ANALYZING ECONOMIC BENEFIT AND PERFORMANCE OF STEP-LAP CORES OVER CONVENTIONAL CORES IN DISTRIBUTION TRANSFORMERS

Master of Science Dissertation

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

T. C. D. A. GUNAWARDHANA

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

LIBRARY UDIVERSITY OF MORATUWA. SRILANK. 23/DON 100 491 MORATUWA

101

ANALYZING ECONOMIC BENEFIT AND **PERFORMANCE OF STEP-LAP CORES OVER CONVENTIONAL CORES IN DISTRIBUTION TRANSFORMERS**

A dissertation submitted to the

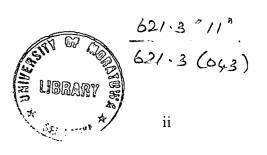
Department of Electrical Engineering, University of Moratuwa

in partial fulfilment of the requirements for the

Degree of Master of Science

University of Moratuwa, Sri Lanka. **Electronic Theses & Dissertations** www.lib.mrt.ac.lk by

T. C. D. A. GUNAWARDHANA


Supervised by: Prof. J. R. Lucas

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

niversity of Moratuwa LILL HE HE HE HE HE HE 96805

96805

96805

Declaration

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

T. C. D. A. Gunawardhana Date: $09 \log 11$

We/I endorse the declaration by the candidate.

UOM Verified Signature

Prof. J.R. Lucas 10/02/2011

Abbreviations

,

ANN	Artificial Neural Network
CEB	Ceylon Electricity Board
CRGO	Cold Rolled Grain Oriented
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronic Engineers
LECO	Lanka Electricity Company
LKR	Sri Lankan Rupees
LL	Load Loss
LTL	LTL Transformers (Pvt.) Ltd.
NLL	No Load Loss
SPP	Simple Payback Period
USD	United State Dollars

,

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table of Content

,

ł

*

4

Declaration	iii	
Abbreviations	iv	
Table of Content	v	
Abstract	vii	
Acknowledgement	viii	
List of Figures	ix	
List of Tables		
Chapter 1		
1 Introduction		
1.1 Objectives of the Study		
1.1 Objectives of the Study 1.2 Methodology		
Chapter 2		
2 Transformer Core Performance and Design		
2.1 Transformer Core Performance		
2.1.1 Core losses	4	
2.2 Core Design University of Moratuwa, Sri Lanka		
2.2.1 Cote building onic Theses & Dissertations	7	
2.2.2 Behaviour of Flux in the Core		
Chapter 3		
3 Conventional Vs Step Lap Core Design		
3.1 Performance of Core Joint		
3.1.1 Conventional Core Stacking3.1.2 Step-lap Core Stacking		
 3.1.2 Step-lap Core Stacking 3.2 Behaviour of Flux in Conventional and Step-lap Core Joints 		
3.3 Step-Lap Core Types		
3.4 Advantages of Step-Lap Core over Conventional Core		
Chapter 4		
4 Analyzing the Flux Pattern in Core Joint		
4.1 Numerical Computation – Using Finite Element Method		
4.2 Using Artificial Neural Network		
4.3 Temperature Measurement Method		
4.4 Application of Temperature Measurement Method		
4.5 Simulating the Result in MathLab		
Chapter 5	22	
5 Design, Manufacture and Comparison of Performance of Step-Lap Cores		
5.1 Methodology		
5.2 Case Study 1: 1000kVA Transformer		
5.3 Case Study 2: 250kVA Transformer		
5.4 Test Results		

Chapter 6 3	1
6 Economic Benefits of New Core-Cutting Line	1
 6.1 Design Options to Utilize Benefits of Step-lap Cores	2 2
Chapter 7	6
7 Conclusion	6
References	8
APPEDIX A – Test Method for No Load Test, LTL Transformers (Pvt.) Ltd 4	0
APPEDIX B – Temperature Measurement Data 4	2
APPEDIX C-1 – Core Loss Graph of Core Steel Type 27ZH100 4	3
APPEDIX C-2 – Core Loss Graph of Core Steel Type H105-30 4	4
APPEDIX C-3 – Core Loss Graph of Core Steel Type H103-27	5

4

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

The step-lap core manufacturing technique for distribution transformers can be considered as an emerging technology in the transformer industry in the Asian region, but a well practiced design in the European and other developed countries where transformer industry is updated with modern facilities with high tech machinery in their production lines.

The LTL Transformers (Pvt.) Ltd., the sole manufacturer of distribution transformers in Sri Lanka has taken the initiative to purchase a modern core cutting line with the step-lap technology. This project focuses on studying the behaviour of core joint and does a comparative evaluation of the performance and economics of conventional cores and step-lap cores in distribution transformers.

In particular, the effects of core joints on core performance were studied. A Feasibility study was done on the LTL design cores. The Step-lap cores were manufactured using the available core cutting line and the performance data were compared with that of Electronic Theses & Dissertations conventional type cores.

The study shows that the core loss in distribution transformers can be reduced by about 8% with the introduction of the step-lap core. The study concludes by showing that replacing the conventional core cutting line with modern high-tech machine for producing step-lap cores is viable with a payback period of 7 to 8 years.

Acknowledgement

At the very beginning, I offer my sincerest gratitude to my supervisor, Professor Rohan Lucas, without his support and guidance given throughout, this project would not have been a success. My thanks should also go to Dr. J. P. Karunadasa, Head of the Department of Electrical Engineering, and the other members of the academic staff of the Department of Electrical Engineering, for their valuable suggestions and comments.

I would like to thank specially, the staff in the Department of Electrical Engineering and in the Post Graduate Division of the Faculty of Engineering of University of Moratuwa for their excellent support and cooperation.

I am specially thankful to my colleagues at LTL Transformers (Pvt.) Ltd. for providing assistance in numerous ways to carry out my project.

Finally, I would like to thank my family for their Suiderstanding, motivation and patience. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 2.1 : Typical Forms of Three phase and Single phase Transformer Cores 6
Figure 2.2 : Core Cross Section Views
Figure 2.3 : Lamination Sheet Arrangement to Form the Core
Figure 2.4 : Lamination Sheet Arrangement to Form the Core
Figure 2.5 : Flux Pattern of Three Phase Three Limb Core
Figure 3.1 : Conventional and Step-lap Stacking Method [4] 10
Figure 3.2 : Core Stacking Methods 11
Figure 3.3 : Behaviour of Flux in Conventional Joint [5] 12
Figure 3.4 : Behaviour of Flux in Step-lap joint [5] 13
Figure 3.5 : Horizontal Step-lap Vs. Vertical Step-lap
Figure 4.1 : Core Drawing of 250kVA 33kV Conventional Core 19
Figure 4.2 : Placement of Thermocouples on the Core Surface 19
Figure 4.3 : Temperature Distribution in the Core
Figure 5.1 : Core Cutting Drawing of 1000kVA, 33kV Conventional Core
Figure 5.2 : Core Cutting Drawing of 1000kVA, 33kV Step-lap Core
Figure 5.3 : Core Cutting Drawing of 250kVA, 33kV Conventional Core
Figure 5.4 : Core Cutting Drawing of 250kVA, 33kV Step-lap Core
Figure 6.1 : Proposed High Tech Core Cutting-Line

∢

List of Tables

Table 4.1 : Location-wise Temperature Readings	20
Table 5.1 : 33kV Transformer Sales - CEB	23
Table 5.2 : Percentage No Load Loss for Standard Designs	24
Table 5.3 : Performance Data for 1000kVA Sample Transformers	29
Table 5.4 : Performance Data for 250kVA Sample Transformers	29
Table 5.5 : Comparison of Parameters of Step-lap cores and Conventional Cores	30
Table 6.1: Electrical Steel Price and Loss Comparison	33
Table 6.2 : Total Saving due to change of Core Steel Type	33
Table 6.3 : Capitalized No Load Loss Values in Other Countries	34
Table 6.4 : Saving due to Reduced No Load Loss	35

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk