A STUDY ON THE FEASIBILITY OF USING BUILT UP TIMBER CONSTRUCTION IN SRI LANKA

624.01(048)

Submitted by:

Nandana Abeysuriya B.Sc.Eng.(Hons)., CEng., MIE(SL) Supervised by:

Dr. (Mrs) MTP Hettiarachichi **Department of Civil Engineering** University of Moratuwa

University of Moratuwa

82487

82487

82487

A Thesis submitted for the partial fulfillment Of the Degree of Master of Engineering in Structural Engineering Design

Year 2004

ACKNOWLEDGEMENTS

My sincere thanks to Prof. S R De S Chandrakeerthy and Eng. D R N Ferdinando who guided me towards a successful completion of this research.

My special gratitude to Dr. (Mrs) Premini Hettiarachchi, Senior Lecturer, Dept. of Civil Engineering, University of Moratuwa who Supervised this project, for devoting her valuable time to discuss and contribute knowledge towards the success of the research, providing necessary course materials, arranging laboratory testing even during non working hours and encouraging in many ways to make this project move. If not for her, this project would not have been successful.

My gratitude to Mr Madanayake, Structures Laboratory and his staff for helping me to carry out tests.

CONTENTS

1.0		INTRODUCTION	01
	1.1	Advantages	01
	1.1.1	Non availability of large timber members	01
	1.1.2	Strength properties	01
	1.1.3	Stiffness properties	02
	1.1.4	Economy	02
	1.2	Objectives of the research	02
2.0		BUILT UP TIMBER MEMBERS	04
	2.1	Built up timber beams	04
	2.1.1	Glued laminated beams	04
	2.1.2	Ply web beams	04
	2.1.3	Spaced Beams	05
	2.2	Built up timber column	06
	2.2.1	•	06
	2.2.2		07
	2.2.3	CHITCHIS OF PROTEINING, OFF LIBRAL.	07
	2.2.4	Hox column Electronic Theses & Dissertations	08
	2.3	Timber Trusses	08
	2.3.1	Timber Truss	08
3.0		IDENTIFICATION OF SUITABLE BUILT UP MEMBERS FOR SRI LANKA	12
	3.1	Available timber	12
	3.2	Manufacturing process and equipment required	13
	3.3	Connection type	15
	3.4	Manufacturing cost	15
	3.5	Aesthetical aspects	15
	3.6	Selection of suitable built up timber members	18
	3.6.1	Truss	18
	3.6.2	Spaced beam	19
	3.6.3		19
	3.6.4	Box column	20
	3.6.5	Braced column	20
4.0		DESIGN AND DEVELOPMENT OF SELECTED BUILT UP MEMBERS	21
	4.1	Design and development of Parallel Chord Truss	21
	4.1.1	Basic Guide lines for Truss Design	21
	412	Analysis of Truss	23

		Design of Connections	24
	4.1.4	Design examples using computer software	26
	4.1.4.1	Designing of bottom member	30
		Designing of top member	30
		Designing of vertical cross member	30
		Designing of inclined cross members	31
		Designed member sizes	34
		Designing of Equivalent solid timber beam	35
		Check for deflection	36
		Cost comparison	36
		Cost of Timber	36
		Cost of Labour	36
		Cost of Tools, Nuts and Bolts	36
		Cost of Solid Timber	37
		Cost comparison for different spans	38
		Conclusion	41
			41
		Designing of Top and Bottom chord	44
		Governing factors to decide spacing of	46
	7.2.2	of spacer blocks	70
	423	Spacer block design	47
		Design Example	49
		Check for tensile members	49
		Check for compression members	52
		Connection details sity of Moraluwa, Sri Lanka.	52
			52
	4.2.0	Conclusion Www.lb.mr.ac.lk Designing and Dayslanmant of Wooden box column	55
		Designing and Development of Wooden box column	60
		Design example to compare box column and solid column Designing of Box Column	60
		Designing of Solid Column	61
	4.3.1.2	Designing of Solid Column	ΟŢ
5.0		EXPERIMENTAL APPROACH	62
	5.1	Experiments on structural wood adhesives	62
		Multi Bond 373	62
		Physical data	62
		Characteristics	63
		Dyno Structural wood adhesive	63
		Epi-Fix Structural adhesive	63
		Testing of samples	64
		Preparation of samples	64
		Results of sample 1,2 and 3	67
		Comparison with solid sample	67
		Testing of glued laminated samples for	70
	ر.۱.ی.	different conditions	, 0
	5.1.4	Conclusion on glued connections	80
	5.2	Testing of wooden box column	80
		Typical calculation for sample no 01	80
		Conclusion on wooden box column	85
6.0		CONCLUSION AND RECOMMENDATIONS	86
0.0		Reference	87
		INCIDITION	0/

LIST OF TABLES

Table No	Description	Page
01	Element stresses of Timber Truss	28
02	Deflections of Timber Truss	29
03	Deflections for final member sizes	29
01R	Element stresses for alternative arrangement	32
04	Price of timber for lengths less than 5.0 m	37
05	Prices of timber for lengths 6.0m to 7.2 m	37
06	Price of timber for different sizes	38
07	Member sizes of the truss	39
08	Bending stresses for different spans	39
09	costing of timber truss	40
10	Element stresses of spaced beam	53
11	Compressive strength of box columns	60
12	Section design of solid column	61
13	Test results of solid samples	69
14	Test results of laminated timber sample	70
15	Test results of laminated timber sample -wet	71
16	Bonding strength of samples	75

LIST OF PHOTOGRAPHS

Photograph	Description	Page
01	Spaced beam used in a House at Nawala	05
02	Spaced beam –enlarge detail	06
03	Equipment use for nailing and lamination	14
04	Timber truss used for a House at Moratuwa	16
05	Timber Truss used for a House at Ragama	16
06	Compressive testing machine	66
07	Glued timber samples after testing	66
08	Timber box columns under compressive load	82
09	Timber box column sample	83

LIST OF FIGURES

г.	D : ::	70
Figure	Description	Page
01	Glued Laminated Timber	09
02	Built up Timber beam	09
03	Truss for large spans	10
04	Spaced Beam	10
05	Layered Column	11
06	Spaced Column	11
07	Braced column	11
08	Box Column	11
09 .	Tapered Beams	17
10	Timber connectors	17
11	Parallel chord truss	22
12	Timber connection details	25
13	Timber connection – two members	27
14	Timber connections- three members	27
15	Node and Element numbering of truss	33
16	Force diagram	33
16R	Force diagram for alternative arrangement	33
17	Trusses with member forces	42
18	Spaced Beam	43
19	Stress distribution of spaced Beam	43
20 (a)	Spaced block connection	48
20 (b)	spacer block connection	48
21	Spaced beam – design example	50
22	Element and Node numbering of Spaced beam	50
23	Force diagrams of spaced beam	51
24	Connection details of spaced beam	54
25	Box column sections	59
26	Chart for Column stress Vs length	59
27	Glued laminated timber sample	65

LIST OF GRAPHS

Graph no	Description	Page
Α	Cost Vs Span of beam	40
01	Bonding strength of solid samples	76
02	Bonding strength of Laminated samples	77
03	Bonding strength of Laminated samples-wet	78
04	Bonding strength of Laminated samples-dry	79
05	Failure load Vs L/D ratio	85