REQUIREMENT-BASED POLICIES

FOR

ELECTRONIC MESSAGE DISTRIBUTION

BY

M. SHANTHA DEWSIRI FERNANDO

A thesis submitted to the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Philosophy

By

Dr. W. S. Wijesoma Dr. Gihan V. Dias

71955

TH

LB/20N/33/50

681.3 "00" 651. 33

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING FACULTY OF SIGINEERING UNIVERSITY OF MORATUWA SRI LANKA

MARCH, 2000

DECLARATION

This thesis is a report of research work carried out in the Department of Computer Science and Engineering, University of Moratuwa, between March 1995 and March 2000.

Except where references are made to the other work, the content of the thesis is original and includes nothing which is the outcome of work done in collaboration. The work has not been submitted in part or in whole to any other university.

M. S. D. Fernando Department of Computer Science and Engineering

University of Moratuwa

ABSTRACT

Many parts of the world endeavour to extend access to more individuals and institutions by means of the electronic messaging system in the ever-evolving Internet. While that messaging system is continuing to incorporate more and more features such as multimedia information, technical barriers in many parts of the world or uncontrolled behaviours of originators hinder such expansion. It is the lack of user-requirement based policies in the messaging system that increases the constraints to such environments. At the same time the need to integrate and coordinate other messaging systems such as fax, paging, postal mail etc. with the Internet messaging system still exists. On the other hand whether constrained or not, users wish to administer their retrieval of messages in particular manners such as blocking unwanted messages, using alternate message delivery media, using strategic message delivery methods especially for lengthy messages, etc., which in turn leads to a formation of requirement-based policies of the messaging system.

Currently there are standards governing message handling, in particular MIME (Multipurpose Internet Mail Extensions), for exchanging mail messages encompassing a multitude of media, such as graphics images, voice, data and full motion video apart from plain text. However, the MIME standard presupposes certain minimum technical capabilities amongst interconnected and participating mailservers and nodes for distribution of such multimedia mail. In particular, the interconnecting channels between mailservers should be of sufficient bandwidth to conduct the large amount of data in MIME messages at 'reasonable' rates and also the nodes must have adequate storage capacity for the same. This requirement for bandwidth of channels and storage of mailservers for MIME capability prevents users connected to 'under-privileged' mail nodes from enjoying the benefits brought about by multi-media information and messaging. This may be in spite of the end users owning or having access to resource rich machines.

On the other hand, with the introduction of MIME capabilities, users are faced with the essential requirement of administration at the server side owing to the fact that the availability of many media types would impose increased abuses, intended or accidental, especially in the face of new inventions of media types.

i

As a strategic solution to this phenomenon, the concept of an adaptive, service-oriented mail server employing a smart approach to routing of multi-media messages in an internetwork of mailservers, disparate in storage capacity, performance, network bandwidth and administration, is presented. This concept, described as Hierarchical Actions Transfer (HAT) concept, involves offsetting the bandwidth and capacity limitations or "desires" of a node at a specific level by requesting a mail node a step higher up to oblige to perform services on its behalf (which the former node is incapable of performing or not willing to, due to capacity or bandwidth limitations or self imposed restrictions).

The service requests that are in line with the Requirement-Based Policies are known to the server through a specific configuration mechanism. When delivering messages, the server will first look at the configuration of each connected node and then the message delivery will take place accordingly. It would be inevitably a service-oriented strategy to relieve nodes in constrained environments.

An added advantage of the approach is that it implements administrative policies for controlling traffic and congestion arising from MIME mail to a mailserver site and the level of MIME services made available to users connected to that site. Further, the technique also integrates conventional and primitive messaging mechanisms, such as postal mail, courier by diskettes/tapes, facsimile and paging, into the realm of electronic messaging.

It could be further enhanced by the incorporation of Artificial Intelligence if it could identify patterns of frequent node requests. However, current implementation that uses "sendmail" as the Message Transfer Agent (MTA) focuses only on the manual and semi-automatic configuration of such services.

ii

1.

ACKNOWLEDGMENTS

It is my pleasure to thank Dr. W. S. Wijesoma and Dr. Gihan V. Dias for being supervisors and committing their time to contribute, guide and instruct me in evaluating, revising and writing up of this thesis. I also would like to thank Prof. Priyan Dias for evaluating and revising the editorial aspects of this thesis. My thanks are due to Dr. N. K. Wickramarachchi, Head of the Department of Computer Science and Engineering for arranging the necessary formalities and Dr. Ruwan Weerasinghe for serving as the External Examiner.

>

4

I should be much obliged to Information Laboratories (Pvt.) Ltd. for providing me with equipment (computers), literature, software and Internet facilities to successfully complete this research.

My thanks are due to the former Head of the department Dr. A. S. Induruwa and other members of the staff of Department of Computer Science and Engineering.

It is not complete if I do not thank my wife for encouraging me whenever there was lack of enthusiasm due to pressures of work and other commitments.

To

my wife Achala

daughter Anarga

3

University of Moratuya, Sri Lanka, Electronic Thesard Dissertations www.lib.mrt.ac.lk

my parents

CONTENTS

≯

۸

+

Abstract	i	
Acknowledgments		
List of Tables		
List of Figures		
List of Listings	x	
Abbreviations	xi	
1. INTRODUCTION	1	
1.1. Background	1	
1.2. Uses of Electronic Mail	2	
1.3. Abuses of Electronic Mail	6	
1.4 Summary	8	
2. ADVANCES IN ELECTRONIC MESSAGING	9	
2.1. Recent Developments Electronic Theses & Dissertations 2.1.1. Basic Media Types	9 12	
2.1.2. Encodings Supported	14	
2.1.3. Experimental Media Types	14	
2.1.4. Other Media Types	16	
2.1.5. Other Features Introduced	20	
2.2. Future Developments	25	
2.3. Summary	25	
3. ENHANCEMENT AND ITS PROBLEMS	27	
3.1. Introduction	27	
3.2. Categories of Problems	28	
3.2.1. Problems Faced due to Limitations of the Server	28	

v

3.2.2. Problems Faced due to Limitations of the Client	30
3.2.3. Problems Faced due to Limitations of the Link	32
3.2.4. Problems faced due to Inability of the Client to Administer	
the Traffic According to User's Requirements	34
3.3. Summary	34
4. ALTERNATIVE SOLUTIONS	35
4.1. Introduction	35
4.2. Explored Solutions	35
4.2.1. Filtering by MUA	35
4.2.2. Filtering by MTA	36
4.3. The Hierarchical Actions Transfer (HAT) Concept	37
4.4. Summary	40
5. SPECIFICATIONS OF THE HIERARCHICAL ACTIONS TRANSFER(HAT) CONCEPT	41
5.1. Introduction	41
5.1. Theory and Concept	41
5.1.1. Concept	41
5.1.2. Theory	42
5.2. Rationale	43
5.3. A Sample Model of HAT Concept	44
5.4. Design Philosophy	47
5.4.1. Definitions	48
5.4.2. Implementation Concepts	49
5.4.3. ACTIONS File: The key to Administer Message Delivery:	50
5.4.4. The NODECAT File	55
5.4.5. Format of ACTIONS File	59
5.5. Implementation Guidelines	68

4

¥

5.5.1. Processing of ACTION File	68
5.5.1.1. Implementation Guidelines for Processing the	
Service Requests in the ACTIONS file	69
5.5.2. Processing of Message Headers	82
5.5.3. Updating or Changing the ACTIONS File	87
5.5.4. Log Maintenance	88
6. IMPLEMENTATION STRATEGIES	90
6.1. Introduction	90
6.2. Implementation Alternatives	92
6.3. Why "sendmail"	94
6.4. "sendmail" Architecture	96
6.5. What HAT Requires from "sendmail"	98
6.6. Proposed "sendmail" Architecture	99
6.7. Current State of the Implementation	101
6.8. Problems Faced During the Implementation	102
7. CONCLUSIONS AND RECOMMENDATIONS	104
7.1. Conclusions	104
7.2. Recommendations	105
7.3. Enhancements: Looking into the Future	106
REFERENCES	107
APPENDIX A: Approach to the Implementation	111
APPENDIX B : Pseudo Code for the Implementation	113

3

LIST OF TABLES

1.1	Discrete Media Types	12
1.2	Composite Media Types	12
5.1	List of Options for Configuration of a Node	51
5.2	Default Node Categories	56

Э

4

ł

4

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

viii

LIST OF FIGURES

Figure 5.1 Effective Vectors with respect to a Message being Routed	45	
Figure 6.1 Role of sendmail.cf File	96	
Figure 6.2 Selection of Delivery Agent	97	
Figure 6.3 Flow of Addresses Through the Rule Sets	97	
Figure 6.4 Role of ACTIONS File	99	
Figure 6.5 Selection of Delivery Agent and Services(options) for each Recipient 100		
Figure 6.6 Place of the Selection of Services(Options) in the Flow of		
Addresses through the Rule Sets	100	

Э.

.

.

......

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF LISTINGS

Listing 5.1 - BNF Notation for the NODECAT file	57
Listing 5.2 - An example NODECAT file	58
Listing 5.3 - BNF Notation for the Format of ACTIONS file	59-62
Listing 5.4 - An example ACTIONS file	64-66
Listing 5.5 - Format of KDBINFO File	74
Listing 5.6 - Format of Server Log	89

X

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABBREVIATIONS

- MIME Multi-purpose Internet Mail Extensions
- Message User Agent MUA

7

- MTA Message Transfer Agent
- **Request for Comments** RFC
- IETF Internet Engineering Task Force
- HAT Hierarchical Actions Transfer
- **BNF** Backus-Naur Form
- MHS Message Handling System
- OSI **Open Systems Architecture**
- Simple mail Transfer Protocol SMTP
- UUCP Unix to Unix Copy Protocol
- POP Post Office Protocol
- Standard Generalized Markup Language SGML

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk