## Linear Stirling Generator Feasibility Study for Distributed Power Generation





UNIVERSITY OF MORATUWA, SRI LANKA
MORATUWA
Supervised by

Dr. A.M.I Munindradasa Dr. Rohan Munasinghe

Project Work by K.I.M Gunawardana

MEng / PG Dip Electronics & Telecommunication Department of Electronics and Telecommunication University of Moratuwa

University of Moratuwa



## **ACKNOWLEDGEMENT**

Success of this project work should be a tribute to late Dr.Amith Munindradasa for introducing this challenging project which he himself was greatly enthusiastic about. Without his unshaken courage and par excellent engineering intuition it would have been very difficult to carry forward this project. With unexpected demise of Dr. Munindradasa support and guidance given by Dr. Rohan Munasinghe should be signified with the highest gratitude.

Further I would like to express my sincere thanks to all my teachers of the Department of Electronic and Electrical Engineering at the University of Moratuwa for their fullest support and corporation extended.

I thank Mr. Janaka Mangala of Mechanical Engineering Department University of Moratuwa for supporting me by allowing me to make use the wire cut EDM machine to turn out several components.

## University of Moratuwa, Sri Lanka.

I cannot forget the pain taken by Mr. Zhyad who helped me with the lathe machine work at odd hours of the day and tolerating several design changes that was inevitable for this research project.

I thank my CEO and my company Lanka Transformers Ltd for extending their corporation by allowing me to carry out experimental work within company premises utilising its resources.

## Contents

| CO           | NTENTS                                                                                    | 1               |
|--------------|-------------------------------------------------------------------------------------------|-----------------|
| 1 IN         | ITRODUCTION TO STIRLING ENGINE                                                            | 3               |
| 1.1          | Background of Stirling engines                                                            | 3               |
| 1.2          | Importance of Stirling Engine                                                             | 3               |
| 1.3          | Free piston Type                                                                          |                 |
| 2            | RESEARCH OBJECTIVE                                                                        |                 |
| 2.1          | Novel Findings                                                                            | 6               |
| 3<br>STI     | THEORETICAL CALCULATIONS, DESIGN AND SIMULATION OF LINEAR IRLING GENERATOR                | 7               |
| 3.1          | Calculations of the Stirling Engine                                                       | 7               |
| 3.2          | Generator Design Electronic Theses & Dissertations                                        | 11              |
| 3.3          | Modeling the Stirling Cycle and Striling Generator                                        |                 |
| <b>3.4</b> 3 | Simulation of the Stirling Engine on MATLAB Simulink                                      | <b>17</b><br>18 |
| 3.5          | Simulation of the Stirling Generator on MATLAB Simulink                                   | 20              |
| 4            | METHODOLOGY                                                                               | 22              |
| 4.1          | Initial Experiments that were made to test the components and their practical limitations | 22              |
| 4.2          | Design of the Electronic driver system on OrCAD                                           | 24              |
| 4.3          | Programming the Micro Controller                                                          | 27              |
| 4.4          | Flexture bearing for linear motion tuning                                                 | 30              |
| 5            | EXPERIMENTAL RESULTS                                                                      | 31              |
| 5.1          | Magnetisation of the Generator                                                            | 31              |
|              | 1.1 Running the Linear motor                                                              |                 |

| 6   | DISCUSSION                                                  | 38 |
|-----|-------------------------------------------------------------|----|
| 6.1 | Future Work                                                 | 39 |
| 6.2 | Conclusion                                                  | 39 |
| 7   | REFERENCES                                                  | 40 |
| 8   | APPENDIX                                                    | 42 |
| 8.1 | Stirling Cycle and Elementary Components of Stirling Engine | 42 |
| 8.2 | PIC Microcontroller                                         | 47 |
| 8.  | 2.1 Anatomy of the micro controller Program                 | 50 |
| 8.  | 2.2 Assembler Program for the H bridge Driver               | 52 |

