
LB/JON

THE EFFECT OF CHLORINE ON THE FORMATION OF NITROGEN OXIDES IN A FLUIDIZED BED COMBUSTOR

by

PONNUTHURAI GOKULAKRISHNAN

A thesis submitted to the Department of Chemical Engineering in confirmity with the requirements for the degree of

Master of Science (Engineering).

72117 66 "97" 662.612.2

Department of Chemical Engineering Queen's University at Kingston Kingston, Ontario Canada, K7L 3N6. March 1997

copyright © Ponnuthurai Gokulakrishnan, 1997

72117

ABSTRACT

The effect of chlorine on NO_x and N_2O emissions has been studied in an electrically heated bed of fluidized sand. Pyridine (C₅H₃N) was burnt as a model compound in a mixture of O₂ and N₂ to produce NO and N₂O. The experiments were done at temperatures 750, 825 or 900 °C. The concentrations of O₂ and pyridine in the fluidizing gas were maintained at 3.2 or 11.6%, and 500, 1500 or 2000 ppmv, respectively. When pyridine was burnt in the fluidized bed, the concentrations of NO, N₂O, CO₂ and CO were measured continuously in the freeboard. Chlorine was introduced to the fluidized bed as HCl at concentrations up to 6000 ppmv. The effect of CaCl₂ on the formation of NO_x, N₂O and CO was also studied.

The addition of HCl to the fluidizing gas mixture decreased the concentration of NO_x , and increased the concentration of CO. However, the addition of HCl caused the concentration of N₂O to decrease or to increase, depending on the temperature. At 750 °C, the addition of HCl reduced the concentration of N₂O, while it increased the concentration at 825 and 900 °C. Temperature has a significant impact on the effect caused by the addition of HCl on the formation of NO_x, N₂O and CO. On the other hand, the concentrations of pyridine and O₂ do not have a significant effect on the percentage decrease or increase in the concentrations of NO_x, while it increases the concentration of CO. However, the presence of calcium based compounds in the fluidized bed also tends to catalyze the formation of NO_x.

7

The increase in the concentration of CO caused by HCl is due to the suppression of OH radicals, which are the main precursor for the formation of CO₂ from CO. During pyridine combustion, the radical pool of O, H and OH plays a major role in converting HCN and NCO to NO_x. Thus, the decrease in NO_x caused by HCl is due to the suppression of O, H and OH radicals. Again the increase in the concentration of N₂O at 825 and 900 °C is due to the suppression of OH radical by HCl. However, the decrease in N₂O at 750 °C is probably due to the inhibition of pyridine combustion by HCl.

i

ACKNOWLEDGMENTS

I would like to thank my research supervisor, Dr. David Lawrence for his guidance and continuous encouragement throughout this work, and also, for inspiring my interest in the area of Combustion Science. I would like to thank Mr. Peter Gogolek for devoting his invaluable time for useful discussions related to this work. Thanks must also go to Dr. Henry Becker for lending the FTIR analyzer.

My sincere gratitude goes to members of the support staff in the Department of Chemical Engineering for their assistance to my experimental work, and especially, to Mr. Steve Hodgson who was a tremendous help in setting up and in troubleshooting my experimental system.

I would like to express my great appreciation to Queen's University and the National Sciences and Engineering Council of Canada for providing me with financial support throughout my stay at Queen's University.

CONTENTS

Abstra	ct	1	i
Acknowledgments		1	ii
List of Tables		,	vi
List of Figures			vii
Chapter One: Introduction			
1.1	Coal Combustion		1
1.2	Waste Incineration		3
1.3	Statement of Purpose	,	5

Chapter Two: A Review of the Combustion Chemistry of Nitrogen and Chlorine

ŀ.

2.1	Introd	uction	7
2.2	Nitrog	en Chemistry in Combustion & Dissertations	9
	2.2.1	The Formation of Nitric Oxide	9
	2.2.2	The Formation of Nitrous Oxide	12
	2.2.3	The Formation of Nitrogen Oxides during	
		Fluidized Bed Combustion	13
2.3	Chlori	ne Chemistry in Combustion	16
	2.3.1	The Effect of Chlorine on the Formation of PAH	16
	2.3.2	The Effect of Chlorine on the Formation of Soot	17
	2.3.3.	The Effect of Chlorine on the Formation of CO	20
	2.3.4	The Effect of Chlorine on the Formation of Nitrogen Oxides	24
2.4	Summ	ary	27

iii

Cha	pter Three: Experimental Procedure	
3.1	Introduction	28
3.2	Fluidized Bed	28
3.3	Analytical Systems and Instrumentation	32
	3.3.1 Nitrous Oxide Measurement	33
	3.3.2 Nitric Oxide and NO _x Measurements	37
	3.3.3 Carbon Dioxide and Carbon Monoxide Measurements	39
	3.3.4 Hydrogen Chloride Measurement	39
	3.3.5 Data Acquisition System	41
Chaj	pter Four: Experimental Results	
4.1	Introduction	42
4.2	Carbon Dioxide and Carbon Monoxide	44
4.3	Nitric Oxide	47
4.4	Nitrous Oxide	49
4.5	The Effect of Calcium Chloride	50
4.6	Summary	56
Chaj	pter Five: Discussion	
5.1	Introduction	58
5.2	The Combustion of Pyridine without Chlorine	58
	5.2.1 Formation of Nitrogen Oxides	59
	5.2.2 The Effect of NO on Pyridine Combustion	62
	5.2.3 The Effect of CO on Pyridine Combustion	64

iv

5.3	The Combustion of Pyridine in the Presence of Chlorine			
	5.3.1 Carbon Monoxide	66		
	5.3.2 Nitric Oxide	69		
	5.3.3 Nitrous Oxide	74		
5.4	Summary	78		
Chapter Six: Conclusion, and Recommendations for Future Work				
6.1	Conclusion	80		
6.2	Recommendations for Future Work	81		
References		84		
Appendix 1: Calibration Data		96		
Appendix 2: Experimental Results		98		
Appendix 3: Experimental Designative of Moratuwa, Sri Lanka.		103		
Vita	www.lib.mrt.ac.lk	104		
	:			
	i			

I

|

1

v

LIST OF TABLES

3.1	Instrumentation for gas analysis	33
3.2	The operating conditions of the ECD/GC	35
A1 .1	Calibration curve data for GC	96
A1.2	Calibration curve data for FTIR	97
A2 .1	Experimental data for Figures 4.2 and 4.5	98
A2.2	Experimental data for Figures 4.3, 4.4 and 4.6	101
A2.3	Experimental data for Figure 5.2	102
A3.1	2 ⁴ factorial design with 2 replicate runs at each set of conditions	103

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ł

LIST OF FIGURES

3.1	Schematic diagram of the fluidized bed	29
3.2	A sample of Chromatogram generated by the ECD/GC	36
3.3	The calibration curve for the measurement of N_2O using ECD/GC	36
3.4	The measurement of NO and NO _x using the NO/NO _x analyzer	38
3.5	Calibration curve for the FTIR to measure the concentration of HCl	40
4.1a	Typical experimental measurements of [CO2] and [CO]	43
4.1b	Typical experimental measurements of $[NO_x]$ and $[N_2O]$	43
4.2	The percentage increase in [CO] caused by HCl	45
4.3	The percentage change in [CO ₂] caused by HCl	46
4.4	The percentage change in [CO ₂] + [CO] caused by HCl	46
4.5	The percentage reduction in [NO _x] caused by HCl	48
4.6	The percentage change in $[N_2O]$ caused by HCl	50
4.7	The effect of CaCl ₂ on the formation of NO _x and CO at 825 $^{\circ}$ C	51
4.8	The effect of CaCl ₂ on the formation of NO _x and CO at 900 $^{\circ}$ C	52
4.9	The effect of HCl and CaCl ₂ on the formation of NO _x and CO at 825 $^{\circ}$ C	53
4.10	The effect of limestone on the formation of NO_x at 825 °C	54
4.11	The effect of HCl on the formation of NO_x and CO in the presence of CaO	55
5.1	Main pathways for the oxidation of pyridine	59
5.2	The percentage increase in [N ₂ O] caused by CO	66
5.3	The correlation between the percentage change in $[N_2O]$ and in the total	
	carbon measured in the freeboard: (a) at 750 °C; (b) at 900 °C	76

vii