DEVELOPMENT OF A GUIDELINE FOR IMPLEMENTATION OF POLYMER MODIFIED BIUTMEN FOR HMA BASED ON EMPIRICAL TEST METHODS

Hansinee Sakunthala Sitinamaluwa

(108023 L)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2013

DEVELOPMENT OF A GUIDELINE FOR IMPLEMENTATION OF POLYMER MODIFIED BITUMEN FOR HMA BASED ON EMPIRICAL TEST METHODS

Hansinee Sakunthala Sitinamaluwa

(108023 L)

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2013

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date:

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor Dr. W.K. Mampearachchi for his support, thoughtful guidance and encouragement.

My sincere gratitude is also extended to Prof. J.M.S.J Bandara, former research coordinator, for the valuable advice and encouragement.

I would like to thank Prof. Hussain U. Bahia for sharing his knowledge and experience with me, which were very valuable inputs for this research outcome.

Special thanks goes to the progress evaluation committee members, Dr. H.L.D.M.A. Judith and Prof. H.S. Thilakasiri for the support and advice given throughout the research work.

My sincere thanks extend to Prof. S.M.A. Nanayakkara at Department of Civil Engineering for the advice and support given.

Special thanks to the highway laboratory technical staff, Mr. T.P.D.G. Indika Yohan and Mr. M.I.H. Perera, for the continuous support given throughout the research period.

Further, I would like to express my thanks to workshop staff at Department of Civil Engineering and Department of Mechanical Engineering for fabricating the items for the research as required.

I would like to acknowledge the support given by Bitumix (pvt.) Ltd. and Ceylon Petroleum Corporation, for giving opportunity to visit them and providing samples for laboratory testing.

My sincere thanks also extend to the Transportation Engineering Division of department of Civil Engineering for providing financial support for the research.

Finally I would like to convey my gratitude to my colleagues at Transportation Engineering Division, my family and all others who helped me in various means to make this research a success.

Abstract

Development of a Guideline for Implementation of Polymer Modified bitumen for HMA Based in Empirical Test Methods

Polymer modification of bitumen has increasingly become the norm in designing optimally performing pavements. Pavements with polymer modification exhibits greater resistance to permanent deformation and thermal cracking, and decreased fatigue damage and temperature susceptibility. Polymer Modified bitumen (PMB) are effectively used in many countries over last three decades to construct pavements with superior performance and extended service life. This research was aimed at identifying the need to implement PMB in Sri Lanka, and also developing a testing procedure for PMB based on currently available empirical test methods.

Five unmodified binders used in Sri Lanka was subjected to a series of laboratory testing in order to study their temperature susceptibility, high and low temperature behavior and moisture damage. The results were compared with the existing pavement conditions and it was understood that their performance is limited in above mentioned aspects. To understand the performance of PMB, a case study was done using two PE modified bitumen samples and two SBS modified bitumen samples. They were subjected to a series of laboratory tests which confirmed that the both types of PMB are suitable to overcome the limitations exhibited by unmodified binders.

The necessity of having a proper testing procedure for PMB is discussed and a specification was proposed considering the available testing facilities in Sri Lankan Laboratories. The test methods were selected considering the adequate control of binder properties during application and usage. Penetration test is included to control the intermediate temperature properties and for the identification of binder grades. Softening point test controls the high temperature properties while viscosity test controls the mixing and compaction temperatures. Elastic recovery test and solubility test were employed in order to identify the amount of polymer in PMB. Storage stability test determines the separation tendency of polymer from bitumen. Flash point limits are set for the application safety. Thus all the essential parameters of bitumen are controlled by the proposed specification. The requirement limits are set considering different PMB specifications of several other countries, past research outcomes and laboratory test results.

The proposed specification which is based on empirical test methods facilitates an adequate quality control of Polymer Modified Bitumen and it would be a useful guideline for implementation of PMB for HMA in Sri Lanka.

Keywords: Bitumen - Polymer Modified - Specification

CONTENTS

De	eclarat	ion of th	e candidate & Supervisor	i	
Acknowledgements				ii	
Ał	Abstract				
Та	ble of	content		iv	
Li	st of F	igures		vii	
Li	st of T	ables		ix	
Li	st of a	bbreviat	ions	Х	
Li	st of A	ppendic	ces	xi	
1	Introduction			1	
	1.1	Backg	round	1	
	1.2	Proble	m Statement	1	
	1.3	3 Objectives			
	1.4	4 Research Approach		3	
2	Literature Survey			4	
	2.1	2.1 Introduction to Bitumen mrt.ac.lk			
		2.1.1	History	4	
		2.1.2	Bitumen Manufacturing Process	5	
		2.1.3	Chemical Components of Bitumen	7	
		2.1.4	Viscoelasticity of Bitumen	8	
		2.1.5	Temperature Susceptibility of Bitumen	9	
	2.2	Flexib	le Pavement Distresses	10	
		2.2.1	Permanent Deformation	11	
		2.2.2	Cracking	13	
	2.3	Polym	er Modified Bitumen (PMB)	15	
		2.3.1	Polymers	16	
		2.3.2	Types of Polymer Modifiers	17	
		2.3.3	Polymer Modified Bitumen Structure and Properties	18	
		2.3.4	Benefits of Polymer Modified Bitumen	21	
		2.3.5	SBS Modified Bituemn	21	

		2.3.6	Polyethylene (PE) Modified Bitumen	22
		2.3.7	Cost Effectiveness of Polymer Modified Bitumen	23
	2.4 Manufacturing and Handling of PMB		acturing and Handling of PMB	24
		2.4.1	Manufacturing Process	24
		2.4.2	Storage After Manufacturing	26
3	Poly	mer Mo	dified bitumen Specifications	28
	3.1	Perform	mance Grading System for Polymer Modified Bitumen	28
		3.1.1	Superpave Binder Test Methods	28
		3.1.2	Problems of Performance Grading (PG) System -	
			theoretical aspects	34
		3.1.3	Problems faced by highway agencies with PG Binder	
			Classification	35
	3.2	Specif	ications based on empirical test methods	36
		3.2.1	Summary of test methods used in PMB specification	38
		3.2.2	Summary of tested properties	39
4	Met	hodolog	Electronic Theses & Dissertations	41
	4.1	Laboratory Test Procedure		41
		4.1.1	Study of the limitations of unmodified binders	42
		4.1.2	Study of PMB Characteristics	44
	4.2	Develo	opment of Sri Lankan Specification for PMB	45
5	Results and Discussion			46
	5.1	Tests o	on Unmodified Binders	46
		5.1.1	Conventional Binder Tests	46
		5.1.2	Indirect Tensile Strength Test	48
	5.2 Tests on Modified Binders		on Modified Binders	50
		5.2.1	Conventional Tests	50
	5.3	Tests o	on HMA mechanical Properties	53
		5.3.1	Marshall Test	53
		5.3.2	Indirect Tensile Strength	56

		5.3.3	Determination of mixing and compaction temperatures of		
			PMB	57	
	5.4 Performance Comparison of Modified and Unmodified Bitumen			59	
	5.5	Perform	mance Comparison of PE and SBS modified Bitumen	61	
6	Development of a PMB specification based on empirical test methods for				
	Sri Lankan Conditions				
	6.1	Need o	of a Sri Lankan Specification for PMB	64	
	6.2	Binder	Classification System	65	
		6.2.1	Reasons for having two classification systems	65	
		6.2.2	Test methods and their significance	66	
		6.2.3	Advantages of proposed testing system	68	
		6.2.4	Limitations of proposed test procedure	68	
	6.3	Suitabl	le binder grades for Sri Lanka	69	
		6.3.1	PG binder grades	69	
		6.3.2	Traffic load and traffic speed	69	
		6.3.3	Binder grades according to penetration grading system	71	
		6.3.4	Dynamic Viscosity and Dissertations	78	
		6.3.5	Separation Tendency	80	
		6.3.6	Elastic recovery test and solubility test	80	
7	Con	clusions	and Recommendations	81	
Re	ferenc	ces		83	
Ap	pendi	x A: Pro	posed Sri Lankan Specification for Polymer Modified	86	
Bit	tumen			00	

LIST OF FIGURES

Figure 2.1	Asphalt Refining Process	6
Figure 2.2	Chemical Groups of Bitumen	7
Figure 2.3	Stress-strain behavior of a viscoelastic material	8
Figure 2.4	Temperature Susceptibility of different bitumen materials	9
Figure 2.5	Rutting in flexible pavements	12
Figure 2.6	Shoving	12
Figure 2.7	Block Cracking	13
Figure 2.8	Transverse Cracking	14
Figure 2.9	Polymer Chains	16
Figure 2.10	Usage of Polymer Modifiers	17
Figure 2.11	PMB structure formation	18
Figure 2.12	Small, relatively uniform black asphalt dots suspended in a	
	fluorescent polymer field.	20
Figure 2.13	Styrene Butadiene Styrene (SBS) Molecular Structure	21
Figure 2.14	PMB manufacturing process	24
Figure 3.1	Rotating thin film oven	29
Figure 3.2	Pressure Aging Vessel	30
Figure 3.3	Rotational Viscometer	30
Figure 3.4	Stress Strain Curves for DSR test	31
Figure 3.5	Viscous and elastic components of bitumen	32
Figure 3.6	Dynamic Shear Rheometer and tools	32
Figure 3.7	Bending Beam Rheometer	33
Figure 3.8	Bitumen Test Data Chart	37
Figure 4.1	Research Methodology	41
Figure 5.1	Comparison of maximum pavement temperatures and	48
	softening point	
Figure 5.2	Indirect tensile strength of unmodified bitumen	49

Figure 5.3	Marshall test results of Unmodified bitumen(U1)	
Figure 5.4	Marshall test Results for Sample P1	54
Figure 5.5	Marshall results of sample S1	55
Figure 5.6	IDT test results for modified bitumen	56
Figure 5.7	Variation of bulk density with compaction temperature	57
Figure 5.8	Variation of Marshall Stability with compaction	
	temperature	58
Figure 5.9	Variation of marshall flow with compaction temperature	58
Figure 5.10	Marshall stability results of unmodified bitumen, PE	60
	modified bitumen and SBS modified bitumen	
Figure 5.11	Kinematic viscosity at 150°C of modified bitumen	61
Figure 6.1	Van der poel nomograph	74
Figure 6.2	Penetration index nomograph 1 used to derive penetration	75
Figure 6.3	Penetration index nomograph 2 used to derive penetration	76

LIST OF TABLES

Table 2.1	Polymer modifiers and their properties	20
Table 3.1	Superpave binder tests and its purpose	28
Table 3.2	Summary of test methods used in PMB specification	38
Table 3.3	Test methods and tested bitumen properties	39
Table 3.4	Summary of tested properties in PMB specifications	40
Table 4.1	Aggregate gradation used for HMA testing	43
Table 4.2	Description of tested modified bitumen samples	44
Table 5.1	Conventional tests results of unmodified bitumen	46
Table 5.2	Penetration index of unmodified bitumen	47
Table 5.3	Maximum air and pavement temperatures in Sri Lanka	47
Table 5.4	Description of PMB samples	50
Table 5.5	Conventional test results of modified bitumen	50
Table 5.6	Comparison of PE and SBS modified bitumen	63
Table 6.1	Summary of superpave test methods	66
Table 6.2	Binder properties, their importance and relevant test	
	methods	68
Table 6.3	Sri Lankan Temperature Data and Relevant PG Grades	69
Table 6.4	Categorization of Traffic Loads and Traffic Speeds	71
Table 6.5	Penetration grading system used in Sri Lanka	71
Table 6.6	Requirements for elastomer modified bitumen	76
Table 6.7	Requirements for plastomer modified bitumen	77
Table 6.8	Requirements for crumb rubber modified bitumen	77
Table 6.9	Viscosity requirements of different PMB specification	78
Table 6.10	Viscosity values and recommended mixing temperatures	79

LIST OF ABBRIVIATIONS

Abbreviation	Description
ABS	Acrylonite Butadiene Styrene
BDTC	Bitumen Test Data Chart
BBR	Bending Beam Rheometer
COC	Cleaveland Open Cup
DSR	Dynamic Shear Rehometer
DTT	Direct Tension Tester
EA	Ethylene Acrylate
EVA	Ethylene Vinyl Acetate
HMA	Hot Mix Asphalt
IDT	Indirect Tensile Strength
MSCR	Multiple Stress Creep Recovery
PAV	Pressure Aging Vessel
PE	Polyethylene Theses & Dissertations
PG	Performance Grading
PP	Polypropylene
PMB	Polymer Modified Bitumen
RTFO	Rotating This Film Oven
RV	Rotational Viscometer
SB	Styrene Butadiene
SBR	Styrene Butadiene Styrene
SBS	Styrene Butadiene Styrene
SHRP	Superpave Highway Research Program
SI	Styrene Isoprene
TFO	Thin Film Oven
UK	United Kingdom
USA	United States of America

LIST OF APPENDICES

Appendix A Proposed Sri Lankan Specification for Polymer Modified Bitumen

86-90

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk