SHORT TERM FORECASTING OF DRY SPELLS IN DRY ZONE OF SRI LANKA

Samanthi Chathurika Mathugama

Degree of Doctor of Philosophy

Department of Mathematics

University of Moratuwa Sri Lanka

January 2013

SHORT TERM FORECASTING OF DRY SPELLS IN DRY ZONE OF SRI LANKA

Samanthi Chathurika Mathugama

(08/8011)

Thesis submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy

Department of Mathematics

University of Moratuwa Sri Lanka

January 2013

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text."

"Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use the contents in whole or in part in future works."

Signature:

Date:

The above candidate has carried out research for PhD thesis under my supervision.

Signature of the supervisor:

Date:

ABSTRACT

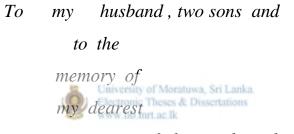
Droughts and dry spells are a recurrent feature of the natural climate in the dry zone of Sri Lanka. The unpredictable pattern of dry spells cause significant damages to the agricultural system, livelihood of people and the economy of the country. This research was initiated to investigate the temporal and spatial variability of the starting time and the lengths of dry spells in the dry zone (DZ) of Sri Lanka using daily rainfall data (1950-2005) in 11 rain gauge locations and to explore the possibility of forecasting properties of critical dry spells.

A review on statistical anlysis on dry spells noted that n o studies were reported to predict the starting date or length of dry spells. The mean number of dry spells (\geq 7 dry days) per year, irrespective of locations, was 12 while the duration varied from 15 to 23 days with a mean of 19 days. The four longest dry spells within a year according to the time of occurrence were considered as critical dry spells. The mean lengths of such critical dry spells in the dry zone were 31, 33, 38 and 33 days respectively. The mean length of the critical dry spell increased from the first to the fourth in some locations while it decreased in some locations. In a few locations the longest spell occurred during the middle of the year, i.e. the third spell. Based on the results obtained on the temporal and spatial variability of critical dry spells, climate charts were developed to be used by the decision makers in the respective locations.

Linear and non linear regression with or without autoregressive error models (p<0.05) were developed to forecast the starting dates of second, third and fourth critical dry spells separately for all locations. Validity of models were confirmed using various statistical indicators and they were also validated using an independent data set (2000-2005).

It was not possible to develop standard models for the four critical dry spell length series separately. Thus one critical length series was formed by pooling all four series for a given location. New types of models known as non linear bilinear type with one, two or three customer-specific input variables were developed for each location separately. A new approach was developed to identify customer-specific input variables using the same series. The prediction performance of the proposed models was demonstrated using a real data set of 12 individual points.

The results obtained in this study will be helpful in minimizing unexpected damage due to droughts and will help effective and efficient planning for farmers, irrigation engineers, coconut growers, policy makers and researchers.


Key words

Bilinear type models, Critical dry spells, Forecasting, Non linear ARIMA models

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

DEDICATION

father and mother.....

ACKNOWLEDGEMENTS

It is with great respect and veneration that I express my sincere thanks to my supervisor Dr. T S G Peiris, the Head of the Department of Mathematics, Faculty of Engineering, University of Moratuwa, whose vast knowledge, experience and advice helped me immensely to complete my research successfully.

I would like to take this opportunity to thank the National Research Council of Sri Lanka, for providing me a research grant (NRC Grant No. 2009-16) to continue the research. Special thanks should go to the Director, Institute of Technology University of Moratuwa for granting me study leave to conduct the research and providing funds for the publications.

I would also like to thank the chairman of the progress review committee Prof. S S Wickramasooriya and all the members of the committee, for encouraging me by providing their valuable suggestions and comments to improve the quality of my research.

It is my obligation to thank Mrs. C P N Attygalle, Mrs. P S Yatapana and Miss. Shamain Saparamadu who always encouraged me throughout the period of research by sharing my workload and allowing me time to complete this research. I would also like to thank Mrs. Chandani Somaratne who always shared her research experience with me, Mrs. Sunimali Nagodavithana for editing the manuscript and Mrs. Ravindi Jayasundara for assisting me in documentation.

Assistance and help given by Mrs. Asoka Piyaseeli and all the academic and non academic members of the Department of Mathematics is gratefully acknowledged.

Last but not least I am grateful to my husband, my mother-in-law and my father-inlaw for their support and encouragement.

TABLE OF CONTENTS

		Page
Declaration		i
Abstract		ii
Dedication		iv
Acknowledge	ements	v
Table of Con	ntents	vi
List of Figure	28	х
List of Tables	8	xiii
List of Abbre	viations	xviii
List of Appen	ndices	xxi
Chapter 1:	Introduction	1
1.3 1.3.2 1.4	 1.1 Background 1.2 Droughts and Dry Spells 1.2.1 Drought 1.2.2 Dry spells Agro-ecology of Sri Lanka 1.3.1 Agro-Ecological Regions (AER) Agro ecological regions in dry zone Rainfall Pattern in Sri Lanka 1.5 Impact of Dry Spells in Dry Zone Significanc of the Dry Spell Analysis Signifial Data Used Rainfall Data Used Chapter Outline 	1 2 2 3 3 5 6 7 10 13
Chapter 2:	Critical Evaluation of Dry Spell Research	14
	 2.2 Dry Spell Definitions and Indicators 14 ay 14 pell 15 pell indicators 15 	
2.3	Analyses on Dry Spells 2.3.1 Frequency distributions 16	16
2.3.2	Use of linear models 2.3.3 U se of moving average	19 20
2.4.2 Marko 2.4.3 Use of 2.5 Use of C 2.5.1 Negat	Process 21 ov Process of order 1 21 ov Process of order 2 22 f Markov Process 22 Other Distributions 25 tive Binomial distribution 25 eated Negative Binomial distribution 26	

2.5.3 Logarithmic distribution 27
2.5.4 Weibull distribution 27
2.5.5 Mixture of log series with Geometric distribution 28
2.6 Summary 29

Chapter 3:	Meth	odology		31
	3.1	Explar	natory Analysis of Dry Spells	31
	3.2	-	the Charts	32
	3.3		Statistical Distributions	33
	3.4		ling with Linear and Non-linear Regression	34
		3.4.1	Regression model	34
		3.4.2	0	35
			3.4.2.1 Normality	35
			3.4.2.2 Homoscedasticity	36
			3.4.2.3 Serial correlation of errors	37
			3.4.2.4 The R^2 and adjusted R^2	38
			3.4.2.5 Mean square error MSE	39
		3.4.3	Influence analysis	39
	3.5	Time S	Series Analysis	41
		3.5.1	Time series and stochastic processes	41
		3.5.2	Model identification	42
		3.5.3	Detecting stationarity	43
		3.5.4	Model checking	44
		3.5.5	Mixed model identification by other techniques	45
		S	Electronic Theses & Dissertations www.lib.mrt.ac.lk	
Chapter 4:	Spati	al and Te	emporal Variability of Dry Spells	49
	4.1	Introdu	uction	49
	4.2	Metho	dology	49
	4.3	Explar	natory Analyses on Dry Spells	49
		4.3.1	Annual variation in dry spell characteristics	49
		4.3.2	Temporal variability in dry spell lengths and frequencies	51
		4.3.3	1	54
		4.3.4	Spatial variability of frequency of long dry spells	58
	4.4	Critica	l Dry Spells	59
		4.4.1	Spatial variation of length of critical dry spells	60
		4.4.2	Spatial and temporal variability of starting dates of	
		4.4.3	CDS Spatial and temporal changes in dry appl	64 66
		4.4.3	Spatial and temporal changes in dry spell characteristics	00
	4.5.	Fitting	of Distributions	82
		4.5.1	Fitting distributions for critical dry spell lengths	82
		4.5.2	Fitting distributions for starting dates	84
	4.6	Summ		87

Chapter 5:	Mode	eling Starting Dates of Critical Dry Spells	89
	5.1	Introduction	89
	5.2	Methodology	89
	5.3	Models for Starting Dates of Anamaduwa	90
		5.3.1 Modeling $SDCDS_2$	91
		5.3.2 Modeling $SDCDS_3$	101
		5.3.3 Modeling $SDCDS_4$	104
	5.4	Models for Starting Dates in Anuradhapura	109
	5.	4.1 Models for $SDCDS_2$ in Anuradhapura	109
5.		4.2 Models for SDCDS ₃ in Anuradhapura	112
5.		4.3 Models for SDCDS ₄ in Anuradhapura	114
5.5		Models for Starting Dates in Other Locations of DL1	116
5.5.1		Models for Mahailluppallama 116	
		5.5.2 Models for Minneriya	120
		5.5.3 Models for Polonnaruwa	124
	5.6	Modeling Starting Dates in DL2 128	
5.6.1		Models for Ampara	128
		5.6.2 Models for Trincomalee	132
		5.6.3 Models for Batticaloa	135
	5.7	Modeling Starting Dates in DL3 138	
5.7.1		Models for Puttalam	138
	5.8	Modeling Starting Dates in DL5 141	
5.8.1		Models for Hambantota	141
		5.8.2 Models for Tissamaharama	145
	5.9	Summary tronic Theses & Dissertations	148
		www.lib.mrt.ac.lk	
Chapter 6:	Mode	eling Critical Dry Spell Lengths	149
	6.1	Introduction	149
	6.2	Methodology	149
	6.3	Development of Linear Time Series Models for LCDS	150
		in Anamaduwa	
	6.4	Selection of Input Variable to Model Critical Dry Spell	161
		Lengths	
		6.4.1 Customer specific conditional mean 1(CDM1)	161
		6.4.2 Customer specific conditional mean 2(CDM2)	162
		6.4.3 Customer specific conditional mean 3(CDM3)	163
		6.4.4 Modelling CDS lengths with customer specific	165
		variables for Anamaduwa	
	6.5	Modeling Lengths in Other Stations of DL1	168
		6.5.1 Models for dry spell length series in Anuradhapura	168
		6.5.2 Models for dry spell length series in	169
		Mahailluppallama	
		6.5.3 Models for dry spell length series in Minneriya	170
		6.5.4 Models for dry spell length series in Polonnaruwa	171
	6.6	Modeling Lengths of Critical Dry Spells in DL2	172
	-	6.6.1 Models for dry spell length series in Ampara	172
		6.6.2 Models for dry spell length series in Batticaloa	173
		6.6.3 Models for dry spell length series in Trincomalee	174
	6.7	Modeling Lengths of Critical Dry Spells in DL3	174

	6.8	 6.7.1 Models for dry spell length series in Puttalam Modeling Lengths of Critical Dry Spells in DL5 6.8.1 Models for dry spell length series in Hambantota 6.8.2 Models for dry spell length series in Tissamaharam 	174 175 175
	6.9	6.8.2 Models for dry spell length series in Tissamaharama Validation of the Best Fitted Models for an Independent Data set	177
	6.10	Summary	178
Chapter 7	New	Modeling Approach for Dry Spell Lengths	179
	7.1	Introduction	179
	7.2	Methodology	179
		7.2.1 Non linear models7.2.2 Bilinear models	179 181
		7.2.3 New approaches to current nonlinear models	181
	7.3	Non Linear Approach for Anamaduwa	182
	, 10	7.3.1 Non linear models fitted for Anamaduwa	185
		7.3.2 Non linear bilinear type models with input variable	189
		(NBLX for Anamaduwa)	
	7.4	Non Linear Modeling for Other Stations in DL1	194
		7.4.1 Non linear and NBLX models for Anuradhapura	194
		7.4.2 Non linear and bilinear type models for Minneriya	197
		7.4.3 Non linear and NBLX models for Mahailluppallama7.4.5 Best model selected for Polonnaruwa	200
	7.5	Best Non Linear and NBLX Models Selected for DL2	200
	110	7.5.1 Best model selected for Ampara	200
		7.5.2 Best model selected for Batticaloa	201
		7.5.3 Best model selected for Trincomalee	201
	7.6	Best Non Linear and NBLX Models Selected for DL3	202
		7.6.1 Best model selected for Puttalam	202
	7.7	Best Non Linear and NBLX Models Selected for DL5	202
		7.7.1 Best model selected for Hambantota	202
	7.8	7.7.2 Best non linear model selected for Tissamaharama Comparison of ARIMAX and Non Linear Models	203 204
	7.9	Summary	204
Chapter 8		usions and Recommendations	200
Chapter 6			
	8.1	Conclusions	207
	8.2 8.3	Recommendations Further Work	208 209
	0.0		207
References			210
Bibliography			220
Appendix 1:	Chara	cteristics of Critical Dry Spells	221
Appendix 2:	Best M	Models Selected for Each Location	226

LIST OF FIGURES

Page	
------	--

Figure 1.1	Agro Ecological Regions in Sri Lanka	5
Figure 1.2	Locations of Rainfall Stations 12	
Figure 4.1	Annual Variation in Dry Spell Characteristics	50
Figure 4.2:	Annual Mean Dry Spell Length Variation in Different Scenarios	53
Figure 4.3:	Comparison of the Distribution of Long Dry Spells among	
	Locations under Three Scenarios	57
Figure 4.4:	Variation of Long Dry Spell Frequencies	59
Figure 4.5:	Mean Lengths of Four Critical Dry Spells in the Selected	60
	Locations in Dry Zone	
Figure 4.6:	Spatial Distribution of Maximum DS Length and Frequency of	63
	DS Exceeding One Month During 1950-2005	
Figure 4.7:	Spatial and Temporal Variability of Mean Starting Dates of Four	
	Critical Dry Spells	64
Figure 4.8:	Spatial and Temporal Variability of CV of Starting Dates of Fo Critical Dry Spells burned in	our 65
Figure 4.9:	Critical Dry Spells in Anamaduwa	70
Figure 4.10:	Critical Dry Spells in Anuradhapura	71
Figure 4.11:	Critical Dry Spells in Mahailluppallama	72
Figure 4.12:	Critical Dry Spells in Minneriya	73
Figure 4.13:	Critical Dry Spells in Polonnaruwa	74
Figure 4.14:	Critical Dry Spells in Ampara	75
Figure 4.15:	Critical Dry Spells in Batticaloa	76
Figure 4.16:	Critical Dry Spells in Trincomalee	77
Figure 4.17:	Critical Dry Spells in Puttalam	78
Figure 4.18:	Critical Dry Spells in Hambantota	79
Figure 4.19:	Critical Dry Spells in Tisamaharama	80
Figure 5.1:	Plot of SDCDS ₂ versus SDCDS ₁	91
Figure 5.2:	Normality of Standardized Residuals for Model (5.1)	94
Figure 5.3:	Plot of Standardized Residuals and Fits for Model (5.1)	94
Figure 5.4:	Plot of Standardized Residuals with Order of the Observations	96
	Of Model (5.1.2)	

Figure 5.5:	Normal Probability Plot of Residuals for Model (5.1.3)	99
Figure 5.6:	Plot of Standardized Residuals with Fits for Model (5.1.3)	99
Figure 5.7:	Plot of SDCDS ₂ in Anamaduwa	101
Figure 5.8:	Plot of SDCDS ₃ in Anamaduwa	104
Figure 5.9:	Plot of SDCDS ₄ in Anamaduwa	108
Figure 5.10: 1	Pl ot of $SDCDS_2$ in Anuradhapura	111
Figure 5.11:	Plot of $SDCDS_3$ in Anuradhapura	114
Figure 5.12:	Plot of SDCDS ₄ in Anuradhapura	116
Figure 5.13:	Plot of $SDCDS_2$ in Mahailluppallama	117
Figure 5.14:	Plot of SDCDS ₃ in Mahailluppallama	119
Figure 5.15:	Plot of SDCDS ₄ in Mahailluppallama	120
Figure 5.16:	Plot of SDCDS ₂ in Minneriya	121
Figure 5.17:	Plot of SDCDS ₃ in Minneriya	122
Figure 5.18:	Plot of SDCDS ₄ in Minneriya	123
Figure 5.19:	Plot of SDCDS ₂ in Polonnaruwa	125
Figure 5.20:	Plot of SDCDS ₃ in Polonnaruwa	126
Figure 5.21:	Plot of SDCDS ₄ in Polonnaruwan Lanka	127
Figure 5.22:	Plot of SDCDS ₂ in Ampara	129
Figure 5.23:	Plot of SDCDS ₃ in Ampara	130
Figure 5.24:	Plot of SDCDS ₄ in Ampara	131
Figure 5.25:	Plot of SDCDS ₂ in Trincomalee	132
Figure 5.26:	Plot of SDCDS ₃ in Trincomalee	133
Figure 5.27:	Plot of SDCDS ₄ in Trincomalee	134
Figure 5.28:	Plot of SDCDS ₂ in Batticaloa	135
Figure 5.29:	Plot of SDCDS ₃ in Batticaloa	136
Figure 5.30:	Plot of SDCDS ₄ in Batticaloa	137
Figure 5.31:	Plot of SDCDS ₂ in Puttalam	139
Figure 5.32:	Plot of SDCDS ₃ in Puttalam	140
Figure 5.33:	Plot of SDCDS ₄ in Puttalam	141
Figure 5.34:	Plot of SDCDS ₂ in Hambantota	142
Figure 5.35:	Plot of SDCDS ₃ in Hambantota	143
Figure 5.36:	Plot of SDCDS ₄ in Hambantota	144
Figure 5.37:	Plot of SDCDS ₂ in Tissamaharama	145

Figure 5.38:	Plot of SDCDS ₃ in Tissamaharama	146
Figure 5.39:	Plot of SDCDS ₄ in Tissamaharama	147
Figure 6.1:	Time Series Plot of Critical Dry Spell Lengths in Anamaduwa	150
Figure 6.2:	Plot of ACF for $\{Y_t\}$	150
Figure 6.3:	Plot of PACF for $\{Y_t\}$	151
Figure 6.4:	Plot of ACF of Residuals for AR(2) Model	152
Figure 6.5:	Plot of PACF of Residuals for AR(2) Model	153
Figure 6.6:	Normal Probability Plot of Residuals for AR(2) Model	153
Figure 6.7:	Plot of Residuals and Fitted Values for AR(2) Model	153
Figure 6.8:	Plot of Observed and Predicted Series for AR(2) Model	154
Figure 6.9:	Plot of Observed and Predicted Values for ARIMA(3,1,1)	161
Figure 6.10:	Plot of Observed and Predicted Values of ARIMAX(2,1,1,1)	167
Figure 7.1:	Plot of Observed and Predicted Values of Model (7.28)	193
Figure 7.2:	Plot of Observed and Predicted Values of Model (7.29)	193
Figure 7.3:	Plot of Observed And Predicted Values of (7.36) for Anuradhapur	ra196
Figure 7.4:	Plot of Observed and Predicted Values of (7.38) for Minneriya	198

LIST OF TABLES

Table 1.1:	Locations of Rainfall Stations	11
Table 3.1: We	eeks Corresponding for Starting Date 32	
Table 3.2: App	propriate Transformations for Non-linear Regression Models 36	
Table 3.3: Sha	ape of ACF and PACF 43	
Table 3.4: The	eoretical ESACF Table for an ARMA(1,2) Series 46	
Table 3.5: The	eoretical SCAN Table for an ARMA(1,2) Series 47	
Table 4.1:	Mean Length (days) and Frequency of Dry Spells in the Selected	
	Locations	52
Table 4.2:	Probability Values (p) of ANOVA Tables Comparing Lengths	
	and Frequencies among Different Time Periods	52
Table 4.3:	Mean Lengths of Short and Long Dry Spells	55
Table 4.4:	Probability Values (p) of ANOVA Tables Comparing Short	
	and Long Dry Spells among Different Periods	55
Table 4.5:	Probability Values (p) of ANOVA Tables Comparing	
	Long Dry Spells (1991-2005)	56
Table 4.6:	Percentage of the Mean Length of Long Dry Spells Exceed	
	40 Days	58
Table 4.7:	Mean Lengths of Four Critical Dry Spells	61
Table 4.8:	Starting Period of Critical Dry Spells and Percentages of	
	Occurring Such an Event	81
Table 4.9:	Selected Probability Distributions for the Four CDS Lengths by	
	Location	83
Table 4.10:	Critical Dry Spell Lengths at Different Probability Levels	84
Table 4.11:	Probability Distributions for Starting Dates	85
Table 4.12:	Starting Dates at Different Probability Levels	86
Table 5.1:	Basic Models Identified to Model Starting Dates	90
Table 5.2:	Correlations Among Starting Dates of Anamaduwa	90
Table 5.3:	Basic Models Fitted for Anamaduwa	92
Table 5.4:	OLS Estimates of the Model (5.1)	93
Table 5.5:	OLS estimates of the Model (5.1.1)	95
Table 5.6:	OLS estimates of the Model (5.1.2)	96

Page

Table 5.7:	Identifying Outliers and Influential Observations	97
Table 5.8:	Outliers Removed at Each Step	98
Table 5.9:	OLS Estimates of the Model (5.1.3) 98	
Table 5.10:	Actual, Predicted and Forecast Values for Model (5.1.3) 100	
Table 5.11:	OLS Estimates of the Model (5.2) 102	
Table 5.12:	Outliers removed at each step for Model (5.2)	102
Table 5.13:	OLS Estimates of the Model (5.2.1)	102
Table 5.14:	Actual, Predicted and Forecast Values for Model 2.1	103
Table 5.15:	Parameter Estimates and Diagnostics for Models (5.3-5.5)	105
Table 5.16:	Estiamtes of Model (5.4.1) and Model (5.5.1)	105
Table 5.17:	Parameter Estiamtes of Model (5.4.2)	106
Table 5.18:	Actual, Predicted and Forecast Values for Model (5.4.2)	107
Table 5.19:	Correlations Among Starting Dates of Anuradhapura	108
Table 5.20:	Actual, Predicted and Forecast Values for Model (5.6.1) 1	10
Table 5.21:	Actual, Predicted and Forecast Values for Model (5.7.1)	112
Table 5.22:	Actual, Predicted and Forecast Values for Model (5.8.1)	115
Table 5.23:	Prediction errors for Model (5.9.1)	117
Table 5.24:	Prediction errors for Model (5.10.1)	118
Table 5.25:	Prediction errors for Model (5.11.1)	120
Table 5.26:	Prediction errors for Model (5.12.1)	121
Table 5.27:	Prediction errors for Model (5.13.1)	122
Table 5.28:	Prediction errors for Model (5.14.1)	123
Table 5.29:	Prediction errors for Model (5.15.1)	124
Table 5.30:	Prediction errors for Model (5.16.1)	126
Table 5.31:	Prediction errors for Model (5.17.1)	127
Table 5.32:	Prediction errors for Model (5.18.1)	128
Table 5.33:	Prediction errors for Model (5.19.1)	130
Table 5.34:	Prediction errors for Model (5.20.1)	131
Table 5.35:	Prediction errors for Model (5.21.1)	132
Table 5.36:	Prediction errors for Model (5.22.1)	133
Table 5.37:	Prediction errors for Model (5.23.1)	134
Table 5.38:	Prediction errors for Model (5.24.1)	135
Table 5.39:	Prediction errors for Model (5.25.1)	136
Table 5.40:	Prediction errors for Model (5.26.1)	137

Table 5.41:	Prediction errors for Model (5.27.1)	138
Table 5.42:	Prediction errors for Model (5.28.1)	139
Table 5.43:	Prediction errors for Model (5.29.1)	140
Table 5.44:	Prediction Errors for Model (5.30.1)	142
Table 5.45:	Prediction Errors for Model (5.31.1)	143
Table 5.46:	Prediction Errors for Model (5.32.1)	144
Table 5.47:	Prediction Errors for Model (5.33.1)	145
Table 5.48:	Prediction Errors for Model (5.34.1)	146
Table 5.49:	Prediction Errors for Model (5.35.1)	147
Table 6.1:	Results of Box Pierce Test for White Noise of the Original Series	51
Table 6.2:	Maximum Likelihood Estimates of AR(2) Model with Model 15	52
Diagnostic S	tatistics	
Table 6.3:	ESACF (upper values) and the Corresponding Probability Value (lower values) for Significance of the Combined Critical Dry Spell Lengths Series (1950- 2005)	155
Table 6.4:	Simplified ESACF Table for the Series of Critical Dry Spell Lengths	155
Table 6.5:	Summary of ESACF Test	155
Table 6.6:	SCAN and the Corresponding Probability Value for 156	156
	of the Combined Critical Dry Spell Lengths Series (1950- 2005)	
Table 6.7:	Simplified SCAN for the Series of Critical Dry Spell Lengths	156
Table 6.8:	Summary of SCAN test	157
Table 6.9:	Maximum Likelihood Estimates of MA(4) Model	157
Table 6.10:	Maximum Likelihood Estimates of MA(14) Subset Model	157
Table 6.11:	Results of the ADF Unit Root Test	158
Table 6.12:	Summary of SCAN, ESACF and MINIC for Differenced Series	159
Table 6.13:	Maximum Likelihood Estimates of ARIMA(0,1,1) Model	159
Table 6.14:	Maximum Likelihood Estimates of ARIMA(0,1,2) Model	160
Table 6.15:	Maximum Likelihood Estimates of ARIMA (3,1,1)	160
Table 6.16:	Calculation of CDM1	162
Table 6.17:	Calculation of CDM2	163
Table 6.18:	Calculation of CDM3	164
Table 6.19:	Values of Conditional Means for Anamaduwa	165
Table 6.20:	Maximum Likelihood Estimates of the Models with CDM3	166
Table 6.21:	Prediction error for ARIMAX(2,1,1,1)	167

Table 6.22:	Best Models Selected for Anuradhapura	168
Table 6.23:	Prediction Error for ARIMAX(4,1,0,1) for Anuradhapura	169
Table 6.24:	Best fitted Model for Mahailluppallama	169
Table 6.25:	Prediction Error for ARIMAX(1,1,1,0)	170
Table 6.26:	Best Models Selected for Minneriya	170
Table 6.27:	Prediction Error for ARIMAX(3,1,1,1) for Minneriya	171
Table 6.28:	Best Models Selected for Polonnaruwa	171
Table 6.29:	Prediction Errors in ARIMAX(0,0,1,1)	172
Table 6.30:	Best Model Selected for Ampara	173
Table 6.31:	Prediction Error for ARIMAX((2,2),0,1,1) for Ampara	173
Table 6.32:	Best Model Selected for Batticaloa	173
Table 6.33:	Prediction Error for ARIMAX(0,1,1.1) for Batticaloa	173
Table 6.34:	Best Models Selected for Trincomalee	174
Table 6.35:	Prediction error for ARIMAX(0,1,1,1) for Trincomalee	174
Table 6.36:	Best Model Selected for Puttalam	175
Table 6.37:	Prediction Error for ARIMAX(0,1,1,1) for Puttalam	175
Table 6.38:	Best Model Selected for Hambantotak	176
Table 6.39:	Prediction Error for AIRMAX(0,0,1,1) for Hambanota	176
Table 6.40:	Best Models Selected for Tissamaharama	176
Table 6.41:	Prediction Error for ARIMAX(0,1,1,1) for Tissamaharama	177
Table 6.42: S	ummary of the Selected Models 177	
Table 7 .1:	Fitted Non Linear Models with $\alpha X_t^{\ \beta}$ Component	186
	and Bilinear Terms	
Table 7 .2:	Parameter Estimates of Non Linear Models given in Table 7.1	187
Table 7 .3:	Fitted NBLX Models for Anamaduwa	189
Table 7.4:	Parameter Estimates NBLX Models	190
Table 7.5:	Parameter Estimates of Best Fitted Models	192
Table 7.6:	Prediction Errors for (7.28) and (7.33)	194
Table 7.7:	Best Selected Nonlinear and NBLX Models for Anuradhapura	195
Table 7.8:	Model Adequacy of Fitted Models for Anuradhapura	195
Table 7.9:	Prediction errors for (7.36)	196
Table 7.10:	Best Selected NBLX Models for Minneriya	197
Table 7.11:	Model Adequacy of NBLX Models for Minneriya	197
Table 7.12:	Prediction Errors for (7.38)	198

Table 7.13:	Best Selected NBLX Models for Mahailluppallama	199
Table 7.14:	Model Adequacy of NBLX Models for Mahailluppallama	199
Table 7.15:	Best NBLX Model Selected for Polonnaruwa 200	
Table 7.16:	Best NBLX Model Selected for Ampara 200	
Table 7.17:	Best NBLX Model Selected for Batticaloa	201
Table 7.18:	Best NBLX Model Selected for Trincomalee 201	
Table 7.19:	Best NBLX Model Selected for Puttalam 202	
Table 7.20:	Best NBLX Model Selected for Hambantota	203
Table 7.21:	Best Non Linear Model Selected for Tissamaharama	203
Table 7.22:	Comparison of ARIMAX and Non Linear Models	204

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

Abbreviation	Description			
ACF	Auto Correlation Function			
AD	Anderson Darling			
ADF	Augmented Dickey Fuller			
AER	Agro-Ecological Region			
AIC	Akaike's Information Criteria			
AR	Auto-Regressive			
ARMA	Auto-Regressive Moving Average			
ARIMA	Integrated Auto-Regressive Moving Average			
AMDSL	Annual Maximum Dry Spell Length			
ANDSP	Annual Number of Dry Spell Period			
ANOVA	Analysis of Variance			
APCC	Asia-Pacific Coconut Community			
BIC	Bayesian Information Criteria			
BL 💩	Bilinear heses & Dissertations			
BP	Breush-Pagan			
BPQ	Box-Pierce Q statistic			
CDM	Conditional Mean			
CDS Critical Dry Spell				
CDS ₁	First Critical Dry Spell			
CDS_2	Second Critical Dry Spell			
CDS ₃	Third Critical Dry Spell			
CDS_4	Fourth Critical Dry Spell			
COOKD	Cook's Distance			
COVRTIO	Covariance Ratio			
CV Coefficient of Variation				
D Dry				
df degree of freedom				
DFFITS Difference of Fits				
DL1 Low country D	ry zone 1			
DL2 Low country D	ry zone 2			

DL3 Low country D	ry zone 3
DL4 Low country D	ry zone 4
DL5 Low country D	ry zone 5
DSF	Frequency of Dry Pentads
DW Durbin Watson	
DZ D	ry Zone
ESACF	Extended Sample Auto Correlation Function
ENSO	El Nino-Southern Oscillation
FDS Frequency of the Dry	Spell
FIM	First Inter Monsoon
G_1, G_2, G_3	Godfrey's serial correlation values
GCM G	lobal Circulation Models
IPCC	Inter-government Panel for Climate Change
IZ	Intermediate Zone
LCDS Length of Critical D	ry Spell
L Low country	
LBQ Ljung-Box Q statistc	
$LCDS_1$	Length of First Critical Dry Spell
$LCDS_2$	Length of Second Critical Dry Spell
LCDS ₃	Length of Third Critical Dry Spell
$LCDS_4$	Length of Fourth Critical Dry Spell
LDS Length of the Dry Spe	ell
M Mid country	
MA	Moving Average
MAX	Maximum
MINIC	Minimum Informatin Criteria
MDS Maximum Dry Spell	
MLGD	Mixture of Log series with Geometric Distribution
MSE	Mean Square Error
NAR	Non Linear Auto-Regressive
NLARMA	Non Linear Auto-Regressive Moving Average
NLMA	Non Linear Moving Average
NLBX	Non Linear Bilinear with X
NCB	Non Calic Brown

NEM	North East Monsoon			
NWN	Not White Noise			
NCV	Not Constant Variance			
NN	Non Normal			
OLS	Ordinary Least Squares			
PACF	Partial Auto Correlation Function			
RBE	Reddish Brown Earth			
RMSE	Root Mean Square Error			
SAS	Statistical Analysis Systems			
SBC	Schwarz Bayesian Criteria			
SCAN	Squared Canonical Correlation			
SDCDS Starting Date of Critical Dry Spell				
SDCDS ₁	Starting Date of First Critical Dry Spell			
SDCDS ₂	Starting Date of Second Critical Dry Spell			
SDCDS ₃	Starting Date of Third Critical Dry Spell			
$SDCDS_4$	Starting Date of Fourth Critical Dry Spell			
SDS Start of Dry Spell	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations			
SE Standard Error	www.lib.mrt.ac.lk			
SIM	Second Inter Monsoon			
SST	Sea Surface Temperature			
STDRES	Standardized Residuals			
STURES	Studentized Residuals			
SW	Shapiro Wilk W test			
SWM	South West Monsoon			
t/ha tons per hectare				
U Up country				
W Wet				
wk week				
WN White Noise				
WT White's Test				
WZ	Wet Zone			

LIST OF APPENDICES

Appendix	Description	Page
Appendix 1	Characteristics of Critical Dry Spell	221
Appendix 2	Best Models Selected for Each Location	226

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk