Genetic Algorithm Based Adaptive Control of Traffic Light Systems in Multiprocessor Architectures

LB/300/30/00

6

H. Kodikara Arachchi

මාරටුව විශ්ව විද්හාලය. Sri Lanka මොරටුව විශ්ව විදහලය. ශු ලංකාව මොරටුව.

71784

631.58 °00"

M.Phil.

11.

⁻April 2000

ТΗ

Genetic Algorithm Based Adaptive Control of Traffic Light Systems in Multiprocessor Architectures

by

H. Kodikara Arachchi

the Department of Electronic and Telecommunication Engineering of University of Moratuwa

for the partial fulfillment of

Master of Philosophy

April 2000

Genetic Algorithm Based Adaptive Control of Traffic Light Systems in Multiprocessor Architectures

By

H. Kodikara Arachchi

Submitted to the Department of Electronic and Telecommunication Engineering on March 18, 2000, in partial fulfillment of the requirements for the degree of Master of

Philosophy

Abstract

The traffic signal is one of the most common control devices used to manage highway traffic. Operating them as isolated units does not exploit their usefulness fully. An advanced system, in which traffic signals at junctions at a close proximity are coordinated, enables a more efficient method of traffic control. This thesis presents the development of hardware and software for the Uniroad traffic signal controller, for interfacing it to the proposed Advanced Traffic Control System (ATCS) for Sri Lanka, and a technique to calculate traffic plans based on the Genetic Algorithm for the

coordinated system.

In hardware development, a communication interface and a general purpose input interface (GPII) are designed and implemented for the traffic signal controller (TSC). These are used to monitor the performance and change traffic plans manually or through computer control. The GPII is also used to interface vehicle detectors, pedestrian pushbutton etc. to the TSC.

The firmware platform of the TSC is developed to accommodate the requirements of both coordinated as well as individual systems. Synchronizing routines, temporary overrides and online time plan adjustments as well as error detecting and logging routines are introduced.

i

A control and monitoring (C&M) software package is developed for the control center. Using this package, the operation of each traffic signal controller can be monitored or optimally adjusted as needed.

A traffic plan calculator (TPC) is developed to calculate traffic plans needed for a set of coordinated traffic signal controllers. A new algorithm, based on well-known evolutionary algorithm, the Genetic Algorithm, was developed for TPC. The TPC provides an optimum set of traffic signal plans for a coordinated traffic signal system. This is a one requirement of proposed Advanced traffic Control System for Sri Lanka.

Thesis supervised by:

Dr. JAKS Jayasinghe

Senior Lecturer, Department of Electronic and Telecommunication Engineering

The work included in this thesis has not been submitted for any other degree at any institution.

alat H. Kodikara Arachchi

April 2000

i

UOM Verified Signature

Dr. JAKŠ Jayasinghe, (Supervisor) The work included in this thesis has not been submitted for any other degree at any institution.

H. Kodikara Arachchi April 2000

UOM Verified Signature

Dr. JAKS Jayasinghe, (Supervisor)

 $t_i^{\mathbf{k}_i}$

Ŀ

To you

ς.

L

.....who work for the benefit of this little island

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

•

Acknowledgements

As a multidisciplinary project, which involved both electronics and traffic engineering, this work would not be successful without the support given by various authorities and personnel. I use this little space to appreciate their contribution.

First I acknowledge with great appreciation the guidance provided by my project supervisor Dr. J.A.K.S. Jayasinghe. He gave me the maximum guidance and support throughout the project.

I wish to thank Prof. (Mrs.) I. J. Dayawansa and Dr. (Mrs.) Dileeka Dias Head/Electronics for their kind attention in continuing this project towards the M.Phill. Degree.

Although the traffic engineering aspects of the project were totally new to me, the guidance of Dr. Amal S. Kumarage and Dr. J.M.S.J. Bandera was very helpful in studying the principles of traffic engineering. Lowish to express my gratitude for their invaluable help.

I would also like to thank Mr. K.K.S. Chandana Perera for designing the nice user interface for the control and monitoring software.

I would like to thank the Road Development Authority (RDA) and Road Development and Construction Company (RCDC) for providing funds for the project, for providing transport facilities whenever we needed without hesitation and for providing us traffic controllers for the experimental work I especially thank Mr. G.A.M. Sumanasekara (DGM/Mecanical, RCDC) for his kind cooperation offered for the upliftment of this project. I also thank Mr. Santha Kumara Gamage for his sincere cooperation offered throughout the project.

Special thanks are due to Mr. Wasantha Ranjewa of RCDC who provided us enormous support for the project by always being with the project. His ideas were extremely helpful in developing the traffic signal controller.

I also thank Mr. Jayantha Perera who helped me by designing and drawing required PCBs and supplying other equipment whenever needed.

Thanks are due to my good friends in the research lab Ranaweera and Nuwan for helping me in many ways to make this project a success. I also thank Mr. Senadeera for help offered to me throughout this project. Mr. Thushara and Mr. DD Sumanapala are also remembered for spending their time after working hours to keep the research lab open.

I, finally, thank all the people who didn't mention here but helped me in various ways to make this research a successful one.

:

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

Contents

.

Abstract		i
Dedicatio	n a secondaria de la companya de la	iv
Acknowle	edgement	v
Contents		vii
List of Fi	gures	xi
List of Ta	bles	xiv
Abbrevia	tions University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	xvi
Chapter	Introduction	1
1.1.	The Traffic Problem	2
1.2.	How can this problem solved?	2
1.3.	Advanced Traffic Control System	4
	1.3.1. Proposed ATCS for Sri Lanka	5
1.4.	Traffic Light Systems	7
1.5.	Objectives of the Research	7
1.6.	Thesis Outline	8
Chapter 2	2 Literature Review on Traffic Control Technologies	9
2.1.	Control Strategies	9
	2.1.1. Fixed Time Signals	9
	2.1.2. Vehicle Actuated Signals	10

vii

	2.1.3. Coordinated Traffic Signals	11
	2.1.4. Urban Traffic Control (UTC)	12
2.2.	Adaptive Coordination Techniques	13
	2.2.1. TRANSYT (TRAffic Network StudY Tool)	14
	2.2.2. SCOOT (Split Cycle Offset Optimization Technique)	16
2.3.	Traffic Simulators	18
	2.3.1. METANET	18
	2.3.2. Paramics (PARAllel MICroscopic Simulator)	18
	2.3.3. Reactive and Predictive Systems	19
Chapter 3	3 Hardware and Control Software Development	20
3.1.	Basic Uniroad TSC	21
	3.1.1. Hardware Architecture	22
	3.1.1.1. Microprocessor Unit	22
	3.1.1.2. Timer Unit	23
	3.1.1.3. Code Display	23
	3.1.1.4. Light Interface Unit	24
	3.1.1.5. Sensor Interface Unit	25
	3.1.2. Firmware Architecture	25
3.2.	Improvement Needed and Restrictions	27
3.3.	Communication Standard and TCPIP Instruction Set	28
3.4.	Hardware Development	32
	3.4.1. Modem Interface Unit	33
	3.4.2. Isolation Unit	35
	3.4.3. General Purpose Input Interface Unit (GPIIU)	35
3.5.	Firmware Development	36
	3.5.1. Data Receiving Subroutine	38
	3.5.2. Instruction Decoding and Execution	40
	3.5.3. Data Transmission Subroutine	42
	3.5.4. Time Synchronization	42
	3.5.5. Derived Instructions and Their Execution	42

viii

	3.5.6. Error Logger	46
	3.5.7. GPII Handler	48
	3.5.7.1. Vehicle Detector	48
	3.5.7.2. Lamp Failure Detector	51
	3.5.7.3. Green Light On' Detector and Green-Green	Collision
	Detector	51
	3.5.8. Dynamic Green Period Handler	52
3.6.	Control and Monitoring Software	53
	3.6.1. Communication Port Driver	54
	3.6.2. Low Level Instruction Generation Layer	54
	3.6.3. Operational Layer	55
	3.6.3.1. Manual Control Panel	56
	3.6.3.2. Station Installation	58
	3.6.3.3. Hardware Installation	58
	3.6.3.4. Authorization Editor	58
	3.6.3.5. Plan Editor	59
	3.6.3.6. Day Type Display	60
	3.6.3.7. Password Encoding	60
37	ATCS and The Uniroad TSC	62

Chapter 4 GA Based Traffic Signal Calculator	
4.1 Genetic Representation of Traffic Signal Plans	66
4.2. Traffic Plan Generator and Analyzer (TPG&A)	68
4.3. Road Network Model (RNM)	69
4.3.1. Representation of Road Network	69
4.4. The Traffic Model	71
4.4.1. Vehicles and Vehicular Flows	73
4.4.2. Evaluation of Parameters	74
4.4.2.1. Evaluation of Maximum Queue	76

•

	4.4.2.2. Evaluation of Maximum Queue Remained at	
	Period	77
	4.4.2.3. Evaluation of Cycle Time	78
	4.4.2.4. Evaluation of Synchronized Plans	79
	4.4.2.5. Overall Performance Index	80
4.5.	Software Implementation of the Traffic Plan Calculator	82
	4.5.1. The GA	82
	4.5.2. Road Network Model, Chromosome Generator and T	raffic
	Simulator	84
4.6.	Evaluation of the Software Tool	93
	4.6.1. Convergence	94
	4.6.2. Unsynchronized Traffic Plan Calculation	95
	4.6.3. Synchronized Traffic Plan Calculation	101
	4.6.4. Time taken for the calculation	107
Chapter :	Conclusion	108
Chapter : Reference	S University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	108 110
Chapter : Reference Appendix	Conclusion University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk I - The traffic scenario	108 110 112
Chapter : Reference Appendix Appendix	S Conclusion University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk I - The traffic scenario II - TPC Progress Report	108 110 112 115
Chapter : Reference Appendix Appendix Appendix	Conclusion S University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe	108 110 112 115 nt
Chapter : Reference Appendix Appendix Appendix Traffic Si	S Conclusion S Conclusion S Conclusion S Conclusion S Conclusion Concerning Moratuwa, Sri Lanka, Electronic Theses & Dissertations Www.lib.mrl.ac.lk I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans	108 110 112 115 nt 118
Chapter : Reference Appendix Appendix Traffic Si Appendix	S Conclusion S Electronic Theses & Dissertations I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans IV The Genetic Algorithm	108 110 112 115 nt 118
Chapter : Reference Appendix Appendix Traffic Si Appendix A-IN	S Conclusion S Dinversity of Moratuwa, Sri Lanka, Electronic Theses & Dissertations Www.lib.mrl.ac.lk I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans IV The Genetic Algorithm 1. Natural Evolution	108 110 112 115 nt 118 137 137
Chapter : Reference Appendix Appendix Fraffic Si Appendix A-IN	S Conclusion S Diversity of Moratuwa, Sri Lanka, Electronic Theses & Dissertations WWW lib millactik I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans IV The Genetic Algorithm 1. Natural Evolution 2. GA in Biology	108 110 112 115 nt 118 137 137 138
Chapter : Reference Appendix Appendix Traffic Si Appendix A-IN A-IN	 Conclusion S Differentiation of Morentows, Sri Lanka. Electronic Theses & Dissertations I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans The Genetic Algorithm Natural Evolution GA in Biology GA in Mathematics 	108 110 112 115 nt 118 137 137 138 140
Chapter : Reference Appendix Appendix Traffic Si Appendix A-IN A-IN A-IN	 S Conclusion S Cuiversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans IV The Genetic Algorithm 1. Natural Evolution 2. GA in Biology 3. GA in Mathematics A-IV.3.1. Types of GA 	108 110 112 115 nt 118 137 137 138 140 142
Chapter : Reference Appendix Appendix Traffic Si Appendix A-IN A-IN A-IN	S Conclusion S Diversity of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lab.mrt.ac.lk I - The traffic scenario II - TPC Progress Report III - Results Generated By Traffic Simulator for Differe gnal Plans IV The Genetic Algorithm 1. Natural Evolution 2. GA in Biology 3. GA in Mathematics A-IV.3.1. Types of GA A-IV.3.2. GA Parameters	108 110 112 115 nt 118 137 137 138 140 142 145

Ą

.

Х

۰.

.

List of figures

Fig. 1.1.	An integrated traffic monitoring and controlling	
	environment	6
Fig. 2.1.	UTC Information Flow	12
Fig. 2.2.	SCOOT System information flow	17
Fig. 3.1.	Basic Uniroad traffic signal controller	23
Fig. 3.2.	Flow diagram of the basic TSC	26
Fig. 3.3.	Data Packet Structure	
	(a) Upload Packet	30
	(b) Download Packet	30
Fig. 3.4.	Instruction Format	30
Fig. 3.5.	M&GPII Unit	32
Fig. 3.6.	Improved TSC for the dynamic traffic control	33
	environment University of Moratuwa, Sri Lanka.	
Fig. 3.7.	Timing diagram of the M&GPII Unit	34
Fig. 3.8.	Lightening arrester on the telephone line	35
Fig. 3.9.	Shift register array and the serial format generator	36
Fig. 3.10.	System flow diagram of the improved TSC	37
Fig. 3.11.	Data receiving subroutine	39
Fig. 3.12.	Instruction decoding subroutine	41
Fig. 3.13.	Data Transmission subroutine	43
Fig. 3.14.	Format of the traffic plan	44
Fig. 3.15.	Stage description code word	
	(a). For a green stage	47
	(b). For a non-green stage	47

xi

Fig. 3.16.	The Error Log	
	(a). Structure of a record	49
	(b). Structure of the Logger	49
Fig. 3.17.	A copy of periods of dynamic stages is stored in the RAM	52
Fig. 3.18.	Three Layer Software Architecture	53
Fig. 3.19.	The Manual Control Panel	56
Fig. 3.20.	Station Installation Dialog Box	57
Fig. 3.21.	Login Editor dialog box	58
Fig. 3.22.	Dialog box to change user passwords	59
Fig. 3.23.	Plan Editor	60
Fig. 3.24.	Day Type Display	61
Fig. 3.25.	Password Encoder	61
Fig. 4.1.	Macro view of the GA based TPC	64
Fig. 4.2	Flow diagram of the GA based TPC	65
Fig. 4.3.	Quantization of real number	67
Fig. 4.4.	Chromosome to represent a traffic signal plan	67
Fig. 4.5.	Representation of a junction Sri Lanka	70
Fig. 4.6.	Representation of a road network	71
Fig. 4.7.	(a) Scaling function of the evaluator for $a = -4.741 \times 10^{-6}$,	
	b = 5, c = 2 and p = 2	75
	b) Scaling function of the evaluator for $a = -4.741 \times 10^{-6}$, b	
	= 5, c = 2 and p = 3	75
Fig. 4.8.	Evaluator for L	77
Fig. 4.9.	Evaluator for L_R	78
Fig. 4.10.	Evaluator for T_C	79
Fig. 4.11.	Evaluator for P_p	80
Fig. 4.12.	Screen shot of the TPC	82
Fig. 4.13.	Progress and remaining time indications of the TPC	83
Fig. 4.14.	Hierarchical representation of the network	84
Fig. 4.15.	Chromosome generator algorithm	89

Fig. 4.16.	(a) Traffic Signal Simulator algorithm	90
	(b) Initializing the Traffic Signal Simulator	91
Fig. 4.17.	Traffic Simulator algorithm	92
Fig. 4.18.	Sequence followed by a vehicle to move from a Junction	
	at the borderline of the cluster to the next one	93
Fig. 4.19.	Road network used to evaluate the TPC	94
Fig. 4.20.	Progress of the GA	
	(a) Start from a random population	94
	(b) Started from the best population resulted from (a)	94
Fig. 4.21.	Progress of the GA when L evaluation	96
Fig. 4.22.	Progress of the GA when L_R is evaluated	97
Fig. 4.23.	Progress of the GA when T_C together with L_R are	98
	evaluated	
Fig. 4.24.	Progress of the GA when minimizing parameter L, and	
	maximizing P_p	101
Fig. 4.25.	Progress of the TPC in optimizing the L, L_R and P_p	104
Fig. 4.26.	Progress of the continuation of TPC from the earlier	
	session when the L, L_R and P_p are optimized	105
Fig. A-IV.1	Evolution of new chromosomes	139
Fig. A-IV.2	Chromosome to represent an integer	140
Fig. A-IV.3	Chromosome to represent a character string	140
Fig. A-IV.4	Evolution of an integer child generation	141
Fig. A-IV.5	Worker – Farmer model of the Global GA	143
Fig. A-IV.6	Multiple generations of the Migration GA and their	
	possible migration patterns	144
Fig. A-IV.7.	(a) Parallelised Individuals, their communication and	
	localization	145
	(b)Virtual Islands	145

:

۲

xiii

List of Tables

N

Table 3.1.	Utilization of two serial port signals for various purposes of the	
	basic TSC	24
Table 3.2.	Map of the Data ROM	27
Table 3.3.	TCPIP Instruction Set	31
Table 4.1.	GA parameters	68
Table 4.2.	Attributes of an approach object	86
Table 4.3.	Attributes of a turning movement object	87
Table. 4.4.	Parameters of the GA run to observe the convergence	95
Table. 4.5.	Best time plan calculated by the TPC when L evaluated	96
Table. 4.6.	Traffic plan Calculated with the constraint, L_R	97
Table 4.7.	Traffic plan calculated by evaluating T_C together with L_R are	
	evaluated	98
Table 4.8.	Summary of simulation results for non-coordinated time plan	
	calculation	99
Table 4.9.	A comparison of the traffic plans calculated by optimizing L	
	and L_R with 900s simulation period and with 3600s simulator	100
	period	
Table 4.10.	Traffic plans calculated for the coordinated system under the	
	constraints imposed by p_p and L	102
Table 4.11.	Summary of the 900s simulation for the coordinated system	
	under the constraints imposed by P_p and L	103
Table 4.12.	Traffic plans calculated for the coordinated system under the	
	constraints imposed by p_p , L and L_R	104
Table 4.13.	Summary of the 900s simulation for the plans calculated for the	
	coordinated system under the constraints imposed by p_p , L and	105
	L_R	

xiv

Table 4.14.	Traffic plans calculated for the coordinated system under the	
	constraints imposed by p_p , L and L_R (by continuing the earlier	
	session)	106
Table 4.15.	Summary of the 900s simulation for the plans calculated for the	
	coordinated system under the constraints imposed by p_{ρ} , L and	
	L_R (by continuing the earlier session)	106
Table A-I 1	Traffic scenario for the TPC evaluation	112
Table A-II 1	Progress report generated by the TPC	115
Table A-III 1	Simulation results of the traffic plan calculated to minimized L	118
Table A-III 2	Simulation results of the traffic plan calculated to minimize L_R	121
Table A-III 3	Simulation results of the traffic plan calculated to minimize C_T	124
Table A-III 4	Simulation results of the traffic plan calculated to maximize p	
	together with minimizing L	127
Table A-III 5	Simulation results of the traffic plan calculated to maximize p_p	
	together with minimizing both L and L_R	130
Table A-III 6	Simulation results of the traffic plan that calculated by	
2.4°	continuing the earlier session of maximizing p_{p_1} together with	
	minimizing both L and L_R and L_R	133

xv

Abbreviations

ATCS	Advanced Traffic Control System
AVL	Automatic Vehicle Location
AVL	Automatic Vehicle Location
CC	Control Center
CCTV	Closed Circuit Television
CD	Code Display
ComC	Communication Controller
CRT	Cathode Ray Tube
GA	Genetic Algorithm
GPI	General Purpose Input
NP	Non-polynomial
OF	Objective Function
Paramics	PARAllel MICroscopic Simulator
Pl	Performance Index Electronic Theses & Dissertations
RNM	Road Network Model
Rx	Receive
SBC	Single Board Computer
SCOOT	Split Cycle Offset Optimization Technique
TMod	Traffic Model
TPA	Traffic Plan Analyzer
TPC	Traffic Plan Calculator
TPG	Traffic Plan Generator
TPG&A	Traffic Plan Generator and Analyzer
TRANSYT	TRAffic Network StudY Tool
TRRL	Transport and Road Research Laboratory
TSC	Traffic Signal Controller
TSim	Traffic Simulator

TU	Timer Unit
Тх	Transmit
UTC	Urban Traffic Control
VRC	Vehicle/Roadside Communications

۶

4

Ξ.

¥

Þ

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

xvii

۰.

•