DEVELOPMENT AND EVALUATION OF THE AESTHETICS OF STRUCTURAL FORM

Congo iso Brine
By

Chandana Kulasuriya BSc.(Hons.)-Civil Eng., CEng.-Civil Eng. BA -Fine Arts \& Philosophy with Social Stat

(9) University or Morntuwa Sri Lanka

Supervised By

Prof. W.P.S. Dias
 \&

> Dr. (Mrs.) M.T.P. Hettiarchchi

Th

A Dissertation submitted in partial fulfillment for the award of the Master of Engineering Degree in Structural Engineering Design of the University of Moratuwa, Sri Lanka.

DECLARATION

This dissertation has not been previously presented in whole or part to any University or Institution for a Higher Degree.

Signature of the Candidate
Name of the Candidate
Date

CHANDANA KULASURIYA
20.11 .2000

PREFACE

The Master of Engineering Degree in Structural Engineering Design at the University of Moratuwa, Sri Lanka, consists of three major components Examinations preceded by Lectures, Courseworks and a Research Project. On completion of the Research Project, a Dissertation has to be submitted by the candidate.

As a candidate for the above Masters' Degree, I have carried out a research study on Structural Engineering relating to Aesthetics. This Dissertation is the outcome of my research study.

Chandana Kulasuriya

410, Nawala Road
Rajagiriya
Unikersity of Moratuwa, Sri Lanka
Sri Lanka.www lib mrtac Ik
October 2000

ACKNOWLEDGEMENTS

First of all I wish to thank the University of Moratuwa, Sri Lanka, for providing me the opportunity to read for the Master of Engineering Degree in Structural Engineering Design.

Secondly, I wish to express my gratitude and indebtedness to my Supervisors, Prof. W.P.S. Dias and Dr. (Mrs.) M.T.P. Hettiarachchi, Senior Lecturers in Structural Engineering at the University of Moratuwa, for their scholarly guidance. Without Prof. Dias' inspiration, I would not have embarked on a research study on Structua! Engineering relating to Aesthetics. Dr. (Mrs.) Hettiarachchi unhesitatingly provided me the support and encouragement that was needed to complete my research project as envisaged.

Next, my thanks also go to Mr. V.S. Nammuni, Senior Lecturer in Architecture, at the University of Moratuwa, for his comments, suggestions and constructive criticisms.

I am deeply indebted to Prof. A.P.K. De Zoysa, Senior Lecturer in Philosophy of Science, at the Open University of Sri Lanka for his interpretations of philosophical concepts which helped mein analysing the philosophical models of aesthetics.

Next, my sincere thanks go to Mr. C. Thenuwara, Senior Lecturer in Fine Arts, at the University of Kelaniya, for his invaluable reflections about aesthetics.

I take this opportunity to express my gratitude to Dr. B. Weerasinghe, the Director, Educational Technology Division, and Dr. (Mrs.) W.A.R. Wijeratne, Senior Lecturer in Education/Psychology at the Open University of Sri Lanka. Their ideas on psychology were very useful in conducting the psychological experiments (perceptual experiments), the results of which were used to analyse psychological reactions to structures.

A word of thanks is also due to all the respondents who participated in the perceptual experiments.

Finally, I would like to thank my parents, brother, colleagues, and friends for the encouragement, support and for their forbearance - all of which facilitated my Research Study.

Abstract

This study demonstrates that the aesthetic concepts of engineering design do not just arise; but that they are derived from various models of aesthetics. It also presents various Proportioning Systems and their application in Structures, through case studies, notably the use of the Golden Proportion.

The research includes two perceptual experiments. The first experiment was about the perception of rectangular shapes using one hundred respondents. The second experiment was about the perception of simple structures using fifty respondents. The results of these perceptual experiments confirm the fact that respondents' preferences are linked with the various philosophical models.

The research also deals with optimisation of simple structures. Optimisation curves are obtained by varying the dimensions (or proportions) of the structure concerned.

Finally, the dissertation also describes the possibility of making initial design decisions relating to dimensions (or proportions), using plots of optimisation and plots of aesthetic preferences.

CONTENTS

Page
PREFACE i
ACKNOWLEDGEMENTS ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES VII

1. INTRODUCTION 1
1.1 General 2
1.2 Background of the Problem. 2
1.3 Previous Studies 3
1.4 Intended Study 4
1.5 Objectives of the Study 5
1.6 Methodologies used in the Study 5
2. AESTHETICS IN STRUCTURAL DESIGN 7
2.1 General 8
2.2 Nature of Aesthetics 8
2.3 Models of Aesthetics 9
2.4 Paradigms of Aesthetic Beauty 10
2.5 Aesthetic Concepts in Structural Design 12
2.6 Aesthetic Beauty and Proportions 14
2.7 Proportioning Systems 16
2.8 Application of Proportioning Systems in Structures 25
2.9 Visual Perception of Proportions of Structures 28
3. GOLDEN PROPORTION AND ITS APPLICATION IN STRUCTURES 30
3.1 General 31
3.2 Golden Proportion 31
3.3 Golden Proportion in Geometric Shapes 32
3.4 Golden Rectangle and its Properties 33
3.5 Golden Spiral 34
3.6 Golden Proportion in nature 35
3.7 Application of Golden Proportion in Structures 38
4. EVALUATION OF AESTHETICS 45
4.1 General 46
4.2 Perception of Proportions of Geometric Shapes 46
4.2.1 Methodology 47
-Experiment 1: Rectangles 47
4.3 Perception of Proportions of Structures 49
4.3.1 Methodology 50
-Experiment 1: Three-span Bridges 51
-Experiment 2 : Parabolic Arched Bridges 53
-Experiment 3 : Circular Arched Bridges 54
-Experiment 4 : Parallel Chorded Trusses 56
5. OPTIMISATION OF SIMPLE STRUCTURES 61
5.1 General 62
5.2 Optimisation 62
-Structure 1:Three Span Continuous Beam 62
-Structure 2 : Two-pinned Parabolic Arch 65
-Stiuction 3 : Two-pinned Circular Arcin 67
-Structure 4 : Parallel Chorded Trusse 69
6. DISCUSSION 74
7. CONCLUSIONS 82
8. SUGGESTIONS FOR FUTURE STUDY 87
REFERENCES 90
APPENDICES 94
Appendix 1:Fundamental Mathematical Progressions 95
Appendix 2 : Nomenclature of Proportions using Musical Theory 97
Appendix 3: Questionnaire 1: Perception of Proportions 100
Appendix 4: Perception of Rectangles 101
Appendix 5: Questionnaire 2: Perception of Structures 102
Appendix 6: Perception of Three-span Bridges 103
Appendix 7: Perception of Parabolic-arched Bridges 104
Appendix $8:$ Perception of Circular-arched Bridges 105
Appendix 9: Perception of Parallel-chorded Trusses 106
Appendix 10: Design Quality Assessment (DQA) Table 107
Appendix 11: Specimen Calculations -Three-span Beam 108
Appendix 12: Specimen Calculations - Parabolic Arch 110
Appendix 13: Specimen Calculations - Circular Arch 113
Appendix 14: Specimen Calculations - Parallel-chorded Truss 116

LIST OF FIGURES

Page
Fig. 1-Aesthetic Concepts and their application in Structures 13
Fig. 2 - Incommensurable ratios of simple geometric shapes 15
Fig. 3 - Plato's two number series, laid out as a Lambda (λ) 18
Fig. 4 - The completed Platonic Lambda Series 18
Fig. 5 - Platonic Means 19
Fig. 6 - Derivation of Sacred Square Roots 20
Fig. 7-Albertie's Subtractive System of proportion 22
Fig. 8 - Palladio's favoured proportions 22
Fig. 9 - Le Modular Proportioning System 24
Fig. 10 - Geometric Decomposition 26
Fig. 11 - Villard Diagram and its Application in Bern Cathedral 27
Fig. 12 - Application of the Golden Ratio in Linear Direction 28
Fig. 13 - Notre - Dame façade 29
Fig. 14 - Golden Proportion in Pentagon 32
Fig. 15 - Golden Propartion in Pentagram 32
Fig. 16 - Golden Rectangle 33
Fig. 17 - Gradation of Squares and Golden Rectangles 33
Fig. 18 - Golden Spiral 34
Fig. 19 - Intersection of curve and radii 34
Fig. 20 - Golden Proportions of the Human Body 35
Fig. 21 - Golden Spiral in Nautilus Shell 36
Fig. 22 - Golden Spiral in Nature 37
Fig. 23 - Golden Proportions of Parthenon, Greece 38
Fig. 24 - Golden Proportions of Cistercian Abbey, Fontenay 39
Fig. 25 - Golden Proportions of Yakushiji Temple Pagoda, Japan 40
Fig. 26 - Golden Proportions of Redheugh bridge 40
Fig. 27 - Ting Kau Bridge 41
Fig. 28 - Golden Proportions of the Ting Kau Bridge composition 41
Fig. 29 - Twin-towered Vasco da Gama bridges 42
Fig. 30 - Golden Proportions of the Pylon of the Vasco da Gama Bridge 42
Fig. 31 - Tsing Ma Suspension Bridge 43
Fig. 32 - Proportions of the Tsing Ma Towers 44
Fig. 33 - The Golden Proportioned double-deck section of the Tsing Ma Bridge 44
Fig. 34 - Preferences when shorter dimension is vertical 48
Fig. 35 - Preferences when shorter dimension is horizontal 48
Fig. 36 - Sample drawing of a Three-span Bridge 51
Fig. 37 - Respondents' Preferences for the Three-span Bridge 52
Fig. 38 - Sample drawing of the Parabolic-Arched Bridge 53
Fig. 39 - Respondente' Preferences for the Parabolic Arched Bridge 54
Fig. 40 - Sample drawing of the Circular-Arched Bridge 55
Fig. 41 - Respondents' Preferences for the Circular arched Bridge 55
Fig. 42 - Five types of Parallel-chorded Trusses considered 56
Fig. 43 - Sample drawing of a Truss 57
Fig. 44 - Preferences -trusses grouped according to span to height ratio 58
Fig. 45 - Preferences -trusses grouped according to number of segments 59
Fig. 46 - Bending Moments in the Three-span Beam. 63
Fig. 47 - Lengths over which sagging and hogging moments are effective 64
Fig. 48 - Optimisation Curve for Three-span Beam 65
Fig. 49 - Axial Force Envelope of a Two-pinned Parabolic Arch 66
Fig. 50 - Optimisation Curve for Two-pinned Parabolic Arch 67
Fig. 51 - Axial Force Envelope of a Two-pinned Circular Arch 68
Piz. 52 - Optimisation Curve for Two-pinned Circular Arch 69
Fig. 53 - Five Types of Parallel-chorded Trusses considered 70
Fig. 54 - Optimisation Curves -trusses grouped according to span to height ratio 72
Fig. 55 - Optimisation Curves -trusses grouped according to number of segments 72

