UNIVERSITY OF MORATUWA, SRI LANA MORATUWA LBIDON/BO/20"

109

THE DESIGN OF A SUSTAINABLE EFFICIENT LIGHTING PROGRAM FOR SRI LANKA

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfilment of the requirements for the degree of Master of Science

by

M.G.M.S. UDAYASANTHA PERERA University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Supervised by:

Dr. Nalin Wickramarachchi Senior Lecturer in Electrical Engineering University of Moratuwa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

Jniversity of Moratuwa 96813 December 2008

7681.3

96313

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

i

M.G.M.S. Udayasantha Perera 21-12-2008

I endorse the declaration by the candidate.

UOM Verified Signature

Dr. Nalin Wickramarachchi

Contents

a V

★ 7

	Dec	laration	· · · · · · · · · · · · · · · · · · ·
Abstract			
Acknowledgement			gement
List of Figures			res
	List of Tables		
	List	of Abb	reviations
1	Introduction University of Moratuwa, Sri Lanka.		
	1.1	Literat	Electronic Theses & Dissertations 2
		1.1.1	Case Study: SrivLankab. mrt. ac.lk 2
		1.1.2	Case Study: India: BELP Program
		1.1.3	Case Study: Vietnam 3
		1.1.4	Case Study: South Africa 3
		1.1.5	Case Study: Ghana
		1.1.6	Case Study: China: Shijiazhuang Green Lighting Project
	1.2	CFL P	Program - Sri Lanka
	1.3	Lesson	s from CEB-CFL program

ii

.

2	Eco	nomic analysis	7
	2.1	Monthly bill per 60W normal bulb	10
	2.2	Monthly bill per 11W CFL bulb	10
	2.3	Monthly bill for 8 nos 60W normal bulb	11
	2.4	Monthly bill for 8 nos 11W CFL bulb	11
	2.5	Cost factors relevant to generation process	13
	2.6	Production cost per unit	13
	2.7	Construction cost per KW	13
	2.8	Tariff	14
	2.9	Economic comparison of CFL and incandescent bulb	14
	2.10	Financial loss for CEB per 60W normal bulb	14
	2.11	Financial loss for CEB per 11W CFL bulb	15
	2.12	Total savings for CEB due to CFL bulb usage	15
	2.13	Saving of watt-hours University of Moratuwa, Sri Lanka	18
	2.14	Saving of watts) Electronic Theses & Dissertations	18
	2.15	Saving of watt hours during the warranty period	20
	2.16	Total saving of watts	20
	2.17	Income by selling the saved units	20
	2.18	Saving by reducing the financial loss per bulb	20
	2.19	Income by selling the CFL bulbs	21
	2.20	Saving due to avoided capital cost of generation	21
	2.21	Reduced capacity of peak load	21
	2.22	Savings for CEB due to CFL usage (Fuel sector)	23
	2.23	Fuel rate in liters / kWh	23
	2.24	Fuel saved during CFL warranty period	23
3	Envi	ronmental Benefits	24
	3.1	Saving of CO2- emission	24
		Reduction of Thermal energy inside the building	
		Consideration of actual lifetime of CFL	25

▶ : ; }

-A

.

iii

4	Power Quality implications of CFLs		27
	4.1	Power Factor	28
	4.2	Harmonic Currents and THD	29
5	Pov	ver Quality Benefits for Sri Lanka	36
	5.1	Financial Comparison of Low Power Factor CFLs to High Power Factor CFLs	36
	5.2	High Power Factor (HPF) CFLs deliver an economic form of reduced electrical loading without creating costly power quality degradation	37
	5.3	Detrimental Effects of Low Power Factor CFLs	37
		5.3.1 Cost to Correct Power Quality	37
		5.3.2 Risk of Brown Outs / Black Outs	37
		5.3.3 Equipment Damage and Reduce Life	37
	5.4	Benefits of High Power Factor CFLs	37
		5.4.1 Deferred Capital Investment	37
6 Disposal of CFL			38
	6.1	What is mercury? University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	38
	6.2	What are the impacts of mercury on human health?	39
	6.3	Disposing of Energy Saving Bulbs at the end of their life	39
	6.4	Recycling	40
	6.5	Recycling process	40
	6.6	Disposal of CFL in Sri Lanka	41
7	Res	ults and Conclusion	42
	7.1	Income (by introducing one CFL to all electrical energy consumers during the warranty period)	42
	7.2	Expenditure (to purchase one CFL bulb for all electrical energy consumers) \ldots	42
	7.3	The Proposal	44
	7.4	Disposal of CFL in Sri Lanka	45
Α	App	endix - Characteristics of HPF-CFL	49
	A.1	Reliable and Controlled Electricity Supply	49
	A.2	Few important points of HPF-CFL bulb	50
	A.3	High Power Factor HPF-CFL bulb Technology	50

●,

Þ,

.

iv

1

Abstract

In each year, electricity distribution expands through various requirements such as state sponsored rural electrification schemes and other interventions, connecting more consumers to the national grid, means the demand growth at the end of each year.

The main challenge facing the CEB will be the rising price of oil and the generation capacity shortage. Generation capacity additions are required every year to keep pace with the increasing demand. Unless cheaper solutions are developed to meet this electricity demand, the financial burden of fuel oil based power generation will further strangle the government owned CEB.

Importance of demand side management strategies have rapidly grown in the context of rising oil prices as well as extensive delays in implementing low cost electricity generation projects. Especially as a developing country, saving of energy has much more advantages.

This report proposes to maximise the usage of existing capacity by introducing a sustainable lighting programme to popularize the use of efficient lighting devices among the consumers as energy development, which will offset the adverse impacts.

The most economically effective method to achieve this goal is to introduce compact fluorescent lights among the consumers. That is because while a regular (incandescent) light bulb uses heat to produce light, a fluorescent bulb creates light using an entirely different method that is far more energy-efficient - in fact, 4-6 times more efficient. It can be easily implemented if a CFL bulb is priced as per the incandescent bulb price and distributed through CEB depot / offices.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

v

Acknowledgement

9

Thanks are due first to my supervisor, Dr. Nalin Wickramarachchi, for his great insights, perspectives, guidance and sense of humor. My sincere thanks go to the former Head of Electrical Engineering department Professor H.Y.R. Perera, present Head of Electrical Engineering department Dr. J.P.Karunadasa who helped me to achieve my goal in engineering studies, Dr. Thilak Siyambalapitiya by helping me on the topic selection and the guidance given, Mr. Harsha Wickramasinghe, Deputy Director General - Sustainable Energy Authority,officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka and all lecturers who helped in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance.

Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office.

Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your supports.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

4

• •

*

as I

2.1	Number of Units Consumes	11
2.2	Monthly expenditure for consumer	12
2.3	Income & expenditure for CEB	16
2.4	Financial loss for CEB	17
2.5	Usage of watt hours for same illuminations	18
2.6	Usage of watts for same illuminations	19
2.7	Daily Load Curve 2005[9]	22
2.8	Reduced load curve during peak hours by introducing one CFL bulb for all con- sumers	22
3.1	Heat energy produces during warranty period (18 months) Lanka. Hours calculated and the life time of CFL bulb Dissertations	26
3.2	Hours calculated and the life time of CFL build Dissertations www.lib.mrt.ac.lk	26
4.1	Power Factor	29
4.2	Mixed/Aggregate Loads @ Branch Circuit (THD)	31
4.3	Mixed/Aggregate Loads @ Branch Circuit (P.F)	31
4.4	Single 23W LPF - EFLs (MM harmonic analysis)	32
4.5	Ten 23W LPF - EFLs (MM harmonic analysis)	32
4.6	Ten 23W LPF - EFLs + 250W incandescent bulb (MM harmonic analysis) \ldots	33
4.7	Sum of harmonic currents Vs harmonic order for 23 W LPF - EFLs (RMS current (A) Vs MM harmonic analysis - from Har(fo) to Har(F25))	34
7.1	Income Vs expenditure in million rupees for CEB by introducing one CFL bulb at the reduced rate for all consumers	43
7.2	Income Vs expenditure in million rupees for CEB by introducing one HPF-CFL bulb at the reduced rate for all consumers	43
A.1	20W Quality Brand CFL	51
A.2	20W HPF-CFL bulb	51
A.3		52
	20W HPF-CFL bulbs	
A.5	15W Mini-Downlight	53

List of Tables

.

*

C)

2.1	Number of electrical energy consumers-2007	7
2.2	Number of consumer accounts by tariff	8
2.3	LECO electricity sales	9
2.4	Average number of units consumes and the percentage	10
2.5	Plant-wise cost per unit - April 2008	13
2.6	Cost for the construction of power plants	13
2.7	C.E.B. Tariff - effective from 01.02.2007 University of Moratuwa, Sri Lanka.	14
2.8	CEB Tariff[5]). Electronic Theses & Dissertations	14
2.9	Number of customers in the country. ac. lk	15
2.10	Fuel Rate in Liters / kWh (Source: CEB, Statistical digest, 2007)[10]	23
4.1	Values of current drawn by normal bulb and CFL with different PF	28
4.2	THD From Mixed Loads	30
4.3	Typical Lighting Load Characteristics - Aggregate Field Effect Implications and Typical System Mitigation	34
7.1	Requisition form for CFL bulbs	46
7.2	Proposed Selling Price	46
A 1		
A.1	Comparison of the 20W quality brand CFL with the 20W HPF-CFL bulb per- formance specifications	52
A.2	HPF-CFL bulb technical specifications	54

viii

List of Abbreviations

4

.

3

(ع ۱

CO_2	Carbon dioxide
CO_2 -e	Carbon dioxide equivalent
BESCO	
C.Cy	Combined Cycle
C.PS	Chunnakam Power Station
CDM	Clean Development Mechanism
CEB	Ceylon Electricity Board
CFL	Compact florescent lamp
DSM	Demand Side Management
\mathbf{EFL}	A non electrode version of CFL
\mathbf{ELI}	Efficient Lighting Initiative
EVN	VietNam Electricity
f	Frequency
GJ	Universityiles f Moratuwa, Sri Lanka.
(GT)	Electeontwolineses & Dissertations
GWh	Giga watt hour
HID	WWWHIGH Intensity Discharge
HPF	High power factor
I	Current
KKS	Kankasanthurai
KPS	Kankasanthurai Power Station
\mathbf{KW}	Kilo watt
KWh	Kilo watt hour
LAD	Lanka Auto Diesel
LECO	Lanka Electric Company
LHF	Lanka Heavy Fuel
LPF	Low power factor
LV	Low voltage

 $\mathbf{i}\mathbf{x}$

ļ

MW	Mega watt
MWh	Mega watt hour
\mathbf{PC}	Personal computer
\mathbf{PF}	Power factor
RMS	Root mean square
SLR	Un Sretankanofipeeoratuwa, Sri Lanka.
SP.PS TCLP	Ele Sapugaskanda Power Station sentations Toxicity Characteristic Leaching Procedure
tCO2e	WWTonnes df CO2 equivalent
THD	Total harmonic distortion
TV	Television
v	Voltage
VA	Volt amperes
w	Watt

.

.\$

•

Ģ