec 5 kg/m 98 kg/sq mm 6 E -6/Deg C	
SPECIFICATIONS Cable Diameter: Core Diameter: Core Area: Stranding: Aluminum Clad Steel Wire No Rated Breaking Strength: Rated Fault Current @20°C: Unit Weight: Modulus of Elasticity: Coefficient of Thermal Expansion Cross Sectional Area:	Diricersity of M Rectronic These www.lib.mrt.ac	English 0.469 in 0.297 in 0.0468 sc 14/0.083 13,294 lb 40(kA) sc 0.284 lb/f 18.34 E+4 8.37 E -6 0.123 sc	a in in s sec t 5 psi / Deg F	Metr 11.9 7.54 30.1 14/2 6,02 40 (k 0.42 12,89 15.00 79.00	Aluminum Al Core ic in mm 9 sq mm 9 sq mm .11 mm 8 kgf (A) sq sec 5 kg/m 98 kg/sq mm 6 E -6/Deg C 6 sq mm	

2 - 24

2 - 24

٠

.

L

ł

¢;

Charlinet, V. Mar. 1884.1

Fiber Count:

.

1**Re**estion a n_orr • • •

•••

SCHEDULE D (Continued....)

D-2

Ø

£33)

63

0

	Unit	Earthwire	ACSR	ACSR	TACIR
		7/3.25mm	400mm ²	175mm ²	Or Equi.
Conductor Jumper Lug Type Number		A4DD4015T	A3001454T	A3DD4144T	-
Vibration Damper Type Number		-	A4D01241T	A3DD4870T	A3DD4870T
Distance from mouth of Suspension or Tension Clamp to Vibration Damper	m		1.37	0.80	1.37
Distance between subsequent Vibration Dampers	m		1.67	0.98	1.67
Details and Type Number of Compression tools -			100 Tons 	requiered	
Identification Numbers of Compressor Dies to be Supplied -					
Aluminum part - Conductor		-	40.A/F	27.5 A/F	40 A/F
Steel part - Conductor		-	17 A/F	16 A/F	17 A/F
Jumper Terminal - Conductor	University	of Moratuwa, Se	1 L 40 A/F	27.5 A/F	40 A/F
Repair Sleeve - Conductor	www.lib.r	nrt.ac.lk	40 A/F	-	-
Galvanized Steel - Earthwire		19A/F	-	-	-
					Ì

and the second

D 3 - OPGW

....

Description	Unit	
Type of OPGW		SLOTTED CORE
Conforming to standard		IEEE 1138
Construction of OPGW		
 1) Overall Number of tubes: Tube diameter: Tube material: Number of fibre/tube: Length of each fibre per km of OPGW (km): Filling compound: Central strength member: Heat resistant barrier: Material of fibre: 2) Inner layer: Material 	mm km	2 1.9 PBT 6 1.012 HYDROCARRON GEL NONE NOE SILICA

SD-4

0

6

0

(

. . .

••

e ·		ALUMINIUM ALLOY
- Number of vice		
- Diameter of wires		0
- Cross-section	mm ²	30
- Lav ratio		- 30 Ν/Δ
3) Outer layer	}	
- Material:	Ì	ACS
- Number of wires:	1	14
- Diameter of wires:	mm	2.11
- Cross-section:		
- Lay ratio:	mm'	3.5 each
	,	as per IEEE 1138 .
lotal cruss sectional area	mm	79
Naminal weight	mm	11.9
Nominal weight	kg/km	425
Maximum tancila strength for normal execution	KN LN	59.1
DC resistance at 20 degree C	ohm/km	35.5
Modulus of elasticity		V.020 .
- Initial	kg/mm ²	
- Final	kg/mm ²	NOT DEEDIED
Coefficient of linear expansion	/Deg. C	15 X 10 ⁻⁶
Method of creep compensation		Colculated using
· · · · · · · · · · · · · · · · · · ·		installation program
Minimum bending radius;		instantation program
- Short term	mm	240 (STATIC)
- Long term	mm	240 (STATIC)
Strain margin;		
- Nominal	%	No Strain at 60% RBS
- Maximum allowance	%	No Strain at 60% RBS
Maximum allowable temperature and corresponding srill	.anka.	
current; (Q) Electronic Theses & Disserta	tions	
- continuous	Deg. C/kA	85
- for short circuit	Deg. C/kA	180
- for lightning stroke	Deg. C/kA	180
Optical Wave Guides;		1
1) Number of optical fibres in OPGW		12
2) Mode		SINGLE
3) Optimised wave length	nm	1310 ~ 1550
4) Cut off wave length at, measured in 20 m OPCIN + 2m antical fibm CC:		
measured in 2m fibra soction C:	0111 pm	< 1190
5) Maximum attenuation per km at	IIII	< 1260
1 550nm	dB/km	0.23
1,300nm	dB/km	0.23
6) Chromatic Dispersion at		0.30
7em dispersion wave length	nm	12115 + 10
Dispersion slope (So-at o)	$PS/nm^2 km$	c = 0.002
Dispersion D () in the operation		<- 0.092
window from 1.300nm to 1.575nm	PS/nm.km	35-18
7) Nominal zero dispersion wavelength :	nm	1311 5
8) Refractive index:		
Core @ 1310 nm		1 4674
Cladding @ 1310 nm		1.4660
9) Material used in;	1	
Core	{	Silica
Cladding		Silica
Primary coating		Acrylate
Jacket	į	•

۰.

÷

.
- - 22.11.2.1111.1.2.1.111.

 \bigcirc

Coating	1	
10) Optical attenuation corresponding to		
crush test		+ 0.05 dB max
Impact test		+ 0.05 dB max
bend test:		+ 0.05 dB max
sheave test:		
11) Mode field diameter and % deviation	0/0	9.2
12) Mode field non-circularity		10%
13) Outside (clad) diameter	μπ	125+ - 1
14) Tolerance in outside (ciad) diameter	μπ	
16) Cladding concentrativ entri		0.5
17) Screening level/tensile proof test	70	
18) Loose buffer design or Tight buffer	70	
design		Loosa Tuba
19) Temporary change in attenuation at		
20 degree C due to:		
Temperature cycling	dB/km	+ 0.05 dB max
Lightning stroke	dB/km	+ 0.05 dB max
Short circuit current	dB/km	+ 0.05 dB max
20) Splicing loss	dB/splice	+ 0.01 dB max
21) Detail of color coding for fibre	1	EIA 598
klentification	1	
22) Expected life time without		
degradation of characteristics	years	40
23) Maximum allowable short time temperature of fibre	Deg.C for	150 for 1 sec
	sec.	
period of 25 years:		- 0.2C
25) Bit error mto:	dB/km	<= 0.36
26) Ontical cross talks		not determined
Filling compound of OPGW	anka	not determined
Long term effect of protection tube material on optical	ons	none
wave-guide fibre performance:		houe
OPGW weight	ka/km	425
Maximum length of OPGW in a drum	km	6.5
Weight of drum with maximum length of OPGW	ka	3100
	3	
B. FIBER OPTIC APPROCH CABLE		
		ALL DOELECTRIC
Cable type and model number		RODENT RESISTANT
contorning to standard	l	LDC-15KI.0-H
Nominal overall diameter	mm	12.0.1 0.2
Optical wave-guide fibres similar to fibres in OPGW	Vestoo	12.9 + - 0.2 mm
If answer to item 4, above is no, details of fibres are	903110	702
provided	ves/no	
Number of fibres in cable	Joano	12
Strength member materials	kN	GRP
Tensile strength		3.1
Minimum bending radius	mm	170
Short term	mm	170 statisc
Long term		170 static
Uutside jacket		
Material	}	NYLON 12
THICKNESS	mm	1.8
Method utilized to provent water migration	deg. C	100 N/cm @ 23°C
mentod unized to prevent water migration:		SWELLING YARN

.

.

SD- 6

٩

63) 6

• •

• •

e ca

۰

·-

~

, · ,

Operating temperature range	deg. C	- 20 to + 60
temperature in range (item 13, above);		+0.1 dB / km
at 1,550rim	dB/km	+ 0.1 dB / km
at 1,300nm	dB/km	40
Cable life expectancy	years	Not determined
Atmospheric and sunlight degradation after	years	
Flexing over 100 cycle +/- 90 with bending radius of		Not determined
(mm) (yes or no):		Not determined
Torsional strength	degree/m	Not determined
Impact resistance at temperature of	deg.C	Not determined
Co-efficient of expansion per degree C		Duct
Suitable for laying in duct/direct burial/for both	1	1
Length markers on cable in unit length of	m .	по
Rodent attack additive provided	yes/no	Sheath meets
		requirements of
		BALCORE TR-NWT-
		000020

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SD- 7

.

HIGH FIBER COUNT (HFC) OPT-GW DESIGN

DESIGN FEATURES

यानस्वर १ राज

काकादा (मारे

יעק

~ ता की

- **T**È

No.

:://т**и**

=1 🐨

- High fiber count package with reduced diameter and weight (49 to 288 fibers)
- Laser-welded high grade stainless steel tube provides mechanical and thermal protection and hermetic seal for fibers
- Fiber excess length controlled to provide high load and long span capability
- Each optical fiber and tube is uniquely identified for organization at splice locations
- Stranded wires (type & size) selected to optimize mechanical and electrical properties
- · Anti-rotational devices are not required for installation
- 40 year projected life

DESIGN CRITERIA

- Meets or exceeds test criteria specified in IEEE 1138 and other industry standards
- Test data available upon request

FIBER TYPE & ATTENUATION lib mit ac lk

- Available fiber types include standard multimode, single-mode, dispersion shifted and non-zero dispersion shifted fibers
- Typical performance of 0.40/0.30 dB/km @ 1310/1550nm for single-mode fiber
- Tighter attenuation fibers available upon request

NOMENCLATURE

Note: Mechanical and electrical data, cross-sectional and hardware drawings, installation guides, and sag and tension information available upon request

Visit us at www.AFLFiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER.

University of Moratuwa, Sri Lanka.

3

Alcoa Fujikura Ltd. Telecommunications Division

UP TO 144 FIBER OPT-GW

Stainless Steel Tube Wire Strands

OPTICAL UNIT CROSS SECTION Optical Fibers 8 60 Q ۵ 1 9.0 00 i fili @@_@@Ø

9

i. ė 9

75

Gel Filling

Stainless Steel Tube

000,00

O 3

ð 0 13

rā

SPECIFICATIONS

周元

75

17470 \$ 445

5

1

						INPUT FO	R SAG101*	PROGRAM		79. j.	······
llem Number	OPT-GW Size	Fault Current	Total Conductor Area		Overall Dianieler		Weight		RBS		Sag10™ Chart
	(kA) ²		in²	ញារបា²	in	mm 🗉	ibs/ft	kg/m	lbs	kg	Nimber
HFC7205	S1-60/70/630	107	0 2090	134 87	0.630	16.0	0.4612	0.686	22,534	10,221	1-1444
HFC7215	S1-69/69/646	121	0.2204	142.21	0.646	16.4	0.4723	0.703	22,857	10,368	1-420
HFC7225	S1-75/76/669	145	0.2407	155.29	0 669	17.0	0.5144	0.766	25,109	11,389	1-420
HFC9605	S1-60/70/630	107	0 2090	134 87	0.630	16.0	0.4612	0.686	22,534	10,221	1-1444
HFC9615	S1-69/69/646	121	0 2204	142.21	0.646	16.4	0.4723	0.703	22,857	10,368	1-420
HFC9625	S1-75/76/669	145	0 2407	155 29	0 669	17.0	0.5144	0.766	25,109	11,389	1-420
HFC14405	S1-60/60/630	93	0 1966	126.83	0.630	16.0	0.4316	0.642	19,907	9.030	1-420
HFC14415	S1-69/59/646	106	0.2080	134.17	0.646	16.4	0 4428	0.659	20,230	9,176	1-536
HFC14425	S1-75/66/669	129	0.2282	147 25	0.669	17.0	0.4848	0.722	22,482	10,198	1-536

Note: Custom designs available

TYPICAL REEL LENGTHS

ltern Number	NR68.	34.35*	NR72.	34.35*	NR84.34 35*		
	feet	meters	feet	méters	feel	enters in meters	
HFC7205	13,700	4,175	15,900	4,845	15,900	4,845	
HFC7215	13.000	3.960	15.300	4,660	15,900	4.845	
HFC7225	12,100	3.690	14,250	4,340	15,900	4,845	
HFC9605	13,700	4,175	15,900	4.845	15,900	4,845	
HFC9615	13,000	3,960	15,300	4,660	15,900	4.845	
HFC9625	12,100	3.690	14,250	4,340	15,900	4.845	
HFC14405	13,700	4,175	15,900	4,845	15,900	4,845	
HFC14415	13,000	3.960	15,300	4,660	15,900	4.845	
HFC14425	12,100	3,690	14,250	4,340	15,900	4,845	

Longer lengths available upon request. *Reel nomenclatures and specifications are identified on page 11

TRADITIONAL OPT-GW DESIGN

CABLE CROSS SECTION

711

SERT III

TOTAL TI

द्वाराध्याज्ञःः । त से

115.051

WERT.

1 11

....

···/. 🎽

ar thà

<u>- 1</u>

110

ារដ

DESIGN FEATURES

- "Tight Structure" optical unit provides optimal mechanical and thermal fiber protection
- Thick wall aluminum pipe provides maximum protection of fiber units with hermetic seal, excellent crush resistance, and low resistivity
- Stranded wires (type & size) selected to optimize mechanical and electrical properties
- 40 year projected life

DESIGN CRITERIA

- Meets or exceeds test criteria specified in IEEE 1138 and other industry standards
- Test data available upon request

FIBER TYPE AND ATTENUATION

- Available fiber types include standard multimode, single-mode, dispersion shifted and non-zero dispersion shifted fibers
- University of Moratuwa, Se Typical performance of 0.40/0.30 dB/km @
 - Filler Yarn Dissen 1310/1550nm or single-mode fiber
 - Tighter attenuation fibers available upon request

NOMENCLATURE

Outer Diameter (inches /1000) Aluminum Clad Steel Area (mm²) Aluminum Alloy Area (mm²)

5

Note: Mechanical and electrical data, cross-sectional and hardware drawings, installation guides, and sag and tension information available upon request.

Central Member

Central Member Coating

OPTICAL UNIT CROSS SECTION

Alcoa Fujikura Ltd. Telecommunications Division

SINGLE OPTICAL UNIT CONSTRUCTION - UP TO 8 FIBERS

SPECIFICATIONS

त्रज्ञे

ITTE

110

01

120

1.12

'IR

1 146

11° **FR**

"| IE 1.1.4 1 105

'' 1**1 12 1**2

7 **9**7

T 113

6

- to \$ 1.

1.15

· 1241

					٩J	IPUT FOR S	SAGIO'' PR	OGRAM			
ltøm Number:	OPT-GW size (Strand Area/O.D.)	Fault Current (kA)*sec	Total Cond	uctor Area	Overall I	Dlameter	We	ight	R	BS	Sag10** Chart Number
			in ²	mm²	in	mm	lbs/ft	kg/m	lbs	kg:	
GW0800	53mm²/449	33	0.1166	75.24	0.449	11.4	0.2835	0.4228	0.4228	6.859	1-1453
GW0805	16/37mm²/449	38	0.1166	75.24	0.449	11.4	0.2415	0.3594	11,856	5,378	1.536
GW0810	27/27mm²/449	40	0.1166	75.24	0.449	11.4	02131	0.3171	9,679	4,390	1-1439
GW0815	68mm²/448	46	0.1396	90.08	0.488	12.4	0.3512	0.5226	19,158	8,690	1-1423
GW0820	23/45mm²/488	54	0.1396	90.08	0.488	12.4	0.2905	0.4324	14,515	6,584	1-420
GW0825	30/38mm²/488	56	0.1396	90.08	0.488	12.4	0.2703	0.4023	12,967	5,882	1-917
GW0830	86mm²/535	63	0.1677	108.17	0.535	13.6	0.4329	0.6442	22,279	10,106	1-1442
GW0835	32/54mm²/535	77	0 1677	108 17	0.535	13.6	0.3465	0.5157	16.249	7.371	1-536
GW0840	43/43mm²/535	81	0.1677	108.17	0.535	13.6	0.3177	0.4728	14,239	6,459	1-1170
GW0845	111mm²/598	92	0.2069	133.48	0 593	15.2	0.5472	0.8143	26,305	11,932	1-1429
GW0850	32/80mm²/598	110	0.2069	133 48	0.598	15.2	0 4621	0.6876	21,025	9,537	1-1461
GW0855	48/64mm²/598	118	0.2069	133.48	0 598	15.2	0 4 195	0.6243	18,385	8,339	1-1460

Note: Customized designs available

TYPICAL REEL LENGTHS

NR60.28.30*		25.30*	NR68.34	.35*	NR72:34,367			
	feel	melera	feet	meters	feet	meters		
GW0800	21,378	6.516	23,000	7.010	23,000	7,010		
GW0805	21,378	6,516	23.000	7,010	23,000	7,010		
GW0810	21,378	6.516	23.000	7,010	23.000	7,010		
GW0815	18,069	5,507	23,000	7,010	23,000	7,010		
GW0820	18,069	5,507	23.000	7,010	23,000	7,010		
GW()825	18,069	5.507	23,000	7,010	23.000	7,010		
GW0830	15.021	4,578	23.000	7.010	23,000	7,010		
GW0835	15,021	4,578	23,000	7,010	23,000	7,010		
GW0840	15,021	4,578	23,000	7,010	23,000	7,010		
GW0845	12,025	3,665	18,649	5,684	19,607	5,976		
GW0850	12.025	3,665	18,649	5.684	19,607	5,976		
GW0855	12.025	3,665	18,649	5,684	19,607	5,976		

Longer lengths available upon request

Reel nomenclatures and specifications are identified on page 11

Visit us at www.AFt.Fiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER.

ALCOA

SINGLE OPTICAL UNIT CONSTRUCTION - UP TO 24 FIBERS

Optical Unit -

Aluminum Pipe Wire Strands

SPECIFICATIONS

12 fiber unit shown

					11	PUT FOR	SAG10™ F	ROGRAM			
llem Number	OPT-GW Size (Strand Area/O.D.)	Fault Current (kA)* sec	lotal Cont	ductor Area	Overall	Diameter	We	ight	1	BS	Sag10™ Chart Number
			in?	mm²	ín	mm	lbs/ft	kg/m	- Ipa	kg	1 1
GW1200	57mm²/465	35	0 1210	78.08	0.465	11.8	0.3036	0.4517	16,214	7.355	1-1421
GW 1205	17/40mm²/465	40	0.1210	78.08	0.465	11.8	0.2576	0.3833	12,692	5,757	1-420
GW1210	23/34mm²/465	42	0 1210	78.08	0.465	11.8	0.2422	0.3604	11,518	5.225	1.1440
GW1215	29/29mm²/465	43	0 1210	10078 08 M	0.465	Lan11.8	0 2269	0.3376	10,344	4,692	1-1439
GW1220	72mm²/504	48	0.1445	93.21	0.504	. 12.8	0.3718	0.5534	20,329	9,221	1.1442
GW 1225	16/56mm²/504	54	0.1445	93 21	0.504	12.8	0.3288	0.4893	17,031	7,725	1.1461
GW1230	24/48mm ² /504	57	0.1445	93.21	0.504	12.8	0.3072	0.4572	15,381	6,977	1-420
GW1235	32/40mm²/504	59	0.1445	93.21	0.504	12.8	0 2858	0 4252	13,732	6,229	1-917
GW1240	91mm²/551	66	0.1729	111.56	0.551	14.0	0.4547	0.6767	23,421	10,624	1,-1442
GW1245	23/68mm²/551	77	0.1729	111.56	0.551	14.0	0.3939	0.5863	19,181	8,701	1-1461
GW1250	34/57mm²/551	81	0 1729	111.56	0.551	14.0	0.3636	0.5412	17.061	7,739	1.420
GW 1255	45/45mm²/551	86	0 1729	111.56	0.551	14.0	0.3333	0.4960	14,941	6.777	1-1170

Note: Custom designs available

TYPICAL REEL LENGTHS

ltern Number	NR60	0.28.30*	NRG	8.34.35*	NR72.34.35*		
en en en de service de la company de la c	feel	melers	féet	meters	fønt.	melers	
GW1200	19,953	6.081	23,000	7.010	23,000	7,010	
GW1205	19,953	6,081	23.000	7.010	23,000	7,010	
GW1210	19,953	6.081	23,000	7.010	23.000	7,010	
GW1215	19,953	6,081	23.000	7.010	23,000	7,010	
GW1220	16,957	5,168	23,000	7,010	23,000	7.010	
GW1225	16,957	5,168	23,000	7.010	23.000	7,010	
GW1230	16,957	5,168	- 23.000	7,010	23,000	7.010	
GW1235	16,957	5,168	23,000	7,010	23,000	7,010	
GW 1240	14,175	4,320	21,983	6,700	23,000	7,010	
GW1245	14,175	4,320	21,983	5,700	23,000	7,010	
GW1250	14,175	4.320	21,983	6.700	23,000	7,010	
GW1255	14,175	4,320	21,983	5,700	23,000	7,010	

Longer lengths available upon request,

*Reel nomenclatures and specifications are identified on page 11.

Visit us at www.AFLFiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER.

ないので、「ないない」

1. 1. L. V.

Alcoa Fujikura Ltd. Telecommunications Division

MULTIPLE OPTICAL UNIT CONSTRUCTION - UP TO 24 FIBERS

SPECIFICATIONS

171

11

1774

113

111

' T

. 11.13

1.1 1

בערי

8

•						11	NPUT FOR	SAG10™ P	ROGRAM			
	llem Number	OPT-GW Size (Strand Ares/O.D.)	Fault Current	Total Condu	uctor Area	Överall	Diameter	Wei	ght	RI	3 S	Sag10™ Chart
DHT			(101) 360	in²	mm²	रेग 👘	mm	lbs/ft	kg/m	lbs	kg	
M	GW2400	64mm²/528	60	0.1531	98 80	0.528	13.4	0.3623	0 5391	18,433	8,361	1-1450
	GW2405	25/39mm²/528	69	0 1531	98.80	0.528	13.4	0.2966	0.4413	13,400	6.078	1.1170
10	GW2410	29/34mm²/528	70	0 1531	98.80	0.528	13,4	0.2833	0.4218	12,393	5.621	1-1438
	GW2415	74nim²/551	71	0.1688	108.88	0.551	14.0	0.4078	0.6068	21,174	9,605	1-1453
	GW2420	25/49rnm²/551	81	0.1688 🕕	108 88	0.551	14 0	0.3419	0.5087	16,123	7,313	1-1440
1	GW2425	37/37mm²/551	85	0.1688	108 88	0.551	14.0	0.3089	0.4597	13,598	6,168	1-1438
	GW2430	83mm²/575	82	0.1829	118.01	0.575	14.6 .	0.4491	0.6682	23,659	10,732	1-1453
	GW2435	30/53mm²/575	95	0.1829	118.01	0.575	14.6	0.3682	0.5480	17,468	7.923	1.1440
111	GW2440	38/45mm²/575	98	0.1829	118.01	0.575	14.6	0.3479	0.5179	15,920	7,221	1-1455
	GW2445	96mm²/606	99	0.2034	131.20	0 606	15.4	0.5085	0.7569	25,904	11,750	1-1421
	GW2450	29/67mm²/606	114	0 2034	131.20	0.606	15.4	0.4313	0.6419	20,307	9,211	1-420
	GW2455	48/48mm²/606	122	0.2034	131 20	0.606	15.4	0.3797	0.5652	16,576	7,519	1-1439

Note: Custom designs available

TYPICAL REEL LENGTHS

Item Number		28.30*1		.34.35	NR72.34.35*		
	feet	meters	feet	meters	feet	meters	
GW2400	15.473	4,716	23,000	7,010	23.000	7,010	
GW2405	15,473	4,716	23,000	7.010	23,000	7,010	
GW2410	15,473	4,716	23,000	7,010	23,000	7,010	
GW2415	14,175	4,320	21,983	5,700	23,000	7,010	
GW2420	14,175	4,320	21,983	6.700	23,000	7,010	
GW2425	14,175	4,320	21,983	6,700	23,000	7,010	
GW2430	13.034	3,972	20,213 .	6,160	23.000	7,010	
GW2435	13,034	3.972	20.213	6.160	23.000	7,010	
GW2440	13,034	3,972	20,213	6,160	23,000	7,010	
GW2445	11,715	3,570	18,168	5.537	20,803	6,340	
GW2450	11,715	3,570	18,168	5,537	20,803	6.340	
GW2455	11,715	3,570	18,168	5,537	20,803	6,340	

Longer lengths available upon request. *Reel nomenclatures and specifications are identified on page 11

Visit us at www.AFLFiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER.

MULTIPLE OPTICAL UNIT CONSTRUCTION - UP TO 36 FIBERS

SPECIFICATIONS

				INPUT FOR SAGE		SAG10™ F	ROGRAM				
llem Number	Item OPT-GW Size Cur Number {Strand Area/O.D.}		Total Conductor Area		Overall Diameter		Weight		RBS -		Sag10™ Chart Number
		(KA)- Sec	in²	inm²	in	កាពា	Ib/ft	kgim	lbs	kg	ivuniber.
GW3600	65mm²/555	72	0.1646	106.18	0 555	14.1	0.3853	0.5733	18,960	8,600	1-1461
GW3605	26/39mm²/555	31	0.1646	106.18	0.555	14.1	0.3156	0.4697	13,624	6,180	1-1439
GW3610	30/35mm²/555	82	0.1646	106.18	0 555	14.1	0.3040	0.4524	12,734	5,776	1-1438
GW3615	71mm²/571	79	0.1746	112.62	0.571	14.5	0.4144	0.6166	20,712	9,395	1-1450
GW3620	20/51mm²/571	87	0.1746	112.62	0.571	14.5	0.3597	0.5352	16,522	7,494	1-1440
GW3625	36/36mm²/571	93	0.1746	112.62	0.571	14.5	0.3187	0.4742	13,381	6,070	1-355
GW3630	80mm²/591	90	0.1878	121.17	0.591	15.0	0.4530	0.6741	23,037	10,450	1-1457
GW3635	31/49mm²/591	103	0.1878	121.17	0.591	15.0	0.3706	0.5514	16,724	7,586	1-1170
GW3640	37/43mm²/591	105	0.1878	121.17	0.591	15.0	0.3541	0.5269	15,461	7,013	1-1439
GW3645	91mm²/614	104	0.2041	131.70	0.614	15.0	0.5005	0.7448	25,900	11,748	1.1453
GW3650	30/60mm²/614	118	0.2041	131.70	0.614	15.6	0.4197	0.6246	19,709	8,940	1-350
GW3655	45/45mm²/614	125	0.2041	131.70	0.614	15.6	0.3793	0.5644	16,613	7,536	1-1438

Note: Custom designs available

TYPICAL REEL LENGTHS

Item Number	NR60	28.30*	NR68,	34.35*	NR72.	34.35*
	feet	meters	feel	melers	feet	meters
GW3600	13.976	4.260	21,673	6.606	23.000	7.010
GW3605	13,976	4,260	21,673	6,606	23,000	7,010
GW3610	13,976	4.260	21,673	6,606	23,000	7,010
• GW3615	13,215	4,028	20,492	6.246	23,000	7.010
GW3620	13.215	4.028	20,492	6,246	23.000	7.010
GW3625	13,215	4.028	20,492	5.246	23.000	7.010
GW3630	12,349	3.764	19,150	5.837	22.572	6:880
GW3635	12.349	3,764	19,150	5.837	22.572	6,880
GW3640	12,349	3.764	19,150	5.837	22.572	6,880
GW3645	11,417	3,480	17,703	5,396	20,869	6,361
GW3650	11,417	3,480	17,703	5,396	20.869	6,361
GW3655	11,417	3,480	17,703	5,396	20,869	N 06.361

Longer lengths available upon request. *Reel nomenclatures and specifications are identified on page 11

Visit us at www.AFLFiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER.

Alcoa Fujikura Ltd. Telecommunications Division

BRIDE .

जन्म 🗉

15M.

A4

1.10

1.54

5.20

22

MULTIPLE OPTICAL UNIT CONSTRUCTION - UP TO 48 FIBERS

SPECIFICATIONS

						INPUT: FOF	R SAG10™	PROGRAM	E.		
ltem Number	OPT-GW Size (Strand Area/O D.)	Fault Current (kAF sec	Total Cond	uctor Area	Overali	Diameter	₩e	ight	RI	3S	Sag 10.N Chart Number
· · · · · ·			in²	mm * ``	in	mm	lbs/ft	kg/m	lbs	kg	
GW4800	86mm²/646	130	0.2208	142.43	0.646	16.4	0.5139	0.7647	25.098	11,384	1-1461
GW4805	29/57mm²/646	144	0.2208	142,43	0.646	16.4	0 4 3 7 ?	0.6507	19,227	8,721	1-1170
GW4810	34/52mm²/646	146	0.2208	:42.43	0.645	15.4	0.4219	0.6279	18,053	8,189	1-1439
GW4815	40/46mm²/646	148	0.2208	142.43	0.646	16.4	0.4066	0.6051	16,879	7.656	1-355
GW4820	99mm²/669	151	0.2410	155.51	0.669	17.0	0.5729	0.8526	28,655	12,998	1-1450
GW4825	21/78mm²/669	163	0.2410	155.51	0.669	17.0	0.5162	0.7682	24,307	11,026	1-536
GW4830	28/71mm²/669	166	0.2410	155.51	0.669	17.0	0.4973	0.7400	22.857	10.368	1-1440
GW4835	49/49mm²/669	176	0.2410	155.51	0.669	17.0	0.4405	0.6555	18,509	8.396	1-355
GW4840	129mm²/724	204	0.2876	185.57	0.724	18.4	0.7088	1.0547	34,134	15,483	1-1453
GW4845	32/97mm²/724	227	0.2876	185.57	0.724	18.4	0.6224	0.9262	28,104	12,748	1-420
GW4850	43/86mm²/724	234	0.2876	185.57	0.724	18.4	0.5936	0.8834	26.094	11.836	1-350
GW4855	65/65mm²/724	247	0.2875	185.57	0.724	18.4	0.5361	0.7977	22.074	10,013	1-1438

Note: Custom designs available

TYPICAL REEL LENGTHS

мм						
	NRSO	2A 30*	NR62	14 35°	N872	74 35*
Item Number						
	feet	meters	feet	meters	leet	meters
GW4800	10,330	3,148	16.020	4,882	18.882	5,755
GW4805	10,330	3,148	16,020	4,882	18.882	5,755
GW4810	10,330	3,148	16,020	4,882	18,882	5,755
GW4815	10,330	3,148	16.020	4,382	18,882	5,755
GW4820	9,613	2,930	14,909	4,544	17.572	5,355
GW4825	9,613	2,930	14,909	त'2गम	17.572	5,355
GW4830	9,613	2,930	14,909	4,544	17,572	5,355
GW4835	9,613	2,930	14.909	न`2नन	17,572	5,355
GW4840	8,206	2.501	12.726	3,878	15,000	4.572
GW4845	8,206	2,501	12,726	3,878	15,000	4.572
GW4850	8,206	2,501	12,726	3,878	15,000	4,572
GW4855	8,206	2,501	12,726	3,878	15,000	4,572

Longer lengths available upon request. *Reel nomenclatures and specifications are identified on page 11

10

Visit us at www.AFLFiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER.

ADSS Cable Desig

APPLICATION NOTE #018 Issued: 11/99

All Dielectric Self Support (ADSS) cable construction represents a modification of traditional loosetube cable designs which are popular for buried, duct or lashed applications. These modifications allow ADSS cables to endure environmental stresses not typically found in other applications. This Alcatel Application Note describes important similarities and differences between ADSS cables and traditional cables.

Special Design Considerations for ADSS Optical Cables

ADSS cables are, by definition, targeted for aerial installations. Cables that are buried, lashed to other support cables, or installed in ducts are designed Electronic Theses & Dwith a trade-off between the ability to withstand pulling forces and the ability to handle compressive forces (for example caused by bending around the corner of a duct or caused by ice expansion underground during freezing). The primary design consideration for ADSS is to withstand significant tensile loads as the cables hang between supports. The cables' own weight as well as environmental forces (primarily high winds or ice buildup) apply stress to the cable structure. In addition, ADSS cables have to be designed for installation in "live" electrical power environments, or even to withstand potential stray gunshots from hunters. The requirement for installation in electrical fields and for lighter weight results in designs that are different from conventional optical fiber cables. In conventional cables metallic or other strength members or yarns provide the ability to withstand pulling forces. ADSS cable designs must accomplish this with a lightweight dielectric construction.

continued

www.usa.alcatel.com e-mail: marketing@cable.alcatel.com 2512 Penny Road • Claremont NC 28610 800-879-9862

_

ADSS Cable Designs Compared to Conventional Optical Cables

The fundamental design of virtually all ADSS cable is based on the standard loose tube construction commonly used for most optical fiber cables; however, there are some important differences. The loose tube cable construction, illustrated in Figure 1, is designed to allow high tensile loads to be applied to the cable without transferring stress to the optical fibers within. The principle behind this cable design is to place fibers into buffer tubes filled with a get compound. These tubes house and protect the fibers allowing freedom to move as the cable elongates or contracts. The buffer tubes themselves are spiral wound (stranded) around a central rod (central strength member) which helps to bear the load during cable pulling. The buffer tubes and the fibers within are longer than the cable itself. As the cable elongates under pulling stress, the fibers are free to move within the gel-filled tubes towards the center of the cable without any strain. This creates a 'tensile window' in which there is no fiber elongation or stress to a specified load. For a given central strength member and tube geometry, the shorter the laylength of the University of Me stranded lubes, the greater the tensile window

available. Figure 2 illustrates how a decrease in the stranding pitch reduces the coil interval allowing greater cable elongation without straining the fibers. The addition of strength yarns over the buffer tubes provides further protection and torsionally balances the tensile strength along the cable cross section. While most cables undergo tensile stress only during installation, ADSS cables remain continuously under tension once installed. Specificially, it is the tensile load bearing capabilities of the loose tube design that make it a well suited design for ADSS applications.

More recently, ADSS cables have incorporated dry water blocking materials used in conventional loose tube designs. Tests have proven that these materials have excellent resistance to penetration of water into the cable structure. Flooding compound offers excellent water resistance but requires more time in cable preparation for cleaning. Flooding compound also adds to cable weight, another consideration favoring dry water blocking materials.

Figure 3: Compressive Forces of Dead End or Suspension Armor Rods

are longer than the cable itself. As the cable elongates under pulling stress, the fibers are free to move within the gel-filled tubes towards the center of the cable without any strain. This creates a 'tensile window' in which there is no fiber elongation or stress to a specified load. For a given central strength member and tube geometry, the shorter the laylength of the stranded tubes, the greater the tensile window available. **Figure 2** illustrates how a decrease in the stranding pitch reduces the coil interval allowing

The Selection of ADSS Cable Materials of Construction

tubes and fibers within the cable length.

The primary design challenges for ADSS cables arise from the need to have high strength cables, which are at the same time lightweight and electrically nonconductive. Glass-reinforced plastics (GRPs) and aramid yarns are used to meet all three of these requirements. Aramid yarns are wrapped around the inner jacket over the cable core. Aramid yarns offer excellent strength-to-weight ratios (**Figure 4**) and provide added protection against potential jacket punctures. Aramid yarns are generally lighter than steel strength members, although at a cost premium.

ADSS cables require special outer jacket materials for protection against damage from electrical dry band

arcing (track resistant jackets). Alcatels' Trackguard[™] jacket provides dry band arcing protection in high voltage applications as well as superior abrasion resistance. ADSS jacket requirements for electric fields are detailed in Alcatel's Application Note #017.

Cable Design for Emerging Bandwidth Needs

Individual ADSS cables must suit installation in a variety of different settings as well as meet demands for a wide range of fiber counts. The physical setting of the installation determines the tensile load requirement for the cable. To accomodate the w lib mrt ac lk sometimes enormous tensile loads placed on the cable by high winds or heavy ice, more or thicker strength yarns are wrapped around the cable core. Each installation must be considered carefully for selection of the proper strength yarn 'content' based on distance between poles or towers, obstacles in the area, changes in elevation, changes in temperature as well as local loading conditions due to wind and ice. Alcatel advises on proper selection during the initial quotation for each installation project to make sure that the appropriate cable design is specified for all of these factors.

Traditionally, ADSS cables have been supplied with up to 96 or 144 fibers. Recent growth in bandwidth requirements have resulted in demand for higher fiber counts. Two approaches can be taken to achieve cable designs with higher fiber counts. First, additional buffer tubes may be added which requires an additional outer layer of tubes overlapping an inner layer (multi-layer design). Second, additional fibers may be used within existing buffer tubes (single

12@1 Design with 24 fibers per tube

15@9@1 Design with 12 fibers per tube

Figure 5

layer design). Figure 5 illustrates these two approaches for a 288 fiber cable. Increasing the quantity of fibers within each buffer tube is preferred for several reasons. First, the addition of more buffer tubes adds to the cable weight in several ways. The buffer tubes themselves add weight, and the cable diameter increases requiring more jacket materials. The smaller diameter of the single layer design also reduces the wind and ice load on the cable and support structure by offering a smaller cross section against which these loads are placed.

The Product of Oncide for Aerial Deployment

The design of ADSS optical fiber cables produces an optimal product for aerial systems. The design

combines features widely accepted with traditional cables while also incorporating innovations ideally suited for installation in utility rights-of-way. The key features are:

- Use of the traditional loose tube optical cable design combined with aramid yarns provides a product that has proven reliability and is economical, durable, and easy to install and maintain
- Aerial applications favor lightweight constructions such as single layer buffer tube designs and use of aramid yarns for strength
- All dielectric construction allows installation on live systems without electrical hazard risks
- Special jacket materials prevent jacket damage due to dry-band electrical arcing damage from utility electric fields
- For each application, the cable construction should be customized for specific installation structures, climatic conditions, and local topography. Consult the supplier to ensure proper selection.

12	Unive	rsit	y i	
(Electr		¢'	
93	www.	lib.	m	ľ

niversity of Moratuwa, Sri Lanka. lectronic Theses & Dissertations ww.lib.mrt.ac.lk

www.usa.alcatel.com e-mail: marketing@cable.alcatel.com 2512 Penny Road • Claremont NC 28610 10-879-9862

-

SINGLE-MODE CONNECTOR PERFORMANCE SPECIFICATIONS

19750

i)

1

1-

Тура	Polish	Repeatability Maximum (dB)	Insertion Loss Maximum (dB)	Return Loss	Ferrule Material
SC	Super PC	0.2	0.25	-45	Zirconia Ceramic
SC	Angled PC	0.2	0.5	-60	Zirconia Ceramic
sc	Ultra PC	0.2	0.25	-50	Zirconia Ceramic
FC	Super PC	0.2	0.25	-45	Zirconia Ceramic
FC	Angled PC	0.2	0.5	-60	Zirconia Ceramic
FC	Ultra PC	0.2	0.25	-50	Zirconia Ceramic
ST®	Super PC	0.2	0.5	-45	Zirconia Ceramic
D4	Super PC	0.2	0.25	-45	Ceramic Stainless Steel
D4	Ultra PC	0.2	0.25	-50	Ceramic Stainless Steel
SMA	Flat	0.5	1.5	n/a	Ceramic Stainless Steel
Biconic	Flat	0.3	1	-30	Thermoset Epoxyl
MU	Super PC	0.2	0.25	-45	Zirconia Ceramic
MTP	Flat	0.2	1	n/a	Thermoset Epoxyl
МТР	Angled	0.2	1	-60	Thermoset Epoxyl
ESCON®	Super PC	0.2 .	0.5	-15	Zirconia Ceramic
FDDI	Super PC	0.2	0.5	-45	Zirconia Ceramic

Test Parameter Specification Test Condition

	Spannoadan	Cur ound to
Temperature Cycle	<0.2dB	40 cycles - 40°C too + 80°C
Humidity	<0.2dB	<0.2dB FOTP - 5 + 60°C at 95% RH for 504 hrs.
Thermal Shock	<0.2dB	10 cycles, - 40°C to + 60°C
Twist Test	<0.2d8	<0.2dB FOTP - 36, 10 cycles, 1.5kg (3.3 lbs)
Impact Test	<0.2dB	<0.2dB FOTP - 2, 8 cycles
Connector Durability	<0.2dB	<0.2dB FOTP - 21, 500 insertions
Vibration	<0.2dB	<0.2dB FOTP - 11, Candition II
Flex Test	<0.2dB	<0.2dB FOTP - 1, 300 cycles 0.5kg (1.1 lbs)
Cable Retention	<0.2dB	<0.2dB FOTP - 6, 89 Newton's (20 lbs)

Alcoa Fujikura Ltd.

Telecommunications Division

FSM-30R12 MINI MASS FUSION SPLICER

1.10

EF

- 181

The new Fujikura FSM-30R12 brings a new level of productivity and capability to mass fusion splicing. The well-proven and market leading mass fusion splicing technology of previous Fujikura mass splicers is now provided in an extremely small and light weight mini-splicer. Improved immunity to ambient conditions and slide-in modular powering units (including battery) provide unprecedented mass fusion splicing capability in remote and outdoor splicing locations. The FSM-30R12 takes mass fusion splicing productivity to a new plateau with 12 fiber splicing time cut to one third that of previous generation mass splicers. The tube heater for heat shrink splice protection sleeves is twice as fast as the previous generation. The FSM-30R12 is the ideal mass fusion splicer for any application.

FEATURES & BENEFITS

- Best mass fusion splice loss performance in the industry, including splicing non-zero dispersion-shifted (NZ-DS) fibers
- Maximum productivity with much faster splicing than previous mass fusion splicer: 30 second splicing time

New wind protector design withstands 30mph cross wind; unprecedented utility in exposed conditions

- · Splices up to 12 fibers simultaneously
- Ultra small and light weight design; ideal for remote/outdoor splicing scenarios
- · Built-in programmable tube heater
- Slide-in power modules include AC adapter, battery, or camcorder battery adapter
- Automatically adjusts fusion arc to compensate for differences in atmospheric pressure or altitude
- Simultaneous focus on all 12 fibers and large image magnification on low-glare 5" color LCD monitor provides great fiber visibility
- · Great mass fusion splicer capacity under battery power

FSM-30R12 MINI MASS FUSION SPLICER

SPECIFICATIONS

H - 114

CLE I

a: 10

A: E

HAN

Fiber Splicing Capability	SM, MM, NZ-DS (non-zero dispersion-shifted) & DS fibers (capable of splicing 2, 4, 6, 8, 10, or 12 fibers simultaneously, as well as single fiber splicing)
Splice Loss	0.04dB for SM, 0.02dB for MM, 0.07dB for NZ-DS fiber (typical)
Return Loss	< -60dB
Fusion Splices Per Battery Charge	-30 (includes use of splice protection tube heater & hot jacket ribbon stripping tool)
Splice Sleeve Capability	40mm mass splice sleeves, both 40mm & 60mm single fiber splice sleeves, and microimini sleeves (10 programmable tube heater modes)
Altitude Compensation Function	Fully automatic up to 3,500 meters (11,500 feet)
Viewing Method	5* LCD color monitor with 40X magnification
Operating Temperature	-10°C to +50°C
Storage Temperature	-40°C to +80°C
Power Supply	Modular bay accepts slide-in 12V 2.0 amp-hour battery pack or slide-in AC adapter. AC adapter accepts 100 to 240 VAC (50/60Hz). Optional slide-in adapter for 12V 2.0 amp-hour camcorder battery.
Dimensions (W x D x H)	150mm x 150mm x 150mm (5.9" x 5.9" x 5.9")
Weight	2.8 kg (6.2 lbs) with AC adapter installed; 3.2 kg (7.0 lbs) with battery installed

ORDERING INFORMATION

Item Description	Item Number
FSM-30R12 Mass Fusion Splicer Kit University of Moretuwa, Sri Lanka, Fiber Holders (1 set) Exercise & Dissertations HJS-02 Hot Jacket Stripper Exercise & Dissertations CT-100B Cleaver Base FAT-02 or FAT-04 Fiber Arrangement Tool BTR-04 Field Replaceable Battery ADC-07 AC Adapter/Battery Charger FP-5 Splice Protection Sleeves Fermior Charger	S010208
BTR-04 Spare Battery	S010236
ADC-07 Adapter/Battery Charger	S010240
HJS-02 Hot Jacket Stripper	S010340
BTA-02 Camcorder Battery Adapter	S010232
Carncorder Battery, 12V 2.0 amp-hour (5.65" length)	S010324
FAT-02 Fiber Arrangement Tool	S002111
FAT-04 Fiber Arrangement Tool	S010212
FAA-03 Ribbon Forming Adhesive (4 oz. bottle)	S008720
ST-3 Splice Tray Holder	S010860
Fiber Holders:	
FH-12 (12 fibers)	S010220
FH-10 (10 fibers)	S010348
FH-8 (8 fibers)	S010352
FH-6 (6 fibers)	S010356
FH-4 (4 fibers)	S010360
FH-2 (2 fibers)	S010364
FH-250 (250µm coated single fiber)	S010368
FH-900 (900µm jacketed single fiber)	S010372
Electrodes (pair)	S010216

Visit us at www.AFLFiber.com. To place an order contact a sales representative at 1-800-AFL-FIBER

<u>APPENDIX – D:</u>

SPECIFICATION SHEETS FOR OPTICAL

LINE TERMINAL EQUIPMENT

.

#

•

	 4-port available on all M-series routers, T320 routers, and the T640 routing node MMA and SMUE aptics
	Operates in concatenated mode only
1-port, 4-port OC-12c/STM-4	The one-port OC-12c/STM-4 PIC is ideal for migrating backbones to higher speeds while preserving the option for redundant circuits. This PIC delivers up to 622-Mbps clear channel throughput and can also provide four 155-Mbps OC-3/STM-1 circuits over a single optical interface.
	The four-port OC-12c/STM-4 PIC is well suited for high-bandwidth intra-POP connections, offering a lower cost per connection than OC-48c/STM-16 interfaces. It is also well fitted for applications where high-bandwidth intracampus connections are needed. This PIC delivers per-port 622-Mbps throughput for an aggregate PIC throughput of up to 2.5 Gbps
	■ 1-port
	 Available on all M-series routers
	Operates in both concatenated and nonconcatenated modes
	MM and SMIR optics
	4-pon
	 Available of M40e, M100, and 1520 fottlers, and the 1640 fottling hode Operates in concatenated mode only
	 MM and SMIR optics
1-port, 4-port OC-48c/STM-16	The OC-48c/STM-16 SONET/SDH PIC is ideal for meeting the bandwidth demands at the Internet core with its uncompromising performance. It delivers true 2 5-Gbps throughput with IP services enabled
	■ 1-port SFP
	Small form factor pluggable (SFP) optics (SMIR, SMLR, and SMSR options)
	 Available on M20, M40e, M160, T320, and T640 platforms
	■ 1-port
	Quad wide available on M10 router
	 SMLR and SMSR optics
	 Operates in both concatenated and nonconcatenated modes
	 Small form factor pluggable (SEP) optics (SMIR, SMLR, and SMSR options) Available on the T220 and T640 plotforms
	■ Available on the 1320 and 1640 pratforms

file://C:\My Documents\Juniper Networks_SONET-SDH PICs.htm

•

×

		In concatenated	mode only				
1-port OC-192c/STM-64	The OC-192c/STM-64 SOI and intra-POP connections	NET/SDH PIC, deli s. This PIC can also	vering up to 10-Gb provide four 2 5-G	os throughput, is a bps OC-48/STM-	advantageous for offe 16 circuits over a sing	ering high bandwid gle optical interfac	dth for inter e.
	The VSR optics, in particul DWDM system (for long ha	ar, offer a more cos aul connections).	st-effective option th	an longer reach o	ptics, and are very su	intable when coup	oled with a
	 Quad wide availa 	able on the M160) router				
	Single wide avail	lable on T-series	platforms				
	■ SMLR, SMSR, a	nd VSR optics					
	 Operates in both 	concatenated ar	nd nonconcatena	ted modes			
			·				
e i fan							
	Jovibilitu 💄	University of Mora	atuwa, Sri Lanka.				
ort Density and F							
ort Density and F		Electronic Theses a www.lib.mt.ac.lk	& Dissertations			an a	
Port Density and F	Desizes As	Electronic Theses www.lib.mrt.ac.lk	& Dissertations	616	edeology Minte	G	201926633
Port Density and H	2-port	4-port	A Dissertations	۹۱۶ 4-port	elbo(S)(MA(S)	ere Gr 4-port	24(920E)) 1-
M5/M7i	2-port	4-port	A Dissertations	्र 4-port	efBore (M. 16 1-port	4-port	24(92c/5)) 1-
M5/M7i Per chassis	2-port	4-port	A Dissertations	4-port	elBore (M.16 1-port	4-port	
M5/M7i Per chassis	2-port 8 120	4-port 16 240	A Dissertations FGE 10.24 grave 4 60	4-port	PBGreYMAR 1-port	4-port 	-192c(\$1 1-
M5/M7i Per chassis M10/M10i	2-port 8 120	Electronic These is a set of the set of	A Dissertations 1-port 4 60	4-port	Patrona Marin 1-port	4-port	>192c/31
Port Density and F M5/M7i Per chassis Per rack M10/M10i Per chassis	2-port 8 120 16	A-port 16 240 32	A Dissertations 1-port 4 60 8	4-port	editors MAL 1-port	4-port 	> 192C/81 1-
Yort Density and H M5/M7i Per chassis Per rack M10/M10i Per chassis	2-port 8 120	Electronic These is a set of the	A Dissertations	4-port	2 M10 only	4-port	
Port Density and H M5/M7i Per chassis Per rack M10/M10i Per chassis Per rack	2-port 8 120 16 240	Electronic These is a set of the	A Dissertations 1-port 4 60 8 120	4-port	2 M10 only 30 M10 only	4-port	
M5/M7i Per chassis Per rack M10/M10i Per chassis Per rack M20	2-port 8 120 16 240	16 32 32 480	A Dissertations I-port 4 60 8 120	4-port	2 M10 only 30 M10 only	4-port	
Port Density and F Did (2000) M5/M7i Per chassis Per rack M10/M10i Per chassis Per rack M20 Per chassis	2-port 8 120 16 240	4-port 16 240 32 480 64	A Dissertations 1-port 4 60 8 120 16	4-port	2 M10 only 30 M10 only 4	4-port	2-192C/ST 1-
M5/M7i Per chassis Per rack M10/M10i Per chassis Per rack M20 Per chassis Per rack	2-port 8 120 16 240	4-port 16 240 32 480 64 320	A Dissertations	4-port	2 1-port 2 M10 only 30 M10 only 4 20	4-port	

ŧ

file://C:\My Documents\Juniper Networks_SONET-SDH PICs.htm

Per chassis	— .	128	32	32	8	—	
Per rack		256	64	64	16	—	—
M160							
Per chassis	—	128	32	128	32	—	8
Per rack		256	64	256	64		16
Т320							
Per chassis		64 .	—	64	16	64	16
Per rack		192	_	192	48	192	48
T640							
Per chassis		128	· 	128	32	128	32
Per rack	_	256	—.	256	64	256	64
= Not applicable		University of Moratu Electronic Theses & www.lib.mrt.ac.lk	iwa, Sri Lanka. Dissertations				

¥

Key Features

A few of the key features supported by SONET/SDH PICs include SONET APS, SDH MSP, MPLS fast reroute, and link aggregation. Additionally, SONET/SDH PICs support filtering, sampling, load balancing, rate limiting, class of service, and other key features necessary for deploying secure, dependable, high-performance IP services

Automatic Protection Switching

The SONET/SDH PICs support APS 1+1 switching (bidirectional), which enables two routers and a SONET ADM to communicate. This functionality ensures a secondary path in the case of a router-to-ADM circuit failure, interface failure, or router failure. This functionality is interoperable with any ADM that uses GR-253-CORE-style signaling (K1/K2). In addition to the automatic switchover, service providers can manually initiate the switchover.

MPLS Fast Reroute

MPLS fast reroute provides fast recovery if any circuit or router along a predetermined MPLS path, known as the label-switched path (LSP), fails Each router along the LSP computes a standby detour path that avoids its downstream hop. If a circuit fails, the nearest upstream router automatically activates the detour paths

Link Aggregation

- Link aggregation is the ability to bundle together a set of ports configured with the same speed in full-duplex mode into a virtual link, thereby supporting

surginarieous parallel physical links between outliper nervorks platforms, service providers can configure up to no groups per router, and each group supports up to 8 ports. If a link goes down, the traffic is redistributed among the remaining links, thereby improving network reliability

4

necifications	
pecifications	
Specification	<u>.</u> Dificipition
General	9 192-byte MTU
	Frame Relay
	■ HDLC
	MPLS Circuit Cross-connect
	■ PPP
·	
nterfaces	OC-3c/STM-1 PICs
	MM optical interface
	Connector: SC duplex connector
	Length: 1.2 miles / 2 km
	■ Wavelength: 1,270 to 1,380 nm
	Average launch power: -20 to -14 dBm
	 Receiver saturation: -14 dBm Receiver saturation: -14 dBm
	Receiver sensitivity: -30 (Bm
	 Simile optical interface (Belicore GR-253-CORE compliant) Compositor: SC duploy compositor:
	 Length: 9.3 miles (15 km)
· ·	 Wavelength: 1 260 to 1 360 nm
	 Average launch power: -15 to -8 dBm
	 Receiver saturation: -8 dBm
	 Receiver sensitivity: -28 dBm
•	OC-12c/STM-4 PICs
	MM optical interface
	Connector: SC duplex connector
	Length: 546.80 yards / 500 m
	 vvavelength: 1,2/0 to 1,380 nm Average Leureb Davian, 20 to 14 dBm
	Average Launch Power: -20 to -14 dBm Repairer Seturation: 14 dBm
	 Receiver Saturation: -14 dBm Receiver Sensitivity: -26 dBm

tile://C:\My Documents\Juniper Networks_SONET-SDH PICs.htm

file://C:\My Documents\Juniper Networks \SONET-SDH PICs.htm

.

4

	 SMSR optical interface (Bellcore GR-253-CORE compliant) Connector: SC duplex connector
	= - Connector = Connector =
	 Wavelength: 1.266 to 1.360 nm
	 Average launch power: -10 to -3 dBm
	Receiver saturation: -3 dBm
	 Receiver sensitivity: -18 dBm
	OC-192c/STM-64 PICs
	SMLR optical interface (Bellcore GR-253-CORE compliant), compatible with 1,550 nm single-mode long reach
	 Connector: SC duplex connector
	Length 49.71 miles / 80 km
	 Wavelength: 1,530 to 1,565 nm
	Average launch power: +6 dBm to +8 dBm
	Receiver saturation: -10 dBm
	Receiver sensitivity: -22 dBm
	 SMSR2 optical interface (Belicore GR-253-CORE compliant); compatible with 1,550 nm single-mode short reach
	Connector: SC duplex connector
	Length: 15.5 miles / 25 km
	 Wavelength: 1,530 to 1,565 nm
	 Average launch power: -4 to -0 dBm
	 Receiver saturation: -3 dB
	 Receiver sensitivity: -14 dBm
	 VSR optical interface; compatible with 12-ribbon multimode fiber
	Connector: MTP connector
	■ Length: 984.25 ft 7 300 m
	 Wavelength: 830 nm to 860 nm Average law rate on a set 10 km of the set o
	Average launch power: -10 to -3 dBm
	■ Receiver saturation3 dB
LED\$	One tricolor LED per port
	Green Port is online with no alarms or failures
	Amber Port is online with alarms or remote failures
	Red Port is active with a local alarm; failure detected

.

file://C:\My Documents\Juniper Networks_SONET-SDH PICs.htm

.

*

Page 9 of ∳1

.

4

 EN 60825-1 Safety of Laser Products—Part 1 Equipment Classification, Requirements and User's Guide EN 60825-2 Safety of Laser Products—Part 2 Safety of Optical Fibre Communication Systems EN 60950, Safety of Information Technology Equipment EMC AS/N23 3548 Class A (Australia / New Zeuland) BSM Class A (Tawan) EN 55022 Class A Emissions (Europe) FCC Part 15 Class A (USA) VCCI Class A (USA) V	Agency Approvals	Safety CAN/CSA-C22.2 No. 60950-00/UL 60950 Third Edition. Safety of Information Technology Equipment
EN 60825-2 Safety of Laser Products—Part 2: Safety of Optical Fibre Communication Systems EN 60950, Safety of Information Technology Equipment EMC ASIN22 3548 Chass A (Australia / New ZeLland) BSM Class A (Taiwan) EN 55022 Class A (Liska (Australia / New ZeLland) BSM Class A (Taiwan) EN 55022 Class A (USA) VCCI Class A (USA) VC		EN 60825-1 Safety of Laser Products—Part 1 Equipment Classification. Requirements and User's Guide
EN 60950, Safety of Information Technology Equipment AS/N2S 3548 Class A (Australia / New Zeuland) BSMI Class A (Taiwan) EN 55022 Class A Emissions (Europe) FCC Part 15 Class A (USA) VCCI Class A (USA) VCCI Class A (Uspan) Immunity EN 61000-42 ESD EN 61000-42 ESD EN 61000-42 ESD EN 61000-43 Redisted Immunity EN 61000-43 Surget EN 61000-44 EFT forenas Standa EN 61000-43 Surget EN 61000-44 ESD EN 61000-44 ESD EN 61000-44 ESD EN 61000-45 Surget EN 61000-41 Surget EN 6100-41 Surget EN 6100-41 Surget E		EN 60825-2 Safety of Laser Products—Part 2: Safety of Optical Fibre Communication Systems
EMC AS/N2S 3548 Class A (Australia / New Zestand) BSMI Class A (Taiwan) EN 55022 Class A Emissions (Europe) F CC Part 15 Class A (USA) V CCI Class A (Japan) Immunity EN 61000-3-2 Power Line Harmonics EN 61000-4-2 ESD 6 EN 61000-4-2 ESD 6 EN 61000-4-3 Radiated Immunity F S 1600-4-4 EF Planama ST Links EN 61000-4-5 Surges EN 61000-4-5 Surges EN 61000-4-11 Voltage Dups and Sags NEBS Designed to meet these standards GR 63-CORE NEBS, Physical Protection SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETSI ETS-300386-2 Telecommunication Hetwork Equipment Electromagnetic Compatibility Requirements SR-3580 NEBS		EN 60950. Safety of Information Technology Equipment
EMC • AS/NZS 3548 Class A (Australia / New ZeLland) • BSMI Class A (Tarwan) • EN 55022 Class A Emissions (Europe) • FCC Part 15 Class A (USA) • VCC1 Class A (Japan) Immunity • EN 61000-3-2 Power Line Harmonics • EN 61000-4-2 ESD • EN 61000-4-2 ESD • EN 61000-4-3 Packated Immunity • EN 61000-4-3 Packated Immunity • EN 61000-4-4 EFT formation • EN 61000-4-4 EFT formation • EN 61000-4-4 EFT formation • EN 61000-4-4 EFT formation • EN 61000-4-4 EFT formation • EN 61000-4-4 EFT formation • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-4 EFT formation • EN 61000-4-4 EFT formation • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency Common Immunity • EN 61000-4-5 Cox Frequency • SR-3580 NEBS Citeria Levels (Level 3 Compliance) • SR-3580 NEBS Citeria Levels (Level 3 Compliance) ETSI • ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibibility Requirements <td< th=""><th></th><th></th></td<>		
 Addition of the second s		
 EDMINICIASS A Emissions (Europe) EN 55022 Class A Emissions (Europe) FCC Part 15 Class A (USA) VCCI Class A (Japan) Immunity EN 61000-3-2 Power Line Harmonics EN 61000-4-2 ESD EN 61000-4-3 Rediated Immunity EN 61000-4-3 Rediated Immunity EN 61000-4-3 EFT for time, St Landa EN 61000-4-3 Extra Constraints EN 61000-4-4 EFT for time, St Landa EN 61000-4-5 Strage EN 61000-4-5 Strage EN 61000-4-5 Strage EN 61000-4-5 ETT EN 61000-4-5 ETT EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE INEBS, Physical Protection GR-63-CORE INEBS, Physical Protection GR-63-CORE INEBS, Charles and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Citeria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements 		
 EN 3022 Class A Emissions (EUrope) FCC Part 15 Class A (USA) VCCI Class A (Japan) Immunity EN 61000-3-2 Power Line Harmonics EN 61000-4-3 Badiated Immunity EN 61000-4-3 Badiated Immunity EN 61000-4-3 Badiated Immunity EN 61000-4-5 Surget EN 61000-4-5 Surget EN 61000-4-6 Low Frequency Continen Immunity EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE INEBS, Physical Protection GR-63-CORE INEBS, Physical Protection GR-63-CORE INEBS, Physical Protection GR-63-CORE INEBS, Chiefia Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Telecommunications Equipment SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements 		BSMI Class A (Taiwan)
 FCC Part IS Class A (Jopan) VCCI Class A (Japan) VCCI Class A (Japan) VCCI Class A (Japan) Immunity EN 61000-4-2 ESD EN 61000-4-3 Radiated Immunity EN 61000-4-3 Radiated Immunity EN 61000-4-4 EFT forces S Land EN 61000-4-5 Exreg EN 61000-4-6 Low Frequency Common Immunity EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE_NEBS, Physical Protection GR-1089-CORE_EMC and Electrical Safety for Fletwork Telecommunications Equipment SR-3560 NEBS Criteria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Pletwork Equipment Electromagnetic Compatibility Requirements 		EN 55022 Class A Emissions (Europe)
VCCI Class A (Japan) Immunity EN 61000-3-2 Power Line Harmonics EN 61000-4-2 ESD EN 61000-4-3 Radiated Immunity EN 61000-4-3 Surge EN 61000-4-5 Surge EN 61000-4-5 Surge EN 61000-4-5 Low Frequency Common Immunity EN 61000-4-6 Low Frequency Common Immunity EN 5100-6-CORE IEMC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETSI ETSI ETSI Subject Protection Graduate Electromagnetic Compatibility Requirements SR 5380		FCC Part 15 Class A (USA)
Immunity EN 61000-3-2 Power Line Harmonics EN 61000-4-2 ESD EN 61000-4-3 Radiated Immunity EN 61000-4-4 EFP formula, St Landa EN 61000-4-5 Surget EN 61000-4-4 EFP formula, St Landa EN 61000-4-5 Surget EN 61000-4-6 Low Frequency Common Immunity EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE ENC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Citeria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication filetwork Equipment Electromagnetic Compatibility Requirements ETSI ETS-300386-2 Telecommunication filetwork Equipment Electromagnetic Compatibility Requirements EVA-44 Etsi A Cridering Information Endotements		 VCCI Class A (Japan)
 EN 61000-4-2 ESD EN 61000-4-3 Radiated Immunity EN 61000-4-4 EFT forma Statulated Immunity EN 61000-4-6 Low Frequency Common Immunity EN 61000-4-6 Low Frequency Common Immunity EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE NEBS, Physical Protection GR-63-CORE NEBS, Criteria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements 		Immunity EN 61000-3-2 Power Line Harmonics
EN 61000-4-3 Radiated Immunity EN 61000-4-3 Radiated Immunity EN 61000-4-5 Surge EN 61000-4-6 Low Frequency Common Immunity EN 61000-4-6 Low Frequency Common Immunity EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE EMC and Electrical Safety for Network Telecommunications Equipment SR-1089-CORE EMC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Citeria Levels (Level 3 Compliance) ETSI ETS-300386'2 Telecommunication Metwork Equipment Electromagnetic Compatibility Requirements ETSI ETS-300386'2 Telecommunication Metwork Equipment Electromagnetic Compatibility Requirements PIE Model Number		■ EN 61000-4-2 ESD
 En 61000-4-4 Eff fortunal of the fill of		 EN 61000-4-3 Radiated Immunity
EN 61000-4-5 Surge EN 61000-4-5 Surge EN 61000-4-11 Voltage Dips and Sags NEBS Designed to meet these standards GR-63-CORE_NEBS_Physical Protection GR-039-CORE_EMC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements c o Act PIC: Reference Comparison Protection		- EN 61000404 FET Jorduwa, Sri Lanka.
ETSI ETS-300386*2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements ETSI ETS-300386*2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements Drdering Information		EN 61000.4-5 Surge
EN 61000-4-11 Voltage Dips and Sags EN 61000-4-11 Voltage Dips and Sags GR-63-CORE_NEBS_Physical Protection GR-63-CORE_NEBS_Physical Protection GR-1089-CORE_EMC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements Condemandary Protection GR-63-CORE_NEBS_Physical Protection		 EN 61000 1.6 Low Erecuency Common Immunity
Interview Protein		 EN 61000 4 11 Voltage Dire and Sage
NEBS Designed to meet these standards • GR-63-CORE_NEBS, Physical Protection • GR-1089-CORE_EMC and Electrical Safety for Network Telecommunications Equipment • SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI • ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements Ordering Information • Physical Protection PIP • Physical Protection		
GR-63-CORE_NEBS, Physical Protection GR-1089-CORE_EMC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements C 0 - 44 Ordering Information		NEBS Designed to meet these standards
GR 0000 CORE EMC and Electrical Safety for Network Telecommunications Equipment GR-1089-CORE EMC and Electrical Safety for Network Telecommunications Equipment SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements Ordering Information		GR-63-CORE NEBS Physical Protection
SR-3580 NEBS Criteria Levels (Level 3 Compliance) ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements Ordering Information Pi[2: Participant Pi[2: Partipant Pi[2: Participant Pi[2: Participant Pi[2: Parti	•	 GR-1089-CORE, EMC and Electrical Safety for Network Telecommunications Equipment
ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements		 SR-3580 NEBS Criteria Levels (Level 3 Compliance)
ः ३ २४ Ordering Information िशि		ETSI ETS-300386-2 Telecommunication Network Equipment Electromagnetic Compatibility Requirements
이 아이 Ordering Information 이동같		
Ordering Information मिनिन सिंहा के सिंहतमा अल्दामा भिल्लामा सिंहतमा अल्दामा भिल्लामा सिंहतमा अल्दामा भिल्लामा सिंहतमा भिल्लामा सिंह	y = 0 . Also	
ner	Ordering Information	
	00	

file://C:\My Documents\Juniper Networks_SONET-SDH PICs.htm

Jumper Networks :: SONET/SDH4PICs

ł

•

Multimode, 2-port	M5, M7i, M10, M10i	PE-20C3-SON-MM
Multimode, 4-port	M5, M7ı, M10, M10ı	PE-40C3-SON-MM
	M20	P-40C3-SON-MM
	M40e, M160, T320	PB-40C3-SON-MM
Single-mode, intermediate reach, 2-port	M5, M7i, M10, M10i	PE-20C3-SON-SMIR
Single-mode, intermediate reach, 4-port	M5, M7i, M10, M10i	PE-40C3-SON-SMIR
	. M20	P-40C3-SON-SMIR
	M40e, M160, T320	PB-40C3-SON-SMIR
	T320, T640	PC-40C3-SON-SMIR
OC-12c/STM-4 SONET/SDH	······	
Multimode, 1-port	M5, M7i, M10, M10i	PE-10C12-SON-MM
	M20	P-10C12-SON-MM
	M40e, M160	PB-10C12-SON-MM
Multimode, 4-port	M40e, M160, T320, T640	PB-40C12-SON-MM
Single-mode, intermediate reach, 1-port	M5, M7i, M10, M10i	PE-10C12-SON-SMIR
	M20	P-10C12-SON-SMIR
	M40e, M160	PB-10C12-SON-SMIR
Single-mode, intermediate reach, 4-port	M40e, M160, T320, T640	PB-40C12-SON-SMIR
OC-48c/STM-16 SONET/SDH		
1-port SFP (Requires pluggable SFP Optics Modules: SMIR, SMLR, and SMS	R) M20	I-10C48-SON-SFP
	M40e, M160, T320, T640	PB-10C48-SON-SFP
Single-mode, long reach, 1-port	M10	PE-10C48-SON-SMLR
Single-mode, short reach, 1-port	M10	PE-10C48-SON-SMSR
4-port SFP (Requires pluggable SFP Optics Modules: SMIR, SMLR, and SMS	R) T320 T640	PC-40C48-SON-SFP
OC-192c/STM-64		
Single-mode, long reach, 1-port	M160	IB-OC192-SON-LR-E
	T320 T640	PC-10C192-SON-LR
Single-mode short reach 2 1-nort	M160	IB-OC192-SON-SR2-E

#

.

Very short reach 1, 1-port	M160	IB-OC192-SON-VSR-E
	T320, T640	PC-10C192-SON-VSR
Pluggable Optic Modules		
Small Form-Factor Pluggable Optic Module Single Mode Short Reach	NA	SFP-10048-SR
Small Form-Factor Pluggable Optic Module Single Mode Intermediate Reach	NA	SFP-10C48-IR
Small Form-Factor Pluggable Optic Module Single Mode Long Reach	NA	SFP-10C48-LR

Kow to Buy

Copyright @ 1998-2004, Juniper Networks, Inc. All Rights Reserved. Trademark Notice

÷

8 ... p

file://C:\My Documents\Juniper Networks_SONET-SDH PICs.htm

PureGain™ Variable Gain EDFA for Long-Haul Networks

MAVANEX2

PureGain™ 5500

FEATURES

- Variable Gain Design Provides Flat Gain Across a Wide Bange of Operating Conditions
- 12 dB Mid-Stage Access for DC Modules, OADMs and Other
- High-Loss Optical Components • Fully Integrated Control Electronics;
- Including State-of-the-Art Translent Control
- C-Band (1528 1565 nm) or L-Bana (1570 - 1605 nm)
- Available as a Booster, Line or Pre-Amplifier
- RS-232 Command Interface with Moniforing, Alarms and Safety Shut-Downs
 Optional Optical Supervisory
- Channet Add/Drop
 200 x 130 x 29 mm Size

APPLICATIONS

- Metro Regional: Long-Haul and Ulfra Long-Haul EWDM Communications Networks
- Protocci, Bit-Rate and Channel-Count Independent, Supporting up to 10 Gb/s Signals

The PureGain ~ 5500 Optical Amplifier Series is a family of variable gain amplifiers with mid-stage access (MSA). The amplifier's on-board electronics offer transient control that enables wavelength versatility and dynamic provisioning throughout the network. This high-performance control system allows adc/crop of more than 75 percent of channels with minimal impact on system performance. Available for the C- and L Bands with up to 25 dBm of output power, low ripple and holse figure, these amplifiers are ideal for metro regional, long-haul or uitra long-haul networks. PureCain ~ 5600 amplifiers support long-reach, high channel count systems, including up to 4000 km ULH systems when used in conjunction with PureGain ~ 5500 Raman Gain Modules.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations ONTENTS lab mrt.ac.lk

Description	í
Peatures	1
Applications	1
Key Optical Specifications	2
Key Environmental Specifications	2
(ey Cuntrol and Electrical Specifications	2
Seftware Functions, Monitors and Alarms	6.4
Optica/Electrical Schematic	3
Ophical Piglails	ŝ
Standard Production Tests	4
Ecotroa Pin Absignments	4
Vochanical Feotorint	5
Complementary Amphilier Products	

AVANEX

KEY OPTICAL SPECIFICATIONS

	Mire	Тур	Max	Unit
C-Band Wavelength Range	:528	1500 - 1562	1505	ះកា
L-Band Wavelength Range	368	1570 - 1605	:609	nm
OSC C-Band Wavelength Range		1505 - 1515		nm
OSC L-Band Wavelength Range		1620 - 1630		הזייו
Total Output Power (Pou)			-23.0	aBm
Total Input Power Bange (P_)	-23.0		+10.0	dBm
Mid-Stage Total Power			- 16.0	;Em
Gan			30.0	ٹان
Gain Flatness (0.10 - 70°C)		6.8	1)	eită.
Mid-Singe Loss	1.2	10.0	12.5	dВ
Moise Flaure (P., = 0 dBm), C-Bana		6.8	6.0	4 B
Noise Figure (P., + 0.08m), 1,-Banor		6.5	7.0	-38
Polarization Dependent (Gain (PDG)		0.4		dB
Polarization Mode Dispersion (PMD)		0.ć		ps/m)

Optinal specifications show possible parameter ranges, depending on configuration.

12

2. The ranges depend on wavelength pand. Shown for C-Band EDPA.

KEY ENVIRONMENTAL SPECIFICATIONS

University of Moratuwa, Sri Lanka.

		STE REL	, Cais
Operating Case Temperature Range	0	70	°C
Storage Temperature Bange	-40	85	*C
Operating Humidity Flange	5	95	96 HH

1. Non-condensing.

KEY CONTROL' AND ELECTRICAL SPECIFICATIONS

	.) ET	1379.	E. C.	Contraction of the second
Transient Settling Time	10	50°	200	25
Transient Over/Undershoot	0.25	0.5	1.01	dB
Transient Offset			0.2	dB
Cold Start Settling Time			1	3
Warm Start Settline Time			10	ins.
Power Sungly Voltage	-4.75	+5.0	5.25	VOC
Power Consumption		20	50	W

Sortware Copyright 2000 – 2002, All Prights Poserved.
 Sostimes 50% (3 dB) adardrop event.
 Assumes 75% (6 dB) adardrop event.

0020AMP02/04

MAVANEX

SOFTWARE FUNCTIONS, MONITORS AND ALARMS

Functions	In-Service Firmware Upgrades	· · · · · · · · · · · · · · · · · · ·	 •
	Aury Shut Down	·	*
	Set Pump Powers	*	 ·
	Fixed Gain Profile	.	
	Gain Tilt Contro-		~
	Eye Salety Power Mode	1	*
Monitors	Total Output Power	~	. .
	Case Temperature	~	
	Cod Temperature	~	1
	Sout Down Alami	×	~
	Low Input Power Alami		-
	Low Output Power Alarm	~	•
	Signai Loss Nam	~	J.
Alarros	Clase Temperature Alarm		 . .
	Pump Temperature Alarm	,	~
	Pump Bias Alorni		~
	-		

OSC - Optical Supervisory Channel

OPTICAL PIGTAILS

	Standard	Optional
Fiber Type	Corning SMF-281 Fiber	
Pigtail Motenal	900 µm	8 mm, 2.0 mm, 2.4 mm and 2.9 mm
Pigtail Length	1 m ± 25 mm	Other Langths Available
Pigtail Colors	Yellow	Others Available
Connector Type	SC	FC, LC, MU, 52000, Others
Connector Polish	신우는 (RFL ~ -55 38)	APC (RFL46 -18)

Optional prytail materials may change the boot protrusion from the module and the pigtart band radius.

STANDARD PRODUCTION TESTS

Total Output Power

Cain, Cain Variation and Cain Control Accuracy Noise Figure Trunsient Suppression (Settling Time, Over/Undershoot, Otfset, as required)

1. All measurements uro taken outside of the connectors.

3. Avanez measures radioted power

3. Measurement temperature locations specified by Avanex.

ELECTRICAL PIN ASSIGNMENTS

The electrical interface is via one 2-millimeter pitch socket with the following pin-outs: 50 Pin Connector (Samtec p/n: SQT-125-01-L-D)

au i +5 V Supply 2 +5 V Suboly 1 4 +5 V Supply +5 V Supply 3 +5 V Supply -5 V Supply 5 5 8 Ground 7 Ground 10 Ground ġ, Ground 11 NC NC 12 14 Reset Input (Active Low) Ground 13 Senal Culput 16 : 4 Serial Input 18 Loss of Signal Alarm 17 Pump Current Alarm 20 Ground 19 Ground Power Monitor 1 Ground Power Monitor Output 1 22 21 Power Monitor 2 Ground Power Monitor Output 2 24 23 Ground Ground 26 25 28 Power Monitor 3 Ground 27 Power Monitor Output 3 Power Monitor 4 Ground 30 Power Monitor Output 4 29 32 Ground 31 Ground Output Power Alarm 34 High Temperature Alarm 33 NC Pump Temperature Alarm 36 35 Output Power Mute Input 35 37 Amplifier Disable Input NC. NÇ 40 39 Ground 41 Ground 42 44 Ground 43 Ground -5 V Supply 48 45 +5 V Subply ~5 V Sepaty 47 +5 V Supply 48 -----5 V Supply 50 49 -5 V Sapoly

PureGain™ Variable Gain EDFA for Long-Haul Networks

MAVANEX2

MECHANICAL FOOTPRINT

COMPLEMENTARY AMPLIFIER PRODUCTS

PureGain[™] 5500R Raman Pump Module for Long-Haul Networks PureGain[™] 2600 Variable Gain EDFA for Metropolitan Networks PureGain[™] 1500 Fixed Gain, Compact EDFA with Control Electronics PureGain[™] 1000 Fixed Gain, Compact EDFA Booster Amplifier PureGain[™] 1000 Compact EDFA Pre-Amplifier

40919 Encyclopeola Circle, Fremont, CA 94538 USA • Telephone 510-897-4186 • Fax 510-897-4189 m2004 Avanes Corporation, Acatal Jain, wild very according to the specific predict, and to specific specific specific application.

PureGain™ Compact EDFA Pre-Amplifier

MAVANEX²

PureGain™ 1000

The PureGain¹¹ 1000 Pre-amplifier provides high gain, high reliability, and superior noise figure performance in an industry-standard, compact form factor. This product enables copicyment of flexible, high-density optical networks, while reducing capital and operating expenditures and offering best-in-class optical performance scaled to meet various applications' reduirements. The PureGain¹¹ 1000 Pre amplifier has a proven deployment record in worldwide optical networks.

PEATURES

- Industry Standard Compact Form Factor (70 x 90 x 12 mm)
- Gain up to 30 dB
- Internal Photodiodes to Monitor
 Input and Output Power

APPLICATIONS

- · Long-Haul and Metro Networks
- Single-Channel (SDH/SONET)
- Wavelength Add/Drop and Optical
- Cross Connect Power Equalization
- Transmitter and Receiver Amplification

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations NTENTS ib mrt.ac.lk

Description	l
eatures	ł
Appacations	ł
Key Optical Specifications	?
Key Environmental Specifications	Ś
Key Electrical Specifications.	?
Optical Schematic	2
Electrical Pin Assignments	3
Mechanical Footprof	4
Standard Product Tests	1

D022AMP02/04

KEY OPTICAL SPECIFICATIONS

Parcentations		1inter
Wavelength Range	1530 - 1565	nm
Input Power Bange	-3010	d6m
Gain Range	13 - 30	сВ
Maximum Output Power	.}	d6a
Noise Figure (Typical) int Pulle -20 dBm (P _{rint} = 3 dBm	5.0	лĥ
Noise Figure (Maximum), @ P., + -20 cBm, P., + 3 cBm	5.3	-28
Polarization Dependent Gaar (Maximum)	0.4	d O
Polanzaron Mode Disparsion (Maximum)	0.3	ps

KEY ENVIRONMENTAL SPECIFICATIONS

Consumates	1.15		
Operating Case Temperature	Û	70	10 -
Storage Temperature	-40	85	1 <u>0</u>
Operating Humotty:	5 · · ·	95	34 RH

Non-condensing.

KEY ELECTRICAL SPECIFICATIONS

University of Moratuwa, Sri Lanka.					
Percenteter	Min				
Total Power Consumption, With Thermoelectric Cooler www.lib.mrt.ac.lk	;	2.0) '	4.01	W
Total Power Consumption, Uncooled	· ··· · ··· · ···	1		1.5	W
The second se	•				

1. Worst-case, end-of-life operating condition.

OPTICAL SCHEMATIC

0022460902/04

ELECTRICAL PIN ASSIGNMENTS

The standard electrical connector is a 20-pin mate connector (Samted MTMM-110-05-S-0-005) with the pin-out shown below. An optional 16-pin connector is available upon request.

a di s	Description
1	Ground Input and Output Photodropes
2	Input Monitor Cathoge
3	Input Montor Anoda
4	Osaput Montor Calinade
5	Output Montor Anode
6	Deutristor
ĩ	Laber Didee Arcos
8	Laser Dique Anode
ý	Backface Monitor Cathode
10	Backface Monitor Anode
11	Thermoelectric Cooler, Positive
12	Thermoelectric Cooler, Positive
13	n Thermoelectric Cooler, Positive
14	Thermoelector Cooler, Negative
1.5	Dermoelectric Cooler, Negative
16	Thermoelectric Cooler, Negative
17	Ground Pump caser 📃 University of Moratuwa, Sri Lanka.
18	Thermistor Electronic Theses & Dissertations
19	Laser Cathode
20	Laser Cathode

D022AMP02/04

PureGain™ Compact EDFA Pre-Amplifier

F

MECHANICAL FOOTPRINT

2. Optional integrated or stand-alone next sink avaitable upon request

STANDARD PRODUCTION TESTS

Input Power Output Power Pump Drive Current Gain Noise Figure Responsivity

 All measurements are performed outside the connectors and are measured as radiated power.

40919 Encyclopedia Circlé, Fremont, CA 94538 USA • Telephone 510-897-0188 • Fax 510-807-0189

m2004 Avanex Consortation, Actual claim waking according to the preside prestary meaning prestary and

D022AMP02/04

.

<u>APPENDIX – E:</u>

MS EXCEL WORKSHEETS OF OPTICAL

POWER BUDGET CALCULATIONS

	<u>LINK: New Anuradhapura - Kotmale</u>	
	Link Length /(km):	163
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB)	0.04
	Attenuation coefficient / (dB/km)	0.3
	Insertion Loss for pair of Demountable Connectors / (dB)	0.25
	Length of Optical Fiber Approach Cable / (km)	0.5
	Span between tower / (km)	0.4
	Splicing Interval for OPGW / (km) - to be given in the nearest	
	multiple of span)	6
	Approximated Link Length: (to be given in the nearest	
	multiple of splicing interval)	168
2	Connector / Splicing Losses Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 27 1.08
<u>3</u>	Total Connector / Splice Losses Attenuation Losses With ensity of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk	2.16
	OPGW Attenuation / (dB)	48.9
	OFAC Attenuation / (dB)	0.3
	Total Attenuation Losses / (dB)	49.2
4	Total System Loss / (dB)	51.36

5 Total System Gain / (dB)

	LINK: Kotmale - Kiribathkumbura	
	Link Length /(km):	22.5
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB) Length of Optical Fiber Approach Cable / (km) Span between tower / (km) Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval)	0.04 0.3 0.25 0.5 0.4 6 24
<u>2</u>	Connector / Splicing Losses	
	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 3 0.12
	Total Connector / Splice Losses	1.2
<u>3</u>	Attenuation Losses	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	6.75 0.3
	Total Attenuation Losses / (dB)	7.05
4	Total System Loss / (dB)	8.25

5 Total System Gain / (dB)

<u>6 Margin / (dB)</u>

	LINK: Kiribathkumbura - Ukuwela	
	Link Length /(km):	29.9
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB) Length of Optical Fiber Approach Cable / (km) Span between tower / (km) Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval)	0.04 0.3 0.25 0.5 0.4 6 30
<u>2</u>	Connector / Splicing Losses	
	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 4 0.16
3	Total Connector / Splice Losses	1.24
×	Adendadon 200000	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	8.97 0.3
	Total Attenuation Losses / (dB)	9.27
4	Total System Loss / (dB)	10.51

5 Total System Gain / (dB)

6 Margin / (dB)

>

LINK: Kolonnawa - Kotmale 85.2 Link Length /(km): **1 SYSTEM FIGURES** 0.04 Single splice loss / (dB) Attenuation coefficient / (dB/km) 0.3 Insertion Loss for pair of Demountable Connectors / (dB) 0.25 Length of Optical Fiber Approach Cable / (km) 0.5 Span between tower / (km) 0.4 Splicing Interval for OPGW / (km) - to be given in the nearest 6 multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval) 90 2 Connector / Splicing Losses Loss at Location (1) 0.5 Loss at Location (2) 0.5 0.08 Loss at Location (3) Number of Splices 14 **OPGW Splice Loss** 0.56 Total Connector / Splice Losses University of Moratuwa, Sri Lanka. 1.64 Electronic Theses & Dissertations www.lib.mrt.ac.lk **3 Attenuation Losses** OPGW Attenuation / (dB) 25.56 0.3 OFAC Attenuation / (dB) Total Attenuation Losses / (dB) 25.86 4 Total System Loss / (dB) 27.5

5 Total System Gain / (dB)

LINK: Kotmale - Badulla Link Length /(km):	82.6
1 SYSTEM FIGURES	
Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB) Length of Optical Fiber Approach Cable / (km) Span between tower / (km) Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval)	0.04 0.3 0.25 0.5 0.4 6 84
2 Connector / Splicing Losses	04
Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 13 0.52
Total Connector / Splice Losses	nka. 1.6 ns
3 Attenuation Losses	
OPGW Attenuation / (dB) OFAC Attenuation / (dB)	24.78 0.3
Total Attenuation Losses / (dB)	25.08
4 Total System Loss / (dB)	26.68

5 Total System Gain / (dB)

<u>6 Margin / (dB)</u>

>

LINK: Badulla - Laxapana 74.2 Link Length /(km): **1 SYSTEM FIGURES** 0.04 Single splice loss / (dB) Attenuation coefficient / (dB/km) 0.3 Insertion Loss for pair of Demountable Connectors / (dB) 0.25 Length of Optical Fiber Approach Cable / (km) 0.5 Span between tower / (km) 0.4 Splicing Interval for OPGW / (km) - to be given in the nearest 6 multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval) 78 2 Connector / Splicing Losses 0.5 Loss at Location (1) Loss at Location (2) 0.5 0.08 Loss at Location (3) Number of Splices 12 **OPGW Splice Loss** 0.48 Total Connector / Splice Losses University of Moratuwa, Sri Lanka. 1.56 Electronic Theses & Dissertations www.lib.mrt.ac.lk **3 Attenuation Losses** OPGW Attenuation / (dB) 22.26 OFAC Attenuation / (dB) 0.3 22.56 Total Attenuation Losses / (dB) 4 Total System Loss / (dB) 24.12

5 Total System Gain / (dB)

LINK: Laxapana - Kolonnawa Link Length /(km):

104.2

<u>1 SYSTEM FIGURES</u>

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	108

2 Connector / Splicing Losses

	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss		0.5 0.5 0.08 17 0.68
	Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1.76
<u>3</u>	Attenuation Losses	www.lib.mrt.ac.lk	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)		31.26 0.3
	Total Attenuation Losses / (dB)		31.56

4 Total System Loss / (dB) 33.32

5 Total System Gain / (dB)

	LINK: Kolonnawa - Kotugoda Link Length /(km):	23.3
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB) Length of Optical Fiber Approach Cable / (km) Span between tower / (km) Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) Approximated Link Length: (to be given in the nearest	0.04 0.3 0.25 0.5 0.4 6
2	multiple of splicing interval)	24
2	Connector / Splicing Losses	
	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 3 0.12
	Total Connector / Splice Losses University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations	1.2
<u>3</u>	Attenuation Losses	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	6.99 0.3
	Total Attenuation Losses / (dB)	7.29
4	Total System Loss / (dB)	8.49

5 Total System Gain / (dB)

<u>6 Margin / (dB)</u>

LINK: Kotugoda - Bolawatta Link Length /(km):

21

7.8

<u>1 SYSTEM FIGURES</u>

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	24

2 Connector / Splicing Losses

	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss		0.5 0.5 0.08 3 0.12
	Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1.2
<u>3</u>	Attenuation Losses	www.lib.mrt.ac.lk	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)		6.3 0.3
	Total Attenuation Losses / (dB)		6.6

4 Total System Loss / (dB)

5 Total System Gain / (dB)

6 Margin / (dB)

ì

LINK: Bolawatta - Chilaw Link Length /(km):

29.4

<u>1 SYSTEM FIGURES</u>

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	30

2 Connector / Splicing Losses

	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss		0.5 0.5 0.08 4 0.16
	Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1.24
<u>3</u>	Attenuation Losses	www.lib.mrt.ac.lk	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)		8.82 0.3
	Total Attenuation Losses / (dB)		9.12

4 Total System Loss / (dB) 10.36

5 Total System Gain / (dB)

6 Margin / (dB)

۸.

LINK: Chilaw - Puttalam 68.2 Link Length /(km): **1 SYSTEM FIGURES** 0.04 Single splice loss / (dB) Attenuation coefficient / (dB/km) 0.3 Insertion Loss for pair of Demountable Connectors / (dB) 0.25 Length of Optical Fiber Approach Cable / (km) 0.5 Span between tower / (km) 0.4 Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) 6 Approximated Link Length: (to be given in the nearest multiple of splicing interval) 72 2 Connector / Splicing Losses Loss at Location (1) 0.5 0.5 Loss at Location (2) Loss at Location (3) 0.08 Number of Splices 11 **OPGW Splice Loss** 0.44 1.52 **Total Connector / Splice Losses** University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk **3 Attenuation Losses** OPGW Attenuation / (dB) 20.46 OFAC Attenuation / (dB) 0.3 20.76 Total Attenuation Losses / (dB) 22.28 4 Total System Loss / (dB)

5 Total System Gain / (dB)

LINK: Laxapana - Balangoda Link Length /(km):

44.5

<u>1 SYSTEM FIGURES</u>

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	48

2 Connector / Splicing Losses

Loss at Location (1)		0.5
Loss at Location (2)		0.5
Loss at Location (3)		0.08
Number of Splices		7
OPGW Splice Loss		0.28
Total Connector / Splice Losses	University of Moratuwa, Sri Lanka.	1.36

3 Attenuation Losses

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

4 Total System Loss / (dB)	15.01
Total Attenuation Losses / (dB)	13.65
OFAC Attenuation / (dB)	0.3
OPGW Attenuation / (dB)	13.35

5 Total System Gain / (dB)

102.5

0.04

0.3

0.25

0.5

0.4

6

108

LINK: Balangoda - Galle Link Length /(km): **1 SYSTEM FIGURES** Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB) Length of Optical Fiber Approach Cable / (km) Span between tower / (km) Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval) **2 Connector / Splicing Losses**

	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss		0.5 0.5 0.08 17 0.68
	Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1.76
<u>3</u>	Attenuation Losses	www.lib.mrt.ac.lk	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)		30.75 0.3
	Total Attenuation Losses / (dB)		31.05
4	Total System Loss / (dB)		32.81

5 Total System Gain / (dB)

LINK: Balangoda - Embilipitiya Link Length /(km):

78

25.26

<u>1 SYSTEM FIGURES</u>

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	78

2 Connector / Splicing Losses

	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	(0.5 0.5 0.08 12 0.48
<u>3</u>	Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	1.56
-	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	2	23.4 0.3
	Total Attenuation Losses / (dB)	2	23.7

4 Total System Loss / (dB)

5 Total System Gain / (dB)

6 Margin / (dB)

١.

*

LINK: Embilipitiya - Matara Link Length /(km):

52

<u>1</u> SYSTEM FIGURES

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	54

2 Connector / Splicing Losses

Loss at Location (1)	0.5
Loss at Location (2)	0.5
Loss at Location (3)	0.0
Number of Splices	8
OPGW Splice Loss	0.3
Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. 1.4 Electronic Theses & Dissertations

3 Attenuation Losses

00	www.lib.mrt.ac.lk	

l Total System Loss / (dB)	17.3
Total Attenuation Losses / (dB)	15.9
OPGW Attenuation / (dB) OFAC Attenuation / (dB)	15.6 0.3

4 Total System Loss / (dB)

5 Total System Gain / (dB)

LINK: Embilipitiya -Hambantota Link Length /(km):

35

<u>1 SYSTEM FIGURES</u>

Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	36

2 Connector / Splicing Losses

Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss		0.5 0.5 0.08 5 0.2
Total Connector / Splice Losses	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1.28
3 Attenuation Losses	www.lib.mrt.ac.lk	
OPGW Attenuation / (dB) OFAC Attenuation / (dB)		10.5 0.3
Total Attenuation Losses / (dB)		10.8
4 Total System Loss / (dB)		12.08

5 Total System Gain / (dB)

6 Margin / (dB)

×

LINK: Kolonnawa - Panadura Link Length /(km): 11.7 **1 SYSTEM FIGURES** 0.04 Single splice loss / (dB) Attenuation coefficient / (dB/km) 0.3 Insertion Loss for pair of Demountable Connectors / (dB) 0.25 Length of Optical Fiber Approach Cable / (km) 0.5 Span between tower / (km) 0.4 Splicing Interval for OPGW / (km) - to be given in the nearest 6 multiple of span) Approximated Link Length: (to be given in the nearest 12 multiple of splicing interval) 2 Connector / Splicing Losses 0.5 Loss at Location (1) 0.5 Loss at Location (2) Loss at Location (3) 0.08 Number of Splices 1 **OPGW Splice Loss** 0.04 **Total Connector / Splice Losses** 1.12 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk **3** Attenuation Losses 3.51 OPGW Attenuation / (dB) OFAC Attenuation / (dB) 0.3 3.81 Total Attenuation Losses / (dB) 4 Total System Loss / (dB) 4.93

5 Total System Gain / (dB)

<u>LINK: Habarana - Valaichchenai</u> <u>Link Length /(km):</u>	99.7
1 SYSTEM FIGURES	
Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB) Length of Optical Fiber Approach Cable / (km) Span between tower / (km) Splicing Interval for OPGW / (km) - to be given in the nearest multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval)	0.04 0.3 0.25 0.5 0.4 6 102
2 Connector / Splicing Losses	
Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 16 0.64
Total Connector / Splice Losses	1.72
3 Attenuation Losses	
OPGW Attenuation / (dB) OFAC Attenuation / (dB)	29.91 0.3
Total Attenuation Losses / (dB)	30.21
4 Total System Loss / (dB)	31.93

5 Total System Gain / (dB)

6 Margin / (dB)

لأر

-

	LINK: Kiribathkumbura - Kurunegala Link Length /(km):	34.6
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB)	0.04
	Attenuation coefficient / (dB/km)	0.3
	Length of Ontical Fiber Approach Cable / (km)	0.25
	Span between tower / (km)	0.0
	Splicing Interval for OPGW / (km) - to be given in the nearest	0.1
	multiple of span)	6
	Approximated Link Length: (to be given in the nearest	
	multiple of splicing interval)	36
2	Connector / Splicing Losses Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 5 0.2
	Total Connector / Splice Losses University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations	1.28
<u>3</u>	Attenuation Losses	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	10.38 0.3
	Total Attenuation Losses / (dB)	10.68
4	Total System Loss / (dB)	11.96

5 Total System Gain / (dB)

6 Margin / (dB)

لمر

۲

-

	LINK: New Anuradhapura - Vavuniya Link Length /(km):	53.5
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB) Attenuation coefficient / (dB/km) Insertion Loss for pair of Demountable Connectors / (dB)	0.04 0.3 0.25
	Length of Optical Fiber Approach Cable / (km) Span between tower / (km)	0.20 0.5 0.4
	Approximated Link Length: (to be given in the nearest	6
2	multiple of splicing interval) Connector / Splicing Losses	54
_	Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 8 0.32
•	Total Connector / Splice Losses	1.4
<u>3</u>	Attenuation Losses	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	16.05 0.3
	Total Attenuation Losses / (dB)	16.35
4	Total System Loss / (dB)	17.75

5 Total System Gain / (dB)

<u>6 Margin / (dB)</u>

X

<u>LINK: New Anuradhapura -Trincomalee</u>	
Link Length /(km):	103.3
1 SYSTEM FIGURES	
Single splice loss / (dB)	0.04
Attenuation coefficient / (dB/km)	0.3
Insertion Loss for pair of Demountable Connectors / (dB)	0.25
Length of Optical Fiber Approach Cable / (km)	0.5
Span between tower / (km)	0.4
Splicing Interval for OPGW / (km) - to be given in the nearest	
multiple of span)	6
Approximated Link Length: (to be given in the nearest	
multiple of splicing interval)	108
Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 17 0.68
Total Connector / Splice Losses	1.76
<u>3 Attenuation Losses</u>	
OPGW Attenuation / (dB)	30.99
OFAC Attenuation / (dB)	0.3
Total Attenuation Losses / (dB)	31.29
4 Total System Loss / (dB)	33.05

5 Total System Gain / (dB)

<u>6 Margin / (dB)</u>

٦

٨

	<u>LINK: Badulla - Ampara</u> <u>Link Length /(km):</u>	104.9
<u>1</u>	SYSTEM FIGURES	
	Single splice loss / (dB) Attenuation coefficient / (dB/km)	0.04
	Insertion Loss for pair of Demountable Connectors / (dB)	0.25
	Length of Optical Fiber Approach Cable / (km)	0.5
	Span between tower / (km)	0.4
	Splicing Interval for OPGW / (km) - to be given in the nearest	
	multiple of span)	6
	Approximated Link Length: (to be given in the nearest	
	multiple of splicing interval)	108
2	Connector / Splicing Losses Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 17 0.68
	Total Connector / Splice Losses University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1.76
<u>3</u>	Attenuation Losses	
	OPGW Attenuation / (dB) OFAC Attenuation / (dB)	31.47 0.3
	Total Attenuation Losses / (dB)	31.77
4	Total System Loss / (dB)	33.53

5 Total System Gain / (dB)

<u>6 Margin / (dB)</u>

۶

入

ľ

5

٣

LINK: Ukuwela - Habarana 82.3 Link Length /(km): **1 SYSTEM FIGURES** 0.04 Single splice loss / (dB) Attenuation coefficient / (dB/km) 0.3 Insertion Loss for pair of Demountable Connectors / (dB) 0.25 Length of Optical Fiber Approach Cable / (km) 0.5 Span between tower / (km) 0.4 Splicing Interval for OPGW / (km) - to be given in the nearest 6 multiple of span) Approximated Link Length: (to be given in the nearest multiple of splicing interval) 84 2 Connector / Splicing Losses Loss at Location (1) 0.5 0.5 Loss at Location (2) Loss at Location (3) 0.08 Number of Splices 13 **OPGW Splice Loss** 0.52 **Total Connector / Splice Losses** 1.6 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk **3 Attenuation Losses** OPGW Attenuation / (dB) 24.69 OFAC Attenuation / (dB) 0.3 Total Attenuation Losses / (dB) 24.99 4 Total System Loss / (dB) 26.59

5 Total System Gain / (dB)

6 Margin / (dB)

X

	<u>LINK: Habarana - New Anuradhapura</u>	
	Link Length /(km):	50.4
1	SYSTEM FIGURES	
	Single splice loss / (dB)	0.04
	Attenuation coefficient / (dB/km)	0.3
	Insertion Loss for pair of Demountable Connectors / (dB)	0.25
	Length of Optical Fiber Approach Cable / (km)	0.5
	Span between tower / (km)	0.4
	Splicing Interval for OPGW / (km) - to be given in the nearest	
	multiple of span)	6
	Approximated Link Length: (to be given in the nearest	
	multiple of splicing interval)	54
2	Connector / Splicing Losses Loss at Location (1) Loss at Location (2) Loss at Location (3) Number of Splices OPGW Splice Loss	0.5 0.5 0.08 8 0.32
	Total Connector / Splice Losses University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations	1.4
<u>3</u>	Attenuation Losses	
	OPGW Attenuation / (dB)	15.12
	OFAC Attenuation / (dB)	0.3
	Total Attenuation Losses / (dB)	15.42
4	Total System Loss / (dB)	16.82
5	Total System Gain / (dB)	

)Ľ

L

۳٩

<u>APPENDIX – F:</u>

)x

1

۲

COMPARISON WITH SIMILAR NETWORKS

Electronic Theses & Dissert: www.lib.mrt.ac.lk

٦.