LB/DCN/44/08

6. ..

SENSOR FUSION MODEL FOR LOW COST MOBILE ROBOT PLATFORM

A dissertation submitted to the Department of Mechanical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Engineering

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Supervised by: Dr. Palitha Dassanayake Dr. Lanka Udawatta

91193

Department of Mechanical Engineering University of Moratuwa, Sri Lanka

January 2006

91193

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

Achala Palegedara/ersity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Date: 25. 91029960.mrt.ac.lk

We endorse the declaration by the candidate.

UOM Verified Signature

Dry Palitha Dasasanayake Department of Mecahnical Engineering University of Moratuwa, Sri Lanka

UOM Verified Signature

Dr. Lanka Udawatta Department of Electrical Engineering University of Moratuwa, Sri Lanka

Abstract

This project investigates the general robots behavior, control and Multi-Sensor sensory fusion techniques using low cost Infra-red (IR) sensors, Sonar sensors (Ultrasonic sensors), Optical encoders and general-purpose Web camera specially CMUcam CMOS camera.

According to my literature survey I have found that current high – tech researches are going on by applying very expensive and sophisticated sensory devices such as, Stereo-Vision sensors, Laser scanners, High resolution CCD camera etc. along with embedded high speed Digital Signal Processor (DSP) systems. Due to above technical and financial restrictions facing with research as well as depth of expected research study to be performed; very complex and highly expensive components should have been eliminated and would not be illustrated further.

- This project particularly based on sensory fusion with image processing techniques. The objective as well as motivation is, to build a low cost, optimal level resource consuming reliable sensory system for a robot. Relying only one sensor especially the time of flight sensor (sonar) will probably cause problems such as, sonar sensors are limited in resolution, range and the size of the object they can detect, sensor value (from sonar) may not correspond to the actual distance of the object, cross talk, fore shorting and specula reflection.
- Sensors sometimes can be complementary or redundant since it is necessary to make an appropriate selection of sensors when building the sensor suit for a mobile robot. For an example, Infra-Red (IR) can provide less-accurate range measurements compared to the ultrasonic sensors but IR sensors can provide a large number of measurements in a short time period; can easily be mounted on a scanner to provide panoramic view and sonar sensors are excellent for mobile robot applications when especially navigate through a room filled with obstacles. In many cases multiple sensor sources are better than single sensor reading. This led to the development of the sensor system architecture with sensory fusion techniques. Further, this permits more than one sensor making the sensory system more reliable and robust.
- Typically the general architecture of the fusion sensor has been categorized into two; low-level fusion and high-level fusion. In this project, the architecture is developed based on actionoriented sensory fusion, in belief that multiple sensor reading can be fused and would give rise to certain behavior for mobile robot. And also Filtering techniques are employed to reduce the uncertainties in the line segment representation and Data / Image fusion.
- Some of the issues in designing particular vision system for the robot, involves capturing and storing the entire image before starting the image analysis and to overcome some of general vision system issues, system has to be designed to extract visual information from the environment in Real-Time using an affordable 'off the shell' digital CMU cam color camera and embedded controller.

The final implementation and results were obtained by using Simrobot simulations and real low cost mobile platform was developed to certify the trialed simulations and implemented behaviors. It is discussed that complex situations such as emergency behavioral decision making, significantly deviates from expected once so that vision and image processing in real time make hardcore experience in low cost camera I had used and also uncertainty of sensor inputs truly make unexpected fusion results with noise addition as well.

i

4

Acknowledgements

First and foremost, this work will never have gone this far if it has not been for the insightful guidance, valuable suggestions, timely encouragement and friendship, from my supervisors, Dr.Palitha Dassanayake and Dr.Lanka Udawatta. Without their continuous and extensive support, I would never be able to complete this research project.

I would like to extend my special thanks to my project partner Awantha Swarnathileke, for his valuable support on my project. Discussions with him have always been filled with inspirations and stimulations.

My personal thanks are also dedicated to specially Dr. Watugala, Dr. Kahangamage and all staff and colleagues in the Mechanical & Electrical departments and Electrical Engineering research Lab, for their continuous support during the period of my research. Special thanks should rush to Buddhika, Lakmal, Nishantha, Gopura and Sampath, for their friendship and for always being fun to work with.

I would also like to extend my personal appreciations to Asian Development Bank scholarship program for the scholarship provided respectively so that I could concentrate on my research. And also extent my gratitude to post graduate office staff of University of Moratuwa for helping me to make this success.

Last but not least, I wish to express my sincere thanks to my Father, late my Mother, my Brother and my loving Kaushalya for sharing all my pains and joys, for encouraging and supporting me all the time. This thesis is especially dedicated to you.

ii

Content.

Page

Introduction	1
1.1 Uses of Robots	2
1.2 Characteristics of Robotics	2
1.3 Problems of Modern Robotics	3
1.3.1 Hardware	4
1.3.2 Software	4
1.3.3 Barrier to Entry	4
1.4 Why? Sensor Fusion	5
1.5 Sensor Modules for Perceptual Behaviors	6
1.5.1 Ranging Module	6
1.5.2 Machine Vision Operation: of Moratuwa, Sri Lanka	
1.6 Implementation of Perceptual Behaviors. & Dissertations.	8
1.6.1 Obstacle-notificationlib.mrt.ac.lk	
1.6.2 Obstacle-detection	
1.6.3 Landmark-detection	
1.7 Development	
1.8 The object in uncertain environment and identification or Avoiding	
1.9 The proposed methodology	
1.10 Structure of the Report	
Objectives and Methodology	
2.0 Main Objective:	
2.2 Methodology :	
2.2.1 Project methodology would be given as following steps:	
2.2.2 Secondary Methodological aspects are illustrated as follows:	
2.3 Hardware arrangement	15
2.4 Behavior Embodiments and Testing Results	
2.5 Resource Requirement:	

٠

ð

Literature Review	
3.0 Introduction	17
3.1 Sensors	
3.1.1 Sensor Classification	
3.1.2 Active Sensors	
3.1.3 Passive Sensors	24
3.2 Sensor Fusion	29
3.2.1 What is Sensor Fusion?	29
3.2.2 Sensor Fusion Considerations	30
3.2.3 Sensor Technology Development	
3.2.4 Internal State Sensors	
3.3 External Navigation Sensors	
3.4 Sensor Interpretation Algorithms– why it is so hard	33
3.4.1 Better quality of sensors	33
3.4.2 Better sensor models	34
3.4.3 Better data fusion methods	34
System Component Selection and Design Moratuwa, Sri Lanka.	35
4.1 Vision System Electronic Theses & Dissertations	35
4.1.1 Illumination	35
4.1.2 Image Acquisition	35
4.1.3 Image information	36
4.2 Supporting Libraries	40
4.3 Vision Algorithm	42
4.5 Deventec SRF04 series Ultrasonic Sonar Range Finder	45
4.5.1 The Microcontroller and serial data transmission	46
4.5.2 Validation Methodology for Sonar Sensor	48
4.6 Infrared sensors	49
Implementation	
5.0 Sensor Fusion	
5.1 Common data fusion methods	52
5.2 Motivation for Sensor Fusion	53
5.2.1 Sensor Fusion Architectures	53

T

5.2.2 Behavior-Based Robotics and Sensor Fusion	. 56
5.3 Robotic Sensor Fusion Studies	. 59
5.3.1 Sensor Fusion Effects Architecture	. 60
5.3.2 Sensor Fusion in a Time-Triggered Network	. 62
5.3.3 Just-in-Time Sensor Fusion	. 63
5.3.4 Neural Network Sensor Fusion	. 63
5.4 Sensor Fusion Algorithm	. 64
5.4.1 The Intelligent Sensor Fusion Algorithm for Object Identification (Sub System)	. 66
5.4.2 Fuzzy Logic Application	. 66
5.4.3 Combining with image information	. 70
5.4.4 The New Input Array and Neural Network Classifier	. 70
5.5 The Intelligent Sensor Fusion Algorithm for Object Avoidance and Navigation Era	. 71
5.5.1 Vision information Processing	. 73
5.5.2 Behavior Acquisition by Fusing Sonar and Vision	. 73
5.5.3 Basics of Reinforcement Learning	. 73
5.5.4 Construction of State Space	. 74
5.6 Estimation of Robot's Position Using Wheet Encoder System.	. 76
5.6.1 Theoretical backgroundic Theses & Dissertations	. 77
5.6.2 Implementation WW.lib.mrt.ac.lk	. 78
5.7 Miscellaneous Existing Developments of Multi Sensor Data Fusion	, 79
5.7.1 Theory on the selection of Kalman-filter-based multi-sensor data fusion methods	. 79
5.7.2 Open Problems - the big questions	. 8 0
Results & Discussion	. 83
6.1 Sensor fusion for Object Identification scenario	. 83
6.1.1 The Classifier with Data by Both Sensors without Filtering	. 83
6.1.2 The Classifier with Fusion of Data by Both Sensors with Filtering	. 85
6.2 Sensor Fusion for Navigation Behavior with avoiding obstacle	. 86
6.3 The Simulation Results form the Robot Navigation	. 88
6.4 Alternative Test Results on Estimation of Robot's Position	. 89
6.4 Discussion	. 91
Conclusions	. 92
7.0 Conclusions	. 92

7.1 Recommendation for Future Work	
References	

Appendix A	
Appendix B	
Appendix C	
Appendix D	
Appendix E	

List of Figures

.

Figure 1.1: Flowchart of project development process	10
Figure 3.1: Scanning Laser Range Finder	18
Figure 3.2: Basic Structured Light Setup	20
Figure 3.3: An Earlier Ultrasonic Range Finder	21
Figure 3.4: IR Sensor (A), Ultrasonic Sensor (B), and Servo (C).	22
Figure 3.5: Schematic Diagrams of the Ranging Module and its Beam Coverage.	23
Figure 3.6: Schematic Diagrams of the Typical Angles of the Ranging Module	23
Figure 3.7: Two-Track Incremental Encoder Disc	25
Figure 3.8: Vision System Components	26
Figure 3.9: CCD Camera	27
Figure 3.10: The microcontroller board mated with the CMOS camera	27
Figure 3.11: Detail of the assembled microcontroller board	27
Figure 3.12: Computer Vision Process	28
Figure 4.9: Image preprocessing stages of Images for Object Identification Case	36
Figure 4.10: Image preprocessing stages of Images for Object Avoidance and Navigation	36
Figure 4.11: primitive objects used in the Test and Research	37
Figure 4.12: Histogram based thresholding	38
Figure 4.13: Camera Frame and preprocessed Image	40
Figure 4.14: CMOS camera and Parameters	41
Figure 4.15: CMOS camera and Parameters in schematic representation	41

Figure 4.16a: Grayscale Conversion of Objects	42
Figure 4.17 Result after selecting Red layer	42
Figure 4.18 Edge Map	43
Figure 4.19 All Ellipses	43
Figure 4.20 Most prominent ellipse	. 44
Figure 4.21: Schematic diagram of tested platform	44
Figure 4.22: Deventec SRF04 series Ultrasonic Sonar Range Finder	45
Figure 4.23: The beam pattern of the SRF04	46
Figure 4.24: PIC16F877A Microcontroller pin arrangement	47
Figure 4.25: Interfacing Sonar Module to host computer	47
Figure 4.26: An Example of Sonar Sensor Information Collection	48
Figure 4.27: Block diagram of the Microcontroller and PC communication	49
Figure 4.29: Sharp GP2D02 distance output (left) and sensing range (right)	50
Figure 4.30: Robot with basic sensor elements and their propagation directions	50
Figure 5.1: Block diagram of sensor fusion and multisensor integration	53
Figure 5.2: Sensor Fusion I/O Modes	54
Figure 5.3: Sensor Fusion & Behavior Fusion rature Sri Lanka	58
Figure 5.4: How percepts are combined in sensor fission entations.	59
Figure 5.5: How percepts are combined in sensor fusion	60
Figure 5.6: How percepts are combined in sensor fashion	60
Figure 5.7: Cognitive model of sensing used in SFX.	61
Figure 5.8: The similar appearance of different objects	65
Figure 5.9: Fuzzy membership functions	66
Figure 5.10: Fuzzy membership functions for premise parameters	67
Figure 5.11: Fuzzy membership functions for consequent parameters	67
Figure 5.12: Block diagram of a fuzzy inference system	68
Figure 5.13: Untrained membership functions of the antecedent	69
Figure 5.14: Untrained membership functions of the consequent	69
Figure 5.15: The Tsukamoto type fuzzy inference system	69
Figure 5.16: The new input array	. 70
Figure 5.17: The Classifier with proposed sensor fusion algorithm	71
Figure 5.18: Integrated overview of the System schematic presentation	72
Figure 5.19: States discriminated by the visual sensor	73

¢

Figure 5.20: Sensory Region and Discriminating method	75
Figure 5.21 :(a) Positions of A & B wheels with encoders	
Figure 5.23: Block Diagram of the Robot	
Figure 5.24: GUI - Configuration Window & GUI - Path Displaying Window	79
Figure 6.1: The classifier architecture with both data without filtering	83
Figure 6.2: Network error graph with sensors without filtering	84
Figure 6.3: Illustration of Filtering Mechanism	85
Figure 6.5: Robot Navigate with vision sensor attached	86
Figure 6.6: (a) Sub environmental sonar distance patterns	87
Figure 6.7: Target reaching behavior in computer simulation	87
Figure 6.8: Robot simulation results	88
Figure 6.9: GUI for Map and Navigation viewer	89
Figure 6.10: Path settings of robot to be navigated	90
Figure 6.11: GUI – Path Displaying Window	90
Figure D1: Current flow through the H-bridge circuit	117
Figure D.2: PWM motor input examples	118
Figure D.3: Input to the Inotor control circuit natuwa, Sri Lanka.	119
Figure D.4: R\$232 Loge Ceversnic Theses & Dissertations	119
Figure D.5: Block diagram of motor driven circuit	120
Figure D.6: PWM signal routing according to directional bit	120
Figure D.7: Final appearance of the motor control circuit	121
Figure D.8: Robot step responses for various PWM values	121

a