

ECONOMIC LOSS OPTIMIZATION TECHNIQUE FOR DISTRIBUTION TRANSFORMER SIZING

Master of Science Dissertation

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations R.M. H. L. THUSHARA www.tib.mrt.ac.lk

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

LB!DON/80/2011

101

ECONOMIC LOSS OPTIMIZATION TECHNIQUE FOR DISTRIBUTION TRANSFORMER SIZING

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by

Supervised by

: Dr. Narendra de Silva Eng. W.D.A.S. Wijayapala

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

76806 621.3 "11" 3621.3 (143) 400 CRV 5

Declaration

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

i

UOM Verified Signature

R M H L Thushara 15th February 2010

UOM Verified Signature

Dr. Narendra de Silva

UOM Verified Signature

÷ .

3

Eng. W.D.A.S. Wijayapala

CONTENTS

4

Declarationi
Abstractiv
Ackonwledgementv
List of figuresvi
List of tables
Abbreviations
1.0 Introduction
1.1 Background1
1.2 Motivation
1.3 Objectives
2.0 Theoretical Development
2.1 Model Investigation
2.1.1 Square shape service area with triangular separation per feeder
2.1.2 Square shape service area with square separation per feeder
2.1.3 Hexagonal Shape Service Area with triangular separation per feeder9
2.1.4 Hexagonal Shape Service Area with trapezoidal separation per feeder 11
2.2 Transformer analysis, lib.mrt.ac.lk. 12
2.3 Multiplication factor 'k' 14
3.0 Data Collection and Analysis
3.1 Data collection
3.3 Application Charts
4.0 Optimization Formulation for Model Based Secondary Distribution Planning24
4.1 Approaches to the Problem
4.2 Proposed Solution
4.2.1 Excess Load Transferring
4.2.2 Increasing Transformer Capacity
5.0 Computational Implementation
5.1 Algorithm Development
5.2 Case Study 1
5.3 Case Study 2
Chapter 6
6.0 Conclusion
References:
Appendix A Data Collection

Appendix B	Transformer Voltage Drop	48
	transformer Power Loss	
Appendix D	Application Chart – 400 kVA	50
Appendix E	Application Chart – 250 kVA	51
Appendix F	Application Chart – 160 kVA	52
Appendix G	Application Chart – 100 kVA	53
Appendix H	Application Chart – 50 kVA	54

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

The Distribution system is a dynamic system which requires frequent system augmentation to ensure customer satisfaction and optimum system operation. Planning of such a system needs to consider many variables and alternative solutions in a complex process to select the system components at their economical size combination. Since distribution transformer is the major cost contributor in the secondary distribution network, correct sizing should be achieved via economical optimization in avoiding under utilization. Adoption of a global design methodology is preferred in this case.

This research was intended to implement a model based secondary distribution planning strategy which will be capable enough to provide final solution in a minimum time with economic evaluation. The application of geometry to represent distribution transformer service area is helpful in the system analysis and it simplifies greatly the complexity of the system while allowing comparison of alternative arrangements in a faster manner. Several options are analyzed during this study in comparing actual system data of large number of distribution transformers in Lanka Electricity Company's (LECO) 11kV/400V system. It is concluded that the model of hexagonal geometric service cell area with trapezoidal separation per feeder is the best fit model to represent a secondary distribution transformer service area. This selection is based of voltage oriented. This includes three main feeders originating from the distribution transformer located at the center of the hexagon.

Set of application charts for commonly available distribution transformers are developed in the research. This gives faster method of investigation about voltage drop and power loss for a particular distribution transformer in various configurations. The computer program is finally implemented in MATLAB to generate final solution for the optimum transformer capacity. Existing network expansion or reinforcement is investigated in this program. Economic optimization is implemented in both cases where Genetic Algorithm is used as an optimizing technique for the first option which achieves converged to the global optimum point in a few seconds. A detail case study is done with actual system data to verify the final results.

Acknowledgement

I wish to express my deep gratitude to my supervisors, Dr. Narendra de Siva, Head of Engineering, Lanka Electricity Company (Private) Limited, for his invaluable help in getting me started on this project, his constant guidance and sense of humor. Also thanks are due to Eng. W.D.A.S. Wijayapala, Senior Lecture, Dept. of Electrical Engineering, University of Moratuwa, for his guidance and encouragement to achieve this goal.

My sincere gratitude goes to all the department members of Electrical Engineering, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office.

I extend my sincere thanks to the senior management of the Lanka Electricity Company (Private) Limited where I am employed, for giving this remarkable opportunity in my career and I will not forget to thanks to the engineers in the Moratuwa Branch of Lanka Electricity company for their encouragements.

Finally, I should thank many individuals, friends and colleagues of my batch who have not been mentioned here personally in making this educational process a success. I could not have made it without your supports.

V

List of figures

٨

Figure 1: Single line diagram of a typical distribution system	2
Figure 2: Square shape service area with triangular separation per feeder	7
Figure 3: Square shape service area with square separation per feeder	9
Figure 4: Hexagonal Shape Service Area with traingular separation per feeder	9
Figure 5: Hexagonal Shape Service Area with trapezoidal separation per feeder	
Figure 6: Percentage voltage drop chart for distribution transformers	
Figure 7: Percentage power loss chart for distribution transformers	
Figure 8: Power loss chart for distribution transformers	
Figure 9: Geographic Area	
Figure 10: Load density variation in kVA/km2	
Figure 11: Data collected from each transformer	
Figure 12: Error variation of percentage voltage drop	
Figure 13: Error variation of percentage power loss	
Figure 14: Usage of application chart	~~
Figure 15 Input data formatersity of Moratuwa, Sri Lanka.	20
Figure 16: Block Diagram of the Program WWW.lib.mrt.ac.lk	31
Figure 17 Actual Locations of the Transformers	32
Figure 18: Volt.Drop and Power Loss Conditions of the Transformers	
Figure 19: Output of the optimization	
Figure 20: Graphical view of the optimization output	35
Figure 21: Output of the SurTX_loss.m in iteration 1	
Figure 22: Results in the second iteration of case 1	37
Figure 23: Results of the step 13- Case 1	
Figure 24: Graphical View of the results of the step 13 – Case 1	
Figure 25: Results in the second iteration	
Figure 26: Results in the first iteration4	10
Figure 27: Results in the second iteration4	
Figure 28: Results of the step 13 – Case 2 4	2
Figure 29: Graphical View of the results of the step 13 – Case 2	2

.

f

List of tables

Table 1: Summary of equations	12
Table 2: Distribution transformer parameters	17
Table 3: Distribution feeder parameters	17
Table 4 : Actual and Calculated Data Comparison	20
Table 5: Initial investment cost	27
Table 6: Input Data	32
Table 7 : Step 2 results of Case 1	33
Table 8: Input Data of Case 2	39
Table 9 : Step 2 results of Case 2	39

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

vii

Abbreviations

1

Z_1	Impedance of the main line (Ω/km)
Z_2	Impedance of the spur line (Ω/km)
rı	Resistance of the main line (Ω/km)
r_2	Resistance of the spur line (Ω/km)
а	Feeder length (km)
ρ	Load density (kVA/km ²)
VL	Line voltage (kV)
TR_Capacity	Transformer capacity
R	Resistance of the transformer in p.u.
Х	Resistance of the transformer in p.u.
Cosø	Power factor of the entire network in weighted average
Total_Load	Total load connected to the transformer
FC _{tx}	Fixed cost of distribution transformer University of Moratuwa, Sri Lanka.
VC _{tx}	Variable cost of distribution transformer Electronic Theses & Dissertations
FC _{mf}	Fixed cost of main feeders
VC _{mf}	Variable cost of main feeders
FC_{sp}	Fixed cost of spur lines
VC _{sp}	Variable cost of spur lines