

28 100N/80/0011

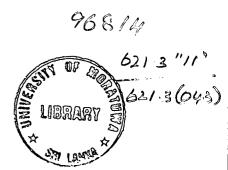
TECHNICAL AND FINANCIAL REQUIREMENTS FOR IMPLEMENTATION OF REMOTE METERING

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by:

Supervised by:

DR J.P. KARUNADASA


Department of Electrical Engineering, University of Moratuwa, Sri Lanka.

__March 2011

Jniversity of Moratuwa

96314

DECLARATION

I certify that the work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

L.C. Prasanna

07-03-2011

UOM Verified Signature

DR J.P. Karunadasa

Supervisor

CONTENT

Declaration			
Abstract			
Acknowledgement			
List of Figures		viii	
List of	Tables Tables	x	
1	Introduction	1	
1.1	Increasing Electricity Demand and Quest for Reliable		
	Distribution System in Sri Lanka	1	
1.2	Importance of Remote Metering Scheme and Data		
	Acquisition System for Dynamic Distribution System	2	
1.3	Objectives	3	
1.4	Expected Features University of Moratuwa, Sri Lanka.	4	
2	Electronic Theses & Dissertations Supply Consumers of a Distribution System WWW.IID. mrt. ac. lk	5	
2.1	Bulk Supply Consumer	5	
2.1.1	Categorization	5	
2.1.2	Colombo City Distribution Province – Survey Location	6	
2.1.3	Load Pattern of Colombo City and Bulk Supply Accounts	7	
2.2	Energy Sales and Revenue Contribution of Bulk Accounts	10	
2.3	Data Requirement of Bulk Consumers	13	
3	Transducers and Data Acquisition Schemes	15	
3.1	Transducers	15	
3.1.1	Transducer Selection	15	
3.1.2	Transducer Energy Meter	16	
3.1.3	Transducer Requirements	17	
3.2	Data Acquisition Schemes	19	
3.2.1	Low Power Radio Frequency (RF) Link with Hand Held Units	20	

3.2.1.1	Data Transfer Concept	21
3.2.2	Low Power RF Link with Data Concentrator GSM or GPRS Link	22
3.2.2.1	Data Transfer Concept	23
3.2.2.2	Key Features of the System	25
3.2.3	Power Line Communication	25
3.2.3.1	Data Transfer Concept	26
3.2.3.2	Communication Protocol	27
3.2.4	GSM Data Link	30
3.2.4.1	Data Transfer Concept	31
3.2.4.2	Modem Port Parameterization for RS 232 Communication	32
3.2.5	GPRS Data Link	35
3.2.5.1	Data Transfer Concept	36
3.3	Technical Feasibility of Data Acquisition	37
4	Technical Details and System Development	39
4.1	Details bildianarsity of Moratuwa, Sri Lanka.	39
4.2	Sample site selection and transducer competence Details	39
4.2.1	GSM/GPRS modern specifications	41
4.3	Data Rate and Scheme Selection	42
4.3.1	Calculation – Data download with GSM data link	42
4.3.2	Calculation – Data download with GPRS data link	43
4.3.3	Scheme selection	43
4.4	Site Preparation Works	44
4.4.1	Special Requirements	47
4.5	Parameterization for Remote Metering Requirements	49
4.5.1	Maximum Demand Reset Date	49
4.5.2	Automatic Billing Data Downloading Schedule	49
4.6	System Security	50
4.6.1	Equipment Security against Tampering	51
4.6.2	Access Levels	51
4.6.3	Data Security	52
4 7	Implementation Procedure for Pemoto Motorina	50

5	Technical Details and System Development	54
5.1	Overview of Outcomes	54
5.2	Benefits of Remote Metering System	54
5.2.1	Direct Financial Benefits	54
5.2.2	Opportunity Cost Saving	55
5.3	Benefits of Remote Data Acquisition System	55
5.3.1	Benefits to Distribution Management	56
5.3.2	Technical Information for System Planning and Analyzing	56
5.3.3	Technical Information for Other Stake Holders	60
6	Cost of Implementation and Financial Feasibility	62
6.1	Overview	62
6.2	Financial Feasibility Calculation	65
6.2.1	NPV for a Connection without a Meter Replacement	65
6.2.2	NPV for a Connection with a Meter Replacement	
	and Notimprovement of Energy Magsurements	67
6.2.3	NPV for a Connection with a Meter Replacement	
	and Improvement of Energy Measurement	69
6.3	Summary of Financial Feasibility Analysis	71
7	Conclusion	73
Refere	nces	75
Appen	dix - I	77
Appen	Appendix - II	
Appendix - III		81
Appendix - IV		82
Appendix - V		85
Appendix - VI		87

ABSTRACT

The thesis presents the findings of the study to develop a Data Acquisition System (DAS) of bulk supply consumers using a feasible remote metering (RM) option that can be used in distribution sector.

The most of the utilities in developed countries have gained the access to their meters remotely. Not only in electricity sector, but also it is used in gas and water metering as well. This has many advantages over conventional point to point meter reading. The accuracy and low cost are straight forward benefits that the utility can obtain with these systems.

Without confining merely to a remote metering (RM) system, this can be further developed to a data acquisition system, which is immensely useful not only to the utility but also to the other stake holders of the electricity industry such as to academic institutions, regulatory bodies, investors, consumers, etc. The basic requirement here is no eselect appropriate communication medium and to parameterize the integration of the equipment cache as modems, etc accordingly to log the required system barameters.

The Colombo City distribution province of Ceylon Electricity Board was selected for this research. The data logging capability and communication facilities of different types of energy meters were studied. The potential communication options for remote metering were also studied under this research. The analysis was carried out for financial and technical feasibility of RM and DAS system. The discussion was focused on the above analysis and the benefits of the RM and DAS system.

The GSM data communication option was identified as the most suitable communication method for remote metering. From the point of view of the power utility, GSM based communication link has the simplest architecture for accessing the meter data. GSM communication in Sri Lanka is a well developed infrastructure and this can be directly utilized without any concerns of developing and maintaining by the power utility itself. The reliability of the communication

system is an established fact. The cost for the service tends to decrease due to the advancement of technology and the competitiveness among the mobile operators.

The conventional electronic energy meter acts as a transducer for data acquisition system. Apart from monthly energy consumption and maximum demand for billing, it is possible to obtain load patterns, demand variations (Active, Reactive and Apparent), voltage variations (drops and rises), power outages, power factor details, frequency and harmonic levels, various event details, etc of bulk supply consumers.

Minimizing the engineer's time for meter reading and billing is the straight forward benefit for the utility. The actual and timely parameters of the distribution system can be effectively used as inputs for system planning activities and hence to develop more accurate proposals to mitigate system imperfections. The event list available with the meter provides the facility to resolve consumer issues since the list contain the history events for about five years time. Further by using tamper event list the loss reduction and anti-tampering activities also can be effectively implemented as any malpractice can be identified at its origin itself.

More accurate information on different kinds of bulk supply consumers can be collected by using this particular system. It is beneficial to the other stake holders such as to people of academia, policy makers, investors, etc of the electricity sector for their academic and decision making purposes. Further the consumers can be empowered to view their load profiles, billing data, etc via the internet, so that to encourage energy saving and self generation activities.

Therefore the outcome of this research is remarkably important not only to the distribution utilities, but also to the other stake holders of the electricity sector. Since this is the first time that this particular comprehensive study on RM and DAS system for bulk consumers is carried out, we expect to share the experiences and the outcomes with all interesting parties of the sector to extend the benefits not only to the utilities but also to the consumers by means of quality, reliable and low cost power supply.

ACKNOWLEDGEMENT

I would like to express my thanks to the supervisor, Dr. J.P. Karunadasa, Head of Electrical Engineering department, for his right direction, great insights, perspectives, guidance and sense of humor. And Mr. H.K. Illeperuma, Chief Engineer, Energy Management, Ceylon Electricity Board, Colombo City, for his guidance, encouragements and motivation in all the time of this research.

My sincere thanks go to the former Head of Electrical Engineering department Prof. H.Y.R. Perera, former course coordinator, Dr. Lanka Udawatta for their support extended to me during last couple of years. The guidance provided by Dr. Narendra De Silva is outstanding. I must express my profound gratitude and sincere thanks to Mr. Prasad, present course coordinator for his support given to me to complete this research and all the academic staff who helped in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering. Sri Lanka.

Electronic Theses & Dissertations

I also thankful to MrwChain Kook. of Landis & Gyr, Mr. Anubav Battenager of Secure Meters, De Soysa & Company – the local agent of ABB and Elster meters, for helping me to find out the manuals, brochures and other materials. Mr. Pramit Jayewardene Engineer, Energy Management – WPN, CEB guided me on clarifying technical matters and Mr. Asitha Ranaweera (Electrical Superintendent) for his time on helping me to conduct the preliminary technical and site surveys.

I also like to thank my wife, Pavithra for her time & kind effort to encourage me to complete the research within the given period.

Lastly, I should thanks many individuals & friends who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your supports.

Thank You!

L.C. Prasanna

LIST OF FIGURES

- Figure 2.1 Total Demand of Colombo City
- Figure 2.2 Variation of Energy Demand for Bulk Consumers
- Figure 2.3 Consumer Mix
- Figure 3.1 Construction of Electronic Energy Meter
- Figure 3.2 Routine Diagram for RF Linked Scheme
- Figure 3.3 RF Link with GSM or GPRS Link
- Figure 3.4 Components of a PLC scheme
- Figure 3.5 Inbound Message Structure
- Figure 3.6 Outbould Message Structure Moratuwa, Sri Lanka.

 Electronic Theses & Dissertations
- Figure 3.7 Exchanging Messages mrt ac 1k
- Figure 3.8 GSM Data Link
- Figure 3.9 GSM Modem Port Parameterization
- Figure 3.10 GSM or GPRS RM and DAS Scheme
- Figure 4.1 GSM/GPRS Modem Specifications
- Figure 4.2 Before and After Site Preparation
- Figure 4.3 GSM Modem with a movable Wired Antenna
- Figure 4.4 Padlock sealed Enclosure
- Figure 4.5 Edit Schedule Records Window
- Figure 4.6 RM Procedure

- Figure 5.1 Midnight Energy Readings
- Figure 5.2.a Active and Apparent Demand curve
- Figure 5.2.b Voltage variation curve
- Figure 5.2.c Power Factor variation curve
- Figure 5.3 Event List

LIST OF TABLES

- Table 2.1 General Characteristics of Colombo City
- Table 2.2 Demand Growth in Bulk Sector
- Table 2.3 Existing System Energy Sales
- Table 2.4 Characteristic of the CEB Domestic Consumers May 2009
- Table 3.1 Bulk Meters
- Table 3.2 RS 232 Pin Arrangement
- Table 4.1 Details of Data Files
- Table 4.2 Remote Access Compatibility of Transducers
- Table 4.3 DAS Scheme Sites
- Table 6.1 Net Present Value Calculation Case 1 (GSM data link) nka.
- Table 6.2 Net present Value Calculation Sease 1 (GPRS data link) ns www.lib.mrt.ac.lk
- Table 6.3 Net Present Value Calculation Case 2 (GSM data link)
- Table 6.4 Net Present Value Calculation Case 2 (GPRS data link)
- Table 6.5 Net Present Value Calculation Case 3 (GSM data link)
- Table 6.6 Net Present Value Calculation Case 3 (GPRS data link)