LB/DON/33/2012

116

UNIVERSITY

DEVELOPMENT OF HYBRID POWER SYSTEM CONTROLLER FOR MOBILE TELECOM BASE

A dissertation submitted to the

Department of Electrical Engineering, University of Moratuwa

in partial fulfillment of the requirements for the

degree of Master of Science

by

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Supervised by: Dr. J.P. Karunadasa

Department of Electrical Engineering

621.3 11 University of Moratuwa, Sri Lanka

102530

i

October 2011

102530

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature of Moratuwa, Sri Lanka. Theses & Dissertations M.K. Liyanage www.lib.mrt.ac.lk

Date : 31st October 2011.

I endorse the declaration by the candidate.

UOM Verified Signature

Dr. J.P. Karunadasa

CONTENTS

Declaration	
Abstract	vi
Dedication	vii
Acknowledgement	viii
List of Figures	ix
List of Tables	xi
List of Abbreviations	xii
1. Introduction Electronic Theses & Dissertations	
www.lib.mrt.ac.lk 1.1 Background	1
1.2 Motivation	
1.2.1 CAPEX and OPEX comparison	4
1.2.2 Cash Flow Analysis	5
1.2.3 Saving & ROI Calculation	7
1.3 Objectives of the Research	
2. Design of the System	
2.1 Control Parameter Identification	
2.2 Development of Control Algorithm	10

iii

2.3 Design of the System	12
2.3.1 Equipment Arrangement/Single Line Diagram	12
2.3.2 Control System	14
2.4 System Description	17
2.4.1 PV Charge Controller	17
2.4.2 Delta DPR 2000 Rectifier	19
2.5 Simulation of Control System with Automation Studio	21
3. Implementation of the System	26
3.1 Information of the system Electronic Theses & Dissertations	26
3.1.1 Theppanawa She Details	26
3.1.2 Homer Simulation for Renewable Energy System Analysis	27
3.2 Bill of Materials for Developed System	31
3.3 Fabrication of the Control Panel	32
3.4 Installation and Testing at Theppanawa site	
3.5 Performance Analysis	35
3.6 Cash Flow Analysis for Theppanawa Site	35
3.6.1 CAPEX and OPEX Comparison	36
3.6.2 Cash Flow Analysis	37

iv

3.6.3 Saving and ROI Calculations	39
4. Conclusion and Future Works	40
4.1 Conclusion	40
4.2 Recommendation for Future Works	40
References	
Appendix A Outback MX 60, Installation, Programming & User's Manual	

Appendix B Delta DPR2000 Rectifier Manual

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

Most of the telecom base stations are sited at elevated locations to get best signal propagation. If the area is isolated and away from the national grid of commercial power, it will involve higher capital investments for extending the grid to obtain commercial power, leaving the base station to be none profitable and none cost recovering. Moreover, until the grid power connection, which involves considerable time period for grid extension, base station will be required to operate with full time generator operation, further reducing the profitability of the project.

As a solution, to match the remote site constraints, alternative energy systems can be considered. A power system controller has been developed which suits for telecom base stations to integrate alternative energy sources, solar and wind with the generator and the battery backup to fulfill the power requirements of base stations, which reduces the operation cost as well as Total Cost of Ownership (FCQ) for the base station.

Installation of the controller and implementing alternative energy system at a Dialog base station, practical data were obtained which showed an operational cost saving nearly 90%. Most importantly, the calculated payback period was less than three years when compared with full time generator operation, with the practical details obtained from the operational site.

Dedication

I dedicate this dissertation to my loving parents. University of Woratuwa, Sit Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

First I would like to thank to Dr. J.P.Karunadasa for guiding me to successfully complete this research within the time frame. As the research supervisor, he directed me to find all necessary literature and to do the research work to the standards.

Then a big thank should go to Mr. P.G.R. Prasad, Head- Power System Planning and Operations, Dialog Axiata PLC, for providing me the opportunity to carry out this project and implement this system at one of the base stations at Dialog.

I should thank to all the lectures of Electrical Department of University of Moratuwa, who participated for the progressity evice presentations, since Laould improve my design based on the printful Comments in Theses & Dissertations www.lib.mrt.ac.lk

Finally I would like to thank all who gave me a great support even in a single word to successfully complete this research work.

List of Figures

Figure 1	: Saving and ROI	07
Figure 2	2 : Power System Arrangement of a Generator Powered Base Station 09	
Figure 3	re 3 : Control System Algorithm	
Figure 4	: Equipment arrangement/Single line Diagram	12
Figure 5	gure 5 : Control System	
Figure 6	: Battery Charging Pattern of OutBack MX 60	18
Figure 7	: Maximum Power Point Tracking (MPPT) Operation	19
Figure 8	System Development with Automation Studio www.lib.mrt.ac.lk	21
Figure 9	: Simulation Step 1- Activate LVR	22
Figure 10	: Simulation Step 2 – De activate LVR	23
Figure 11	: Simulation Step 3 – Activate HVR	
Figure 12	: Simulation Step 4 – De activate LVR, Generator Stop Timer	25
	(STPT) activates before HVR activates	
Figure 13	: Theppanawa Site Google Map and Installation Photos	26/27
Figure 14	: Homer Simulation Results for Theppanawa Site	27
Figure 15	: Monthly Average Electric Production	28
Figure 16	: Door Open and Door Closed Views of the Control Panel	32

ix

Figure 17	: Initial Control System at Theppanawa Site	33
Figure 18	: Relay Output Programming	33
Figure 19	: Voltage Settings for Relay Outputs	34
Figure 20	: Battery Settings	34
Figure 21	: Saving and ROI with Practical Results	39

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 1	: Initial Capital Cost Breakdown for Power Connection for a Remote Base Station	1
Table 2	: Operational Cost Breakdown for a Full Time Generator Operated Base Station	2
Table 3	: Assumptions made in costs analysis	3
Table 4	: CAPEX and OPEX Comparison for Renewable Energy Vs Full Time Generator Operation	4
Table 5	Cash Flow Analysis for Menewable Energy Lanka. Ful Frint Centerator Operation Dissertations www.lib.mrt.ac.lk	5/6
Table 6	: Saving and ROI	7
Table 7	: List of Symbols Used in Control Algorithm	11
Table 8	: Component Description in Single Line Diagram	13
Table 9	: List of Symbols Used in the Control System Drawing	16
Table 10	: Power System Details for Theppanawa Site	28
Table 11	: Average Power Production Details for Theppanawa Site	28
Table 12	: PV Data for Theppanawa Site	29
Table 13	: Generator Data for Theppanawa Site	29
Table 14	: Wind Turbine Data for Theppanawa Site	30
Table 15	: Battery Data for Theppanawa Site	30

xi

Table 16	: Bill of Materials for Control Panel	31/32
Table 17	: Performance Analysis	35
Table 18	: CAPEX and OPEX Comparison for Theppanwa Site	36
	with Renewable Energy System Vs Full Time Generator Operation	
Table 19	: Cash Flow Analysis Theppanawa Site for Renewable Energy Vs Full Time Generator Operation	37/38
Table 20	: Saving and ROI for Theppanwa Site	39

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Abbreviations

PV	Photovoltaic
CAPEX	Capital Expenditure
OPEX	Operational Expenditure
HT	High Tension
NPV	Net Present Value
ROI	Return On Investment
BTS	University of Moratuwa, Sri Lanka. Baseffranseiven Station& Dissertations
MPPT	www.lib.mrt.ac.lk Maximum Power Point Tracking