WERSITY OF MORATUWA, SAI LANA MORATUWA

LB/DON/80/2011

IMPROVEMENT OF CEB DISTRIBUTION PROTECTION TO ENHANCE SYSTEM RELIABILITY.

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by

CHAMILA DAYANGA WIJEWEERA University of Moratuwa, Sri Lanka. **Electronic Theses & Dissertations** www.lib.mrt.ac.lk

Supervised by: Prof. H.Y Ranjith Perera and Dr. H.M. Wijekoon

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

iniversity of Moratuwa 96811

96311

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

C.D.Wijeweera Date: 03rd February 2011

University of Moratuwa, Sri Lanka. I endorse the declaration of the Tahattate & Dissertations www.lib.mrt.ac.lk

UOM Verified Signature

Prof. H.Y Ranjith Perera Professor, University of Moratuwa.

UOM Verified Signature

Dr. H.M. Wijekoon Chief Engineer (Planning), Ceylon Electricity Board.

Abstract

Distribution protection and system reliability have become equally important concepts since the inception of power systems. With more and more sensitive equipment coming in to industries, the requirement of protection and higher reliability of power system is been highlighted. Problems with system reliability result in costly loss of production to critical processes create a dilemma for both the serving utility & the consumer. The protective devices and switches play an important role in the reliability of electrical distribution systems by minimizing the impact of interruption. In this project, a method for identifying the type and location for protection devices and switches on the distribution system using cost-based optimization is proposed.

Data has been obtained from the data loggers in the re-closers, DDLO fusers and transformers which are connected to the Labugama feeder lof the Ranala gantry energized by the Rosgama grid substationes & Dissertations

The proposed method is based on the existing reliability analysis and reliability analysis, after introducing various components, e.g., Sectionalizes, Auto-reclosers and switching gantry. The detailed design of the protection devices and the switches are determined by minimizing the total cost of reliability that comprises apparatus investment, maintenance, and interruption cost.

Chapters 03 to 05 concentrate mainly on the selection of technologies and sample feeder which represents the total system. Chapters 06 will discus the way of data collection and analysis. Suggestions on possible improvements to reduce number of customer interruptions and customer interruptions duration while maintaining same degree of protection will discus under the chapter 07.

Acknowledgement

First of all, I would like to express my gratitude to the Department of Electrical Engineering and to my supervisor Prof. Ranjith Perera for the support and guidance given to me in this work.

I take this opportunity to extend my sincere thanks to Dr.H.M. Wijekoon, Chief Engineer Planning – Region3, Ceylon Electricity Board for the support and encouragement given to me during my research work.

I would like to thank Mr. S.J.G.R.Karunaratne (Electrical Engineer), Mr. P.R.Predeep (Electrical Superintendent) and Ms. Kumari Kekulawala (Drawing Office Assistant) of Ceylon Electricity Boarders for their assistance and encouragement given to me during my work Electronic Theses & Dissertations www.lib.mrt.ac.lk

It is a pleasure to remember the kind cooperation of all colleagues in post graduate programme and all family members for backing me from start to end of this post graduate course.

CONTENTS

Declaration i		i
Abstracti		
Acknowledgementii		
Conte	nts	iv
List of	f Figures	vi
List of	f Tables	vii
List of	f Abbreviations	vii
1	Introduction	01
1.1	Background	01
1.2	Objective	02
1.3	Scope of work	02
2	Problem Statementersity of Moratuwa, Sri Lanka	03
3	Technology	05
3.1.	Re-closer technology	05
3.2.	Sectionalizer technology	06
3.3.	Coordination of Sectionalizers with Re-closers	08
4	Feeder Selection	09
4.1	Connected accessories and consumers	09
4.2	Feeder selection block diagram	10
5	Selection of suitable reliability indices	11
5.1	Introduction	11
5.2	Distribution indices	12
6	Data analysis	14
6.1	Data Collection	14
	6.1.1. Consumer base data collection	14
	6.1.2. Interruptions base data collection	17
6.2	Evaluation of existing reliability indices	18
	6.2.1. Comparison of existing reliability indices	19

iv

7	Suggestions on possible improvements	20
7.1	Introduction of sectionalizers	20
	7.1.1. Methodology	20
	7.1.2. Cost of Sectionalizer Vs DDLO	24
	7.1.3. Selection of optimum number of Sectionalizers	25
	7.1.3.1. Case analysis	27
	7.1.3.2. Selecting optimum number of Sectionalizers	36
	7.1.3.3. Final data table of above analysis	37
	7.1.3.4. Selecting optimum number of Sectionalizers	38
	7.1.4. Evaluation of reliability indices, introducing Sectionalizers	38
	7.1.5. Financial evaluation of the proposal	39
7.2	Installation of new Gantry with backbone line from Kosgama Grid	40
	7.2.1. Methodology	41
	7.2.1. Evaluation of reliability indices, introducing Gantry	41
	7.2.3. Financial evaluation of the proposal	42
7.3	Compound proposal	43
	7.3.1. Financial evaluation of the proposal	44
8	Conclusion	45
Refe	rences	46

List of Figures

,

A

R

4

đ

Figure		Page
Chapter 2		
Figure 2.1	Line diagram of a radial feeder peasant arrangement	04
Chapter 3		
Figure 3.1	A schematic diagram of re-closer	06
Figure 3.2	A schematic diagram of sectionalizer	07
Figure 3.3	Line diagram of a feeder at fault condition	08

Chapter 4

Figure 4.1	Feeder selection block diagram University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	10
Chapter 6 🦹	www.lib.mrt.ac.lk	
Figure 6.1	Transformers and accounts data base	14
Figure 6.2	Re-closer Vs transformeras data base	15
Figure 6.3	Interruption data base	16

Chapter 7

Figure 7.1	Line diagram of a feeder at fault condition without sectionalizing	
	function	21
Figure 7.2	Line diagram of a feeder at fault condition with sectionalizing	
	function	21
Figure 7.3	Sectionalizer operation with a temporary fault	22
Figure 7.4	Sectionalizer operation with a permanent fault	23
Figure 7.5	Cost comparison	24
Figure 7.6	Block diagram of minimum cost analysis	25
Figure 7.7	Cost Vs Replacements diagram	36

List of Tables

Table		Page
Chapter 6		
Table 6.1	Comparison of existing reliability indices	18
Chapter 7		
Table 7.1	Summary of the cost analysis	36

List of Abbreviations

₱.

×

Term	Definition or Clarification
SAIFI SAIDI	University of Moratuwa, Sri Lanka System average interruption frequency index. Electronic Theses & Dissertations System average interruption duration index
CAIDI	Customer average interruption duration index.
MAIFI	Momentary average interruption frequency index.
LOLP	Loss of Load Probability
LOLH	Loss of Load Hours.
LOEP	Loss of Energy Probability.
IRR	Internal Rate of Return
kWh	Kilo Watt Hours
USD	United States Dollars
LTGEP	Long Term Generation Expansion Plane.