LB/DON/20/2012

65

PORTFOLIO OPTIMIZATION USING QUADRATIC

PROGRAMMING

LIBRARY UNVERSITY OF MORATUWA, SRI LANK

Lakmal Prabhash Ranasinghe

07/8506

Thesis submitted in partial fulfilment of the requirements for the degree of

ø

Master of Science. University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Department of Mathematics,

University of Moratuwa,

Sri Lanka

51"11″ 51(043

TH

102483

April 2011

102483

DECLARATION

I hereby certify that this dissertation does not incorporate any material previously submitted for a Degree or Diploma in any University, without acknowledgement, and to the best of my knowledge and belief it does not contain any material previously published or written by another person or myself expect where due reference is made in the text.

UOM Verified Signature

I L. P. Ranasinghe

26/08/2011

Date

We endorse the declaration by the candidate.

University of Moratuwa, Sri Lanka.Electronic Theses & Dissertations

.ac.lk

UOM Verified Signature

таппо потановочло собтания

B.Sc.(sp) Mathematics(SL), PG Dip Maths(Peradeniya), M.Sc. (Colombo), M.Phil(Moratuwa) Senior Lecturer Department of Mathematics Faculty of Engineering University of Moratuwa

UOM Verified Signature ...

Mr.Rohan Dissanayake B.Sc.Mathamatics(Colombo), M.Sc.(Pune) Senior Lecturer Department of Mathematics Faculty of Engineering University of Moratuwa

26/08/2011

26/08/.2011

Date

Date

ABSTRACT

R

Investment analysis is concerned, portfolio optimization is very important in order to get maximum profit. In the proposed research the optimization will be done in two main steps. The first part is the modelling mean variance so called reward and risk. The second part is finding optimum solution. The data set published by the Colombo Stock Exchange was used for this research paper as the raw data. The following five companies are selected for the analysis without biases those are Commercial bank, John Keells, Lanka Hospital, The Sri Lanka Telecom and The United motors. These companies represent several fields in the Sri Lankan market such as banking, group of companies, health service, semi government companies, automobile sector.

The objective of the research is to find the optimum allocation of the portfolio. The risk should be minimized and the reward should be maximized at the same time. As a strategy to do both of these simultaneously, the linear combination with controlling arbitrary constant is used. That particular linear combination is a convex quadratic function. In order to find the solution of this, the numerical method is used via MATLAB inbuilt 'm file'.

The developed model of the Markowitz portfolio optimization model¹ could be formulated in order to find the optimum allocation of investment amounts for any number of investment channels. The model can be used by investment researchers and could be applied to gain an analytical idea about the efficient frontier. The model has a parameter that can change emphasis on risk minimization or reward maximization.

The portfolio optimization finds the optimum allocation of money to be invested. The optimum allocation depends on several factors, according to Markowitz, the return as well as risk, should be considered simultaneously. The main model for this research is "Markowitz Portfolio Selection Model'. The objective function of the above model consists a linear combination of risk and return. Since the risk is a quadratic expression, the objective function can also be considered as a quadratic function. Then the normal optimization can not be applied and the non linear optimization (quadratic optimization) must be applied. The main constraint that can be identified is the budgetary constraint along with other limitations, such as boundary restraints. The model has the advantage of changing the budget at any time and the user can use the total budget as a unit, then the optimum allocation fractions, for each investment can be found. The optimization calculation is carried out through 'Matlab', computer aided calculation software.

The output of the optimization model is the ratio of the total investment amount to be allocated, the allocated in the percentages of the total portfolio for Commercial Bank, John Keells, Lanka Hospital, Sri Lanka Telecom and United Motors respectively as 0%, 0%, 62%, 38%, and 0%. The minimum function value is - 0.0907, and the function stands for the linear combination of the risk and the reward.

¹ Harry Markowitz (1952, 1959) developed his portfolio-selection technique, which came to be called modern portfolio theory (MPT). Prior to Markowitz's work, security-selection models focused primarily on the returns generated by investment opportunities. Standard investment advice was to identify those securities that offered the best opportunities for gain with the least risk and then construct a portfolio from these.

It is a pleasure to thank those who made this thesis possible such as my parents, sister, fiancée who gave me the moral support I required and my lecturers, Mr. Rohana Disanayake and Mr T.M.J.A. Cooray who helped me with the research material. I would also like to make a special reference to Colombo Stock Exchange, without its corporation I would not have the opportunity to gather relevant data.

L. P. Ranasinghe

2

\$

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CONTENTS

٩

۲

DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
CONTENTS	v
TABLES OF CONTENTS	viii
LIST OF TABLE	viii
LIST OF FIGURES	viii
LIST OF ANNEXURE	viii
CHAPTER 1. University of Moratuwa, Sri Lanka	9
INTRODUCTION Electronic Theses & Dissertations	9
1.1 INTRODUCTION	10
1.2 OBJECTIVE OF THE RESEARCH	11
1.3 SCOPE	
1.4 SIGNIFICANT OF THE RESEARCH	11
1.5 LIMITATIONS AND DELIMITATIONS	12
1.6 MODERN FINANCIAL MATHEMATICS	12
1.7 PORTFOLIO OPTIMIZATION	13
1.8 CHAPTER SUMMARY	14
CHAPTER 2	15
LITERATURE REVIEW	15
2.1 INTRODUCTION	16
2.2.1 Optimal portfolios using linear programming models	17
2.2.2 A quadratic programming formulation of the portfolio selection	
model	17

v

2.2.3 Bond portfolio optimization problems and their applications to	
index tracking: Apartial optimization approach.	17
2.2.5 Qudratic parametric programming for portfolio selection with	
random problem generation and computational experience	18
2.2.6 Practical portfolio optimization.	19
2.2.7 Risk forecasting models and optimal portfolio selection.	19
2.2.8 Sensitivity analysis in convex quadratic optimization: Invariant	
support set interval	20
2.2.9 A reflective Newton method for minimizing a quadratic function	
subject to bound on some of the variable.	20
2.2 CHAPTER SUMMARY	21
CHAPTER 3	22
THEORY AND METHODOLOGY	
3.1 INTRODUCTION	
3.2 THEORY AND METHODOLOGY	24
3.3 MARKOWITZ PORTFOLIO'SELECTION MODELLIKA.	
3.4 MEASUREMENT OF RETURN AND RISK www.lib.mrt.ac.lk	
3.5 RETURN	20
3.6 KISK	
3.7 EFFICIENT PORTFOLIO	
3.8 OPTIMIZATION TECHNIQUE (QUADRATIC PROGRAMMING)	30
3.9 NUMERICAL METHOD TO SOLVE THE QUADRATIC	
3.10 COMPUTATIONAL AIDED CALCULATION USING MATLAB	
3.11 CHAPTER SUMMARY	
CHAPTER 4	36
THE OPTIMIZATION MODEL	36
4.1 INTRODUCTION	37
4.2 THE RISK AND REWARD MODELS	38
4.3 THE OPTIMIZATION MODEL	40
4.4 RISK AVERSION PARAMETER	41
4.5 REWARD MODEL	42

₽

۲

vi

4.6 RISK MODEL	43
4.7 OBJECTIVE FUNCTION FOR OPTIMIZATION MODEL	44
4.8 CONSTRAINTS FOR OPTIMIZATION MODEL	45
4.9 CHAPTER SUMMARY	46
CHAPTER 5	47
EVALUATION OF THE MODEL	47
5.1 INTRODUCTION	48
5.2 THE DATA SET	49
5.3 CLOSING SHARE PRICES	50
5.4 RETURN	52
5.5 THE COVARIANCE MATRIX CALCULATION USING	
MICROSOFT EXCEL	56
5.6 CALCULATION USING MATLAB	61
5.7 THE OUTPUT ANALYSIS	66
5.8 SENSITIVITY ANALYSIS	67
5.9 SUMMARY OF FINDINGSI Moratuwa, Sri Lanka.	69
5.10 CHAPTER SUMMARY	70
CHAPTER 6	71
CONCLUSION AND FURTHER RESEARCH	71
6.1 INTRODUCTION	72
6.2 CONCLUTION	73
6.3 FURTHER RESEARCH	74
REFERENCES	75
APPENDIX A1	78
APPENDIX A2	89

?

۶

LIST OF TABLE

	Page
Table 5.1 Closing share price of the five selected companie	50
Table 5.2: Return values of closing share prices	52
Table 5.3: Reward calculation and (Value - average) calculation	55
Table 5.4: Covariance calculation step 1	59
Table 5.5: Covariance calculation step 2	59
Table 5.6: Covariance calculation step 3 (Final Covariance matrix)	59
Table 5.7: Covariance matrix directly using Excel	60

LIST OF FIGURES

-

:

Ş

University of Moratuwa, Sri Lanka.	
Electronic Theses & Dissertations	age
Figure 3.1. Investment opportunity set for asset A and B	.28
Figure 3.2: The efficient frontier of risky assets and individual assets	.29
Figure 5.1: the trend lines of each company closing prices as it is	.51
Figure 5.2: Trend line of Return value of the share prices	.53

LIST OF ANNEXURE

Annexure	Description	Page	
Appendix A1	The m file of the "quadpro"	78	
Appendix A2	The data set	89	