LB/200/50/00 S.

POSITIVE ENVIRONMENTAL MANAGEMENT VIA WASTE MINIMISATION

IN A TEXTILE WASHING FACILITY

79218

611 " 00"

628.4.029:511

පුස්තකාලය මොරටුව විහිව විද්හාලය, ශු ලංකාව රොරටුව

University of Moratuwa

Sri Lanka.

÷

This dissertation has not been previously prepared in whole or part to any University or Institution for a higher Degree.

lectronic Theses & Dissertations

www.lib.mrt.ac.lk

UOM Verified Signature Intersity of Moratuwa, Sri Lanka.

4

4

Samudrika Wijayapala April 2000

UOM Verified Signature

Dr. Ajith de Alwis Supervisor **UOM Verified Signature**

Mr. N.G.H. de Silva Supervisor

Acknowledgement

I acknowledge with gratitude the General Manager and the management of the Garment Washing Factory, specially the Dye House Manager, Mr.Sisil Dharmapriya and the Shift Engineer Mr. Lakmal Perera in giving me the opportunity to carryout this project at their production facility at Ratmalana.

I am grateful to Dr. Ajith de Alwis and Mr. N.G.H.de Silva, my co-supervisors who very generously spared their precious time and provided necessary guidance and assistance to carryout this difficult task.

I also extend my gratitude and thanks to Prof. Lakdas D. Fernando, Head of the Department, Textile and Clothing Technology, University of Moratuwa for providing me with all necessary assistance in carrying out this project.

Further I wish to sincerely thank the staff of the Departments of Chemical Engineering, & Civil Engineering of the University of Moratuwa as well as the other Textiles and Garment factories and the Mr. Sena V. Peiris, The Chairman, Project SMED, who helped me in various ways to complete my project successfully.

I am also thankful to the members of the academic and non-academic staff of the Department and especially the Technical Officer P. Wanniarachchi and Mr. W. Chandradasa for the assistance extended to me.

Summary

Textile and garment Industry is an important industry sector in the Sri Lankan economy. The finishing part comprises the final step in textile processing and it is known as a sector with high polluting potential. In the textile washing sector considerable quantities of water is used only once usually and is discharged without any recovery. To stay competitive this industry needs to be modernised and definitely needs better performance in the environmental management sector.

This project was limited to looking at the environmental management aspects and that too with only a single pollutant stream -water. The sector of the textile industry considered is the textile washing industry.

A garment washing plant is analysed with the objective of promoting water recycling and waste minimization practices. Initially typical practices were reported, followed by a water balance for the system . Results of the water audit presented here forms the first essential element of the waste minimization process.

Water stream is considered from the inlet to the exit, and the consideration is given to methods of conservation possible of this valuable natural resource while obtaining the optimal use in the process. The time that water was assumed to be a limitless low-cost resource has already passed. Today there is an increasing awareness of the danger to the environment caused by over-extraction and use of water. There is now considerable incentive to reduce both consumption and wastewater production. The selection of the washing industry was selected for this study under that consideration. This industry sector today uses significant quantities of water and most of the factories neither utilize waste minimization nor water recycling techniques. The waste treatment methods are also not adequate. Thus there is a tremendous potential on savings on one hand and a need on the other hand.

It was shown that it is feasible to utilise groundwater after treatment. Manganese is not appearing to be a major problem. The problem chemical appears to be the presence of iron. Iron can be removed from groundwater using several operations. This eliminates the transport of water from outside and serves many environmental needs such as reduced traffic, removing reliance on outside sources and events etc. A pilot plant was constructed in the laboratory and four methods of iron removal were analysed.

Ozonation was studied as a method of reducing this wastage. In this manner there would be a reduced demand on the freshwater resource as well as reduced discharge of effluents. Thus the situation would lead to a facility whereby the waste minimisation has taken place and a facility with positive environmental management. It has been shown that this technology offers many advantages to the industry including the recycling option. Ozonation in addition provided abilities to provide the required input quality as well in addition to being able to reduce COD, BOD and the most importantly Colour of effluents.

It was seen that processes are carried out with less attention being paid to the overall efficiencies but only towards meeting production targets and/or meeting deadlines. The feasibility of recycling wastewater was shown. The practice of this would be a major improvement on the current environmental performance.

Table of Contents

Page

iii
iv
v
viii
ix
xi

Chapter I

¥

Introduction and an Overview of the textile industry in Sri Lanka

1.1	Introduction	1
1.2	The Textile & clothing industry in Sri Lanka.	2
1.3	Present Environmental Management in the Textile Industry	3
1.4	Challenges to the industry	4
1.4.1	Production, Marketing and Commercial Challenges	4
1.4.2	Environmental Challenges	7
1.5	Research Objectives	10

Chapter 2

1

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

Garment Washing Industry

2.1	Introduction	13
2.2	Garment Washing Industry	13
2.3	Garment Washing Process and Related Parameters	15
2.4	Quality Assurance and Control procedures	22
2.4.1	Effect of Washing on Quality of Garment	23
2.5	Water Quality requirements for Garment Washing	25
2.5.1	Impacts of adverse quality parameters.	26
2.5.1.1	The presence of heavy metal ions	26
2.5.1.2	Effect of water hardness	26

Chapter 3

An Environmental Assessment of a Textile Washing facility

3.1	Introduction	28
3.1.1	Water use and management	28
3.2	Materials and Methods	28

3.2.1	Survey of Garment washing Industries	28
3.2.2	Garment washing Plant Audit	28
3.2.2.1	Water Audit	28
3.2.2.2	Location of the facility	28
3.3	Methodology	29
3.3.1	Flow Measurements – Water	29
3.3.2	Flow measurements - Steam	32
3.3.3	Water & Wastewater characteristics	32
3.3.4	Rainwater	33
3.4	Results	34
3.4.1	General observations from survey and related visits	34
3.4.2	Water Audit	35
3.4.3	Organisation and Production activities	35
3.4.4	Work environment and Pollution issues of the site	37
3.4.5	Current practices of water management	40
3.4.6	Wastewter discharge and characteristics	40
3.4.7	Results (water Audit)	42
3.4.8	Input water and use characteristics	43
3.4.9	Water Quality Characteristics	43
3.4.10	Rainfall analysisand site specific requirements for rainwater	45
	harvesting	
3.4.11	Rainwater utilisation system	47
3.5	Discussion	52
3.5.1	Water Audit	52
3.5.2	Water Reuse and Recycling – Options and Importance	52
3.5.3	Use of rainwater www.lib.mrt.ac.lk	55

Chapter 4

ł.

Iron and Manganese Removal: Study of Industry Options

The importance of iron and manganese removal in textile washing	57
The Presence of Iron and Manganese	57
Removal of Iron and Manganese	60
Methods of Removal	61
Removal of Iron	61
Review of Methods	62
Removal of Manganese	63
Review of Methods	64
Materials and Methods	65
Experimental set up	65
Results and Discussion	67
Coagulation and Flocculation using Alum and Propriatory	67
chemicals (PC) as coagulant (Chemical Removal)	
Aeration	73
	The Presence of Iron and Manganese Removal of Iron and Manganese Methods of Removal Removal of Iron Review of Methods Removal of Manganese Review of Methods Materials and Methods Experimental set up Results and Discussion Coagulation andFlocculation using Alum and Propriatory chemicals (PC) as coagulant (Chemical Removal)

NV OF

vi

4.5.3	Adsorption	76
4.5.4	Ion – Exchange Resins	80
4.5.5	Discussion	83

Chapter 5

Ozonation : A process Solution for waste minimization

5.1	Introduction to Ozonation	85
5.1.1	Generation of Ozone	88
5.1.2	Process of Ozonation	90
5.1.2.1	Solubility of ozone in water	90
5.1.2.2	Mass Transfer aspect in ozonation process	90
5.1.2.3	Typical Dosage parameters and reaction times	91
5.2	Review of Ozonation applications	91
5.2.1	Drinking Water installation	92
5.2.2	Decolouration	93
5.2.3	Tase and Odour Removal	93
5.2.4	Wastewater Treatment Plant operations	93
5.2.5	Further applications	94
5.3	Materials and Methods	94
5.3.1	Ozonatin Unit	94
5.3.2	Methodology University of Moratuwa, Sri Lanka.	96
5.4	Results and Discussion in These & Dissertations	97
5.5	Process Economics	104

Chapter 6

4

Conclusions and Recommendations

6.1	Conclusions and Recommendations	107
6.2	Suggestions for Future work	113

List of Tables

Table No.

- 1.1 Textile and Garment Industry Sector
- 1.2 Trade and Professional Organisations
- 1.3 Total Imports and Exports Values for 1994 –1998
- 1.4 Important Issues in Relation to Textiles
- 1.5 Criteria for Eco-Labelling of Textiles
- 1.6 List of Banned withdrawn and restricted chemicals related to Textile Processing
- 1.7 Some International Standards specific for Textile Industry
- 1.8 The estimated wastewater loading from the textile sector in the Ratmalana Moratuwa area
- 1.9 Estimated total waste load from the Textile Manufacturing Sector
- 2.1 Possible Environmental Impacts at each stage.
- 2.2 General wastewater characteristics from Textile and Garment industries in Ratmalana
- 2.3 Possible problems or faults arising as a result of inappropriate physical conditions or parameters
- 2.4 Deviation in process steps when utilizing impure water
- 3.1 Typical activities of the staff and work force
- 3.2 Tabulated Results of the Water Audit
- 3.3 Possible source water quality parameters
- 3.4 Wastewater Characteristics of the Garment washing Plant A
- 3.5 Wastewater Characteristics of another Garment washing Plant B
- 3.6 BOD & COD analysis for the effluent streams
- 3.7 Average and Extreme Rainfall Data for Colombo
- 3.8 Average Rainfall data at Ratmalana over last five years
- 3.9 Possible reduction opportunities via better Management
- 4.1 Sources of Iron and Manganese
- 4.2 Review of Methods Iron Removal
- 4.3 Review of Methods Manganese Removal
- 4.4 Description of the selected samples for chemical addition
- 4.5 Cost analysis for the Trial run
- 4.6 Cost Analysis for the Plant
- 4.7 Results from Aeration Tests
- 4.8 Results from Adsorption Tests
- 4.9 Results from Ion-Exchange Tests
- 5.1 Comparison of Ozone with other oxidising agents
- 5.2 Advantages and Disadvantages of UV Vs CD Ozone
- 5.3 Solubility of UV produced and CD produced Ozone
- 5.4 Some practical data for the two parameters
- 5.5 Transmittance percentages for specific dye samples
- 5.6 Wastewater Analysis
- 6.1 Additional Water related saving methods

List of Figures

Figure No.

- 1.1 Export values for the years 1990 -1998
- 1.2 a Conventional Process system
 - b Modern Integrated Solution
 - Distribution of Garment Washing Industry in Sri Lanka.
- 2.2 Special Effect Washing in the Garment Industry
- 2.3 Characterisation of Environmental discharges in special effect washing
- 2.4 Care label
- 2.5 Process parameters that govern the wash effect
- 3.1 a Location map of the audited facility
 - b Geographical map of the audited facility
 - c Drain Layout of the factory
- 3.2 Discharge to an open channel from a washing machine
- 3.3 Open channel flow from the outlet of the factory
- 3.4 The organisation chart of the facility
- 3.5 a Total process block diagram diagram b Detailed Dyeing process block diagram
- 3.6 The layout plan of the facility
- 3.7 a-c Detailed Piping & Instrumentation diagram for the plant
 - 3.8 Impacts Identification assessment for washing process
 - 3.9 Impacts Identification assessment for dyeing process
 - 3.10 Process block diagram of the raw water treatment plant
 - 3.11 Raw water treatment plant
 - 3.12 Process block diagram of the wastewater treatment plant
 - 3.13 General flow of water in the factory
 - 3.14 Rainfall Zones of Sri Lanka
 - 3.15 Down Pipe
 - 3.16 Self- cleaning valve
 - 3.17 Rainfall data at Ratmalana (Five Years)
 - 4.1 a Distribution of Total Iron in Sri Lanka
 - b Distribution of Manganese ion in Sri Lanka
 - 4.2 Yellow patches in the washed garments due to iron
 - 4.3 Solubility diagrams for metals
 - 4.4 Relative oxidation requirements to achieve precipitation of iron and Manganese
 - 4.5 a Four Configurations in the trial run (Pictorial illustration)
 - b Configuration of chemical addition (Pictorial illustration)
 - 4.6 Coagulation and Flocculation studies using Jar Test apparatus
 - 4.7 Configuration of chemical addition (Schematic)
 - 4.8 Graph of pH vs NaOH (10 %)
 - 4.9 Graph of pH vs NaOH (10 %) Best Possible graph
 - 4.10 Graph of pH vs Alum concentration
 - 4.11 Graph of iron content vs PC (Time Period 5 min, rpm 150)
 - 4.12 Graph of iron content vs PC (Time Period 3 min, rpm 100)
 - 4.13 Graph of iron content vs PC (Time Period 4 min, rpm 200)
 - 4.14 Graph of iron content vs PC for different rpm values (06 values)
 - 4.15 Graph of PC vs pH (to obtain optimum PC requirement)
 - 4.16 Configuration for aeration (Schematic)

- 4.17 Graph of reduction of iron vs time for different air flow rates
- 4.18 a & b An Industrial scale aeration unit
- 4.19 a Concentration ratio vs adsorption bed length
- b Concentration ratio vs Time
- 4.20 Configuration for adsorption studies (Schematic)
- 4.21 Ion exchange resin test column
- 4.22 Summary of findings
- 5.1 Formation of ozone
- 5.2 Generation of ozone
- 5.3 Ozone facility in the Los Angeles aqueduct filtration plant
- 5.4 a ozonation unit
 - b Component of ozonation unit
- 5.5 The graph of iron content vs time required for ground water samples
- 5.6 The graph of iron content vs time required for standard iron solution
- 5.7 a Reactive dye (Navy Blue)
 - b Acid dye (Red)
 - c Vat dye (Brown)
 - d Disperse dye (Orange)
 - e Direct dye (solar Black)
- 5.8 a Outlet sample sfrom the factory after ozonation
 - b Outlet samples from the wastewater treatment plant after ozonation
- 5.9 a Pre Desize rinse
 - b Desize rinse
 - c Softening
 - d Bleaching

4

- 5.10 The total analysis of water throughout the study
 - 6.1 Modified block diagram for the process Sri Lanka.
- 6.2 Modified scheme for recovery of condensate

List of Abbreviations

٨

Á

\$	United States Currency (US Dollars)
(g)	Gas
μS	Micro Seconds
AATCC	American Association of Textile Chemists and Colourists
AIT	American Institute of Textiles
AOX	
-	Adsorbable organic halides
aq A T	aqueous A duance Technology
AT	Advance Technology
BDL	Below Detection limits
BOD	Bio Chemical Oxygen Demand
С	Fluid concentration at a point in a bed.
c _b	Break point concentration
C _d	Concentration at which the bed is ineffective
CD	Chorona Discharge
CEA	Central Environmental Authority
CFM	Chloro Fluoro Methane
Co	Feed concentration
COD	Chemical Oxygen Demand
C_{pf}	Specific Heat Capacity of Fabrics
C_{pl}	Specific Heat Capacity of Water
dH	German Hardness
E / S	Enzyme / Bleach Wash
EIU	Economic intelligence unit uwa, Sri Lanka.
EOP	Electro Chemical Potential of Ozone
g	grams
GPF	Garment factory programme
gpm	grams per minute
H _B	Length of bed used up to the break point
Η _T	Total Height
H _{UNB}	The length of unused bed
ISO	International Standard Organisation
J	Joule
K	Kelvin
kg	kilogram
kJ	kilo joule
Kwh	kilo watt hour
L	Litre
л М	Metre
M.L.R.	Material to Liquor ratio
M _F	Fabric Weight
MID	Ministry of Industrial Development
Min	Minutes
	Liquid Weight
M_L M_l	Liquid Weight
	North American Free Trade Agreement
NWS & DB	-
$O_3 O_C$	Ozone
U	Centigrade

NAFTA	North American Free Trade Agreement
NWS & DB	-
O ₃	Ozone
°Č	Centigrade
OZAT	Ozone Advance Technology
P&I	Piping and Instrumentation
PC	Proprietary Chemical
pН	Unit used to describe acidity or alkalinity.
ppm	Parts per Million
QA/QC	Quality assurance and Quality control
RUS	Rainwater Utilization System
S	Seconds
SAPTA	South Asian Preferential Trade Agreement
SLS	Sri Lanka Standards
SS	Suspended Solids
t 4	Time equivalent to tower out put
t _b	Breakpoint Time
t _d	Time at which the bed is ineffective
t _s	Time for $c/c_0 = 0.5$
t _t	Time equivalent to the total or stoichiometric capacity
t _u	Time equivalent to usable capacity
THM	Trihalomethane
TKN	Total Kjeldhal Nitrogen
TL	Textiles and Leather tronic Theses & Dissertations
TL	Textile & Leather www.lib.mrt.ac.lk
TP	Total Phosphate
TSS	Total Suspended Solids
USA	United States of America
UV	Ultra Violet
WWTP	Wastewater Treatment Plant

xii