ANALYSIS OF POSSIBILITY OF ADAPTATION REGENERATION CONCEPT FOR ENGINE DRIVEN EMPTY CONTAINER HANDLERS

W. L. L. Wickramarachchi

(8432)

Degree of Master of Science

University of Moratuwa

621.3(04 Department of Electrical Engineering

TH

621.3 11

University of Moratuwa Sri Lanka

December 2011

102534

102534

ANALYSIS OF POSSIBILITY OF ADAPTATION REGENERATION CONCEPT FOR ENGINE DRIVEN EMPTY CONTAINER HANDLERS

W. L. L. Wickramarachchi

(8432)

Dissertation submitted in partial fulfilment of the requirements for the

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2011

ii

DECLARATION

I declare that this is my own work and this dissertation doesn't incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it doesn't contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

UOM Verified Signature

W.I.L. Wickramarachchi

16th December, 2011

The above candidate has carried out research for the Masters Dissertation under our supervision.

UOM Verified Signature

Dr. A.M. Harsha. S. Abeykoon

UOM Verified Signature

Dr. V.P.C. Dasanayake

ABSTRACT

Empty container handling operations in inland container depots is a major economic and environmental problem today due to fossil fuel burning. This research examines reuse of braking and reverse energy to reduce fuel cost and environmental impact. The research was originated within the domain of electrical regeneration means as most of the known regeneration applications are electrical energy related. However regeneration by means of hydraulic energy was selected as Linde-II, base- equipment to the research is hydraulic based.

One major innovative step taken in this project is application of discharge pressure of the accumulator to suction side of the gear pump. This is a novel concept which have not patented yet anywhere in the world. The energy saving potential of the proposed reengineering solution is estimated to be 33%. Saving potential of the solution is substantial and lucrative. Simulation results were used to validate the reengineering solution in terms of power reduction. Actual fuel consumption of the proposed solution may defend on the way engine is controlled. Simplicity and low capital cost are two positive aspects of the solution. Even though the saving potential was impressive, it could not be implemented into a prototype mainly due to non availability of suitable gear pumps. Therefore solution is limited to a concept for this moment.

It is essential to have a positive engine control with respect to accumulator action in order to obtain optimum possible fuel savings. Whilst the accumulator is charging and discharging, there is an effect on lifting and lowering speeds. Variations in lowering and lifting speeds due to the proposed solution could affect performance related to the users' needs, however it has not been considered within the scope of the research. Main research areas precede parallel to this study are: recovery of braking energy, development of an engine control algorithm, a study on variations of lifting and lowering speed, and a reliability assessment of the proposed reengineering solution.

This concept is novel and can be defined as a green supply chain initiative in which outcomes lead to a reduction of green house gas emissions, and also to reduce carbon footprint in the shipping industry.

ACKNOWLEDGEMENT

It is with deep gratitude I acknowledge the generous assistance, kind and valuable guidance of my supervisors Dr. Harsha Abeykoon of Department of Electrical Engineering and Dr. Palitha Dasanayake of Department of Mechanical Engineering University of Moratuwa in completing this study successfully.

I also wish to extend my sincere thanks to all the lecturers who thought me valuable lessons throughout the Master of Science course and all others at University of Moratuwa for their contributions and friendly support in the course of the study.

Further, I wish to extend my warm gratitude and thanks to the management and my engineering staff at Aitkenspence Logistics, who helped me to develop the reengineering solution for Linde-II, Empty Container Handler.

I specially thank my wife Dr. Dinusha Dahanayake and my parents for encouraging me towards successful completion of this research study.

Last but not the least I am grateful to Mr. Lilintha Lakmal and Mr. Amila Amarathunga of University of Moratuwa who lavishly shared their knowledge and expertise to simulate and analyze the solution and for all others who helped me in their own special way without which this would not have been a success.

TABLE OF CONTENTS

Declarat	tion	iii	
Abstract	t		
Acknow	leder	nent v	
Table of	cont	entsvi	
List of f	igure	s xii	
List of t	ables		
List of a	bbrev	viations xv	
1 Intr	oduct	tion 1	
1.1	Ove	rview1	
1.2	Emp	bty container logistics operation 1	
1.2.	.1	Container terminals	
1.3	Ene	rgy embedded in container stack	
1.4	Reg	eneration in the context of container handling	
1.5	Out	line	
1.6	Con	tainer handling systems	
1.6.1 Container crane			
1.6.2 Rubber tyred gantry crane		Rubber tyred gantry crane	
1.6.	.3	Straddle carrier	
1.6.4		Reach stacker	
1.6.	.5	Mast mounted empty container handlers	
1.7	Bac	kground	
1.8	Lim	itations	
1.9	Lite	rature survey	
1.10	Conceptual frame work 10		
1.11	Met	hodology 10	
1.12	Mot	ivation 11	
2 Pro	blem	statment	
2.1	Introduction 13		
2.2	Ider	tification of the problem	

	2.3	Environmental and human impact		13
	2.4	Impact of the oil price		
	2.5	Low	v fuel quality	15
	2.6	Nati	ure of the business	15
	2.7	Арр	lication of regeneration concept for empty container handlers	15
	2.8	Why	y this research is significant	16
	2.9	Obje	ective of the study	16
	2.10	Imp	ortance of the study	17
	2.11	Sun	ımary	18
3	Bas	ics o	f Engining driven mast mounted empty container handlers	19
	3.1	Intro	oduction	19
	3.2	Ove	rview of the base-equipment	19
	3.3	Ider	ntification of main systems of the base-equipment	20
	3.3.	1	Engine	20
	3.3.	2	Transmission unit	21
	3.3.	3	Drive axle	21
	3.3.	4	Rear axle of the truck	22
	3.3.	5	Hydraulic system	22
	3.3.	6	Main components of the lifting system	26
	3.3.	7	Directional Control Valves	29
	3.3.	8	Steering priority valve (E)	29
	3.3.	9	Locking blocks (J)	30
	3.3.	10	Main hydraulic pumps	30
4	4 Liter		re survey – I	31
4.1 Introdu		Intro	oduction	31
	4.2	Elec	ctrical Vehicles	31
	4.2.	1	Would electrification of equipment be viable option?	31
	4.2.	2	Evolution of the concept of electrical vehicle	32
	4.2.	3	Battery electric vehicles	32
	4.2.	4	Engine powered electric vehicles	33
	4.3	Hyt	orid vehicles	33

•

	4.4	Use	of fly wheels and capacitors for energy storage	35
	4.5	Hył	orid hydraulic	36
	4.5.	1	Hybrid drives in off-highway applications	38
	4.6	Reg	generative braking with hydraulic bladder accumulators	39
	4.7	Hyc	lrid concept	
	4.7.	1	Main components of the Hydrid system	42
	4.7.	2	Delivering cycle analysis of the hydrid system	43
	4.7.	3	Fuel consumption	44
	4.8	Sun	nmary	47
5	Litr	ature	e survey - II	48
	5.1	Intr	oduction	48
	5.2	Bas	ics of hydraulics	48
	5.2.	1	Continuity Equation	48
	5.2.	2	Reynolds Number	49
	5.2.	3	Relationship for motion of liquid along a stream line	50
	5.2.	4	Energy Losses	51
	5.3	Hyo	Iraulic components	53
	5.3.	1	Rotary gear pump	53
	5.3.	2	Directional control Valves	54
	5.3.	3	Shuttle valve	55
	5.3.	4	Pressure control valves	55
	5.3.	5	Pressure reducing valves	56
	5.3.	6	Accumulators	56
	5.3.	7	Selection of Bladder Accumulators	61
	5.3.	8	Bladder Accumulator Sizing	61
	5.4	Ana	alysis of lifting circuit of working hydraulic system of Linde-II,	65
	5.4.	1	No function, directional control valves are set in neutral	65
	5.4.	2	Lifting Function	67
	5.4.	3	Lowering Function	68
	5.5	Sun	nmary	69
6	Cor	ncept	ual framework	71

s`

*

ù

	6.1	Introduction		
	6.2	Energy flow		
	6.3	Reuse of braking energy of the equipment		
	6.4	Possible ways of storing of energy		
	6.5	Pos	sible ways of capturing of energy	74
	6.6	Illus	stration of possibilities and solutions	74
	6.7	Firs	t Concept based on electrical energy	77
	6.7.	1	First candidate solutions of the first concept	78
	6.7.	2	Second candidate solutions of thee first concept	78
	6.8	Sec	ond concept based on hydraulic energy	79
	6.8.	1	Analysis of the first concept	80
	6.8.	2	Analysis of the second concept	81
	6.9	Eva	luation of concepts	83
	6.10	Dev	elopment of decision matrix	86
	6.11	Sun	nmary	88
7	Met	thodo	ology	90
	7.1	Intro	oduction	90
	7.2	Con	ceptual frame work	90
	7.3	Use	r Needs	91
	7.4	Eng	ineers Perspectives	91
	7.5	Ider	ntifying Alternatives	92
	7.6	Dev	velopment of hydraulic circuits	93
	7.6.	1	Problems	94
	7.6.	2	Evaluation of Alternatives	95
	7.7	Dev	velopment of alternative circuit	95
	7.7.	1	Sub problems and limitation	97
8	Sol	ution	analysis	99
	8.1	Intr	oduction	99
	8.2	Pro	blem Definition	99
	8.3	Cal	culation	99
8.3		.1	Actual System 1	00

	8.3.	.1.2	Calculating the discharge pressure of the pump 101
	8.3.	.2	Calculation of the pump power
	8.3.3		Proposed system 105
	8.3.	.4	Energy Saving 109
	8.4	Sur	nmary 110
9	Mo	delir	ng
	9.1	Intr	roduction 112
	9.2	Rea	arranging the existing circuit
	9.3	Mo	deling 113
	9.3.	.1	Limitations and importance of modeling114
	9.3.	.2	Available modeling software 114
	9.4	Mo	deling of existing circuit 116
	9.5	Ass	sumptions, Simplifications and System parameters 118
	9.6	Plo	tting of results 119
	9.6	.1	Simulation of pump torque and shaft velocity of the pump 119
	9.6	.2	Simulation of lifting and lowering speeds of Linde-II 122
	9.6	.3	Determination of pressures 123
	9.7	Mo	deling of proposed reengineering solution 124
	9.8	Co	mparison of simulation results 128
10) (Concl	lusion 130
	10.1	Ger	neral Overview
	10.2	Pro	blems encountered in reengineering of Linde-II
	10.3	Inn	ovative approach 131
	10.4	Ou	tcome of the reengineering solution
	10.5	Fut	ure study and limitations
•		Engine control algorithm for the solution	
10.5.2		5.2	Lifting and lowering speed controlling algorithm 133
	10.	5.3	Assessment of reliability and safety of the equipment 134
	10.	5.4	Pump development
	10.6	Dra	wbacks of the reengineering solution
	10.7	Ac	hievements and Positive Aspects

x

Referen	ces			
A Ap	pendi	x A		
A.1 Electrical motors				
A.1	.1	Controlling of the motors		
A.2	Тур	es of Motors141		
A.3	DC	motor efficiency		
A.4	Mot	tor losses and motor size		
A.5	Тар	ping braking energy of electric motors		
A.6	Lim	itation of DC brushed motors 145		
A.7	Bru	shless DC motors		
A.8	Swi	tched reluctance motors 146		
A.9	The	induction motor		
A.10	W	Vays of improving motor efficiency 148		
A .11	Ν	148 fotor mass		
A.12	S	election of electrical machines for hybrid applications		
A .1	2.1	Use of battery as a source of energy 150		
A .]	2.2	Energy in a capacitor		
B Ap	pendi	x B		
B.1	Eng	ine Performance Curves		
B.1	.1	20 ft Containers 153		
B .1	.2	40ft 157		
B	3	Reefer 160		

xi

LIST OF FIGURES

.

4

4

Page

Figure 3.1: LINDE C80/6 Empty Container Handler [17] 19
Figure 3.2: Power flow components of the equipment [17]
Figure 3.3: Power transmission unit [17]
Figure 3.4: Steering axle [17]
Figure 3.5 : Simplified schematic diagram of the hydraulic system
Figure 3.6 : Lift cylinders [17]
Figure 3.7: Exploded view of the mast [17]
Figure 3.8: Spreader [17]
Figure 3.9: Directional Control Valves [17]
Figure 3.10: Steering priority valve [17]
Figure 4.1: Rechargeable battery electric vehicle [11]
Figure 4.2: Series hybrid vehicle layout [11]
Figure 4.3: Parallel hybrid vehicle layout [11]
Figure 4.4: Hybrid hydraulic layout; source: Eaton Hydraulics [22]
Figure 4.5: Commercial application of hydraulic hybrid [22]
Figure 4.6: Volvo L220F Hybrid wheel loader [25]
Figure 4.7: Rexroth hydrostatic regenerative braking system [29] 40
Figure 4.8: Fuel cell hybrid fork lift [28]
Figure 4.9: Comparison of electric and hydraulic hybrid systems [29]
Figure 4.10: Main components of hydrid system [29]
Figure 4.11: Comparison of energy balance of conventional and hydrid system [29]
Figure 4.12: Comparison of fuel consumption [29]
Figure 4.13: Efficiency map for the engine [29]
Figure 4.14: Comparison of CO2 emissions at NEDC [29]
Figure 5.1: Moody Chart [32]
Figure 5.2: Bladder Accumulator Sizing [34]
Figure 5.3: Correction factors for change of state [34]
Figure 6.1: Energy flow across the lifting system
Figure 6.1: Energy flow across the lifting system
• •
Figure 6.2: Block diagram of the energy flow across the system
Figure 6.2: Block diagram of the energy flow across the system
Figure 6.2: Block diagram of the energy flow across the system72Figure 6.3: Elements of first concept, first sub candidate solutions77Figure 6.4: Elements of first concept, second sub candidate solution78
Figure 6.2: Block diagram of the energy flow across the system72Figure 6.3: Elements of first concept, first sub candidate solutions77Figure 6.4: Elements of first concept, second sub candidate solution78Figure 6.5: Elements of second concept, first sub candidate solution79Figure 6.6: Elements of second concept, second sub candidate solution80
Figure 6.2: Block diagram of the energy flow across the system

Figure 7.2: Alternative hydraulic circuit
Figure 8.1: Lifting mechanism of Linde-II 100
Figure 8.2: Engine plot for lifting of 20ft empty container 104
Figure 8.3: Proposed hydraulic circuit for lifting system
Figure 8.4: Bladder Accumulator Sizing [34] 107
Figure 8.5: Correction factors for adiabatic change of state [34] 109
Figure A.1: Torque/ Speed graph for a brushed DC motor [21] 140
Figure A.2: Graph of data from a real 250 kW fuel cell used for a bus 145
Figure A.3: Typical torque/ speed curve for an induction motor [21]147
Figure A.4:- Specific powers of electric motors [11] 149
Figure B.1: Test results for lowering of 20ft container 153
Figure B.2 : Test results for lifting attempt top of 20ft container 153
Figure B.3: Test results for lifting beginning of 20ft container
Figure B.4: Test results for while lifting of 20ft container
Figure B.5: Test results for while lifting of 20ft container
Figure B.6 : Test results of beginning of lifting of the second 20ft container 156
Figure B.7: Test results for lowering of 40ft container 157
Figure B.8: Test results of beginning of lifting of 40ft container
Figure B.9 : Test results for while lifting of 40ft container 158
Figure B.10: Test results for while lifting of 40ft container
Figure B.11: Test results for lift stop of 40ft container 159
Figure B.12: Test results for lowering of Reefer container 160
Figure B.13: Test results for lowering from the top position of Reefer container 161
Figure B.14: Test results for while lifting of Reefer container
Figure B.15: Test results for beginning of lifting of Reefer container
Figure B.16: Test results for beginning of lifting of second Reefer container 164
Figure B.17: Test results for beginning of lifting of second Reefer container 164
Figure B.18: Test results for while lifting of second Reefer container
Figure B.19: Test results for beginning of lifting of second Reefer container 166

4

LIST OF TABLES

Page

Table 2: Emission Growth [8]	
Table 3: Possibility -Solution Matrix	
Table 4: Solution matrix	
Table 5: Concept evaluation	
Table 6: Decision matrix	
Table 7: Comparison of various types of batteries [16]	151

LIST OF ABBREVIATIONS

.

ية. تە

4

ł

Abbreviation	Description
ACM	Alternative Current Motor
BLDC	Brushless DC motor
СО	Carbon Monoxide
CO2	Carbon Dioxide
CRPS	Common Pressure Rail system
CVT	Continuous Variable Transmission
DC	Direct Current Motors
ECH	Empty Container Handlers
ECM	Engine Control Module
ECM	Electronically Commutated Motor
GSC	Green Supply Chains
HBRS	Hydrostatic Regenerative Braking System
HLA	Hydraulic Launch Assist
ICE	Internal Combustion Engines
IFAS	German Institute for Fluid Power Drives and Controls
IVT	Infinitely Variable Transmission
NEDC	New European Drive Cycle
N2O	Nitrous Oxides
PM	Particulate Matter
RS	Reach Stackers
RTG	Rubber Tyred Gantries
SR	Switched Reluctance

.

SC	Straddle Carriers
SSC	Ship to Shore Cranes
TEU's	Twenty feet Equivalent Units
VOCs	Volatile Organic Compounds