

LB/DON/64/2012

Effect of High Strength Concrete for Bridge Girders

A thesis submitted to the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Structural Engineering Design

by S.T.B.Dissanayake. University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by Prof. M.T.R. Jayasinghe University of Moratuwa

624.01(043

TH

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA March 2011

102864

102864

ABSTRACT

High strength concrete (HSC) has been widely applied worldwide in recent years due to its favorable strength and dense microstructure. HSC shows some characteristics and engineering properties different from those of normal-strength concrete even though utilize similar raw materials.

Use of high-strength concrete for pretension concrete bridge girders has become accepted practice by many countries highway authorities because of its technical and economic benefits. High-strength concrete permits longer girders and increased girder spacing, thus reducing total bridge cost.

At present normal strength concrete is used in prestressed concrete construction in Sri Lanka. The demand for high strength concrete is expected to increase in future with growing tendency for high-rise and bridge construction in Sri Lanka. In several major projects, grade 50 concrete has been already used. As an example in bridge construction that the maximum grade of concrete that has been practically used is grade 50 for fly over bridge across the railway line in Base line road at Colombo_{www.lib.mrt.ac.lk}

The design of high strength concrete is much more complex than the normal strength concrete and require carefull selection of mix proportion. It further contribution to the complexity by use of high quality materials, low water cement ratio and high cement content. Chemical admixtures such as plasticizers and super- plasticizers and mineral admixtures such as silica fume, fly ash, slag and others, are widely used in production of high strength concretes. The non-availability of these mineral admixtures which are by – products of other processed and the reluctance to use chemical admixtures has resulted in Sri Lankan construction industry still using low strength (Grade 20-30) for reinforced concrete and medium strengths (Grade 30-40) for pre-stressed concrete . The uncertainty of the properties of high strength concrete has also contributed to the lack of progress in the use of HSC. The latter aspect has been improved with the large volume of research carried out in recent years on structural properties of high strength concrete

This researched describes the use of high strength concrete in bridge girders production, strengths in the range of 50 to 80 N/mm^2 were selected as most appropriate for Sri Lanka, as targeted in the study.

ACKNOWLEDGEMENT

I would like to take this opportunity to forward my sincere thanks to my project supervisor, Prof. M.T.R. Jayasinghe who assisted me to make this project a success by advising and guiding me through the problems encountered. His guidance and constructive criticism helped me to execute the project successfully.

I wish to thank the Vice Chancellor, Dean of the Faculty of Engineering and the Head of Department of Civil Engineering for allowing me to use the facilities available at the University of Moratuwa.

I am grateful to M/s Sierra Construction (Pvt) Ltd. for granting me leave from work to follow the postgraduate degree course.

I also wish to thank to Dr K. Baskaran, course coordinator and Dr Sujeewa Lewangama, the Research Coordinator of the project for all the encouragement given to me in completing this study, and all the lecturers of the postgraduate course on Structural Engineering Design, who helped me to enhance my knowledge.

I would like to dedicate this hard work to my parents and my wife for their enormous support and understanding.

Finally, I gratefully acknowledge everybody who contributed me in numerous ways in completing my research study.

S.T.B.Dissanayake,

Sierra Construction (Pvt) Ltd.

CONTENTS

	PAGE
Abstract	Ι
Acknowledgement	II
Contents	III
List of Figures	VI
List of Table	VIII

Chapter 1- Introduction

i.

.

1.1	General	1
1.2	The Objectives the study	2
1.3	Methodology	3
1.4	The Main findings of the Project	3
1.5	The report Organization	3

Chapter 2- Literature Review

2.1	Introd	uction, University of Moratuwa, Sri Lanka.	4
2.2	High S	Strength Concrete	5
2.3	Manut	facture of High strength Concrete	6
2.4	Mater	ials for High strength Concrete	7
	2.4.1	Cement	7
	2.3.2	Coarse Aggregate	7
	2.4.3	Fine Aggregate	8
	2.4.4	Silica Fume	8
	2.4.5	Fly Ash	11
	2.4.6	Slag	13
	2.4.7	Admixtures	14
	2.4.8	Air Entrainment	14
	2.4.9	Water Retarders	15
	2.4.10	2.4.10 Super plastizers	
	2.4.11	Accelerators	15
	2.4.12	Retarders	15
	2.4.13	Corrosion inhibiters	16
2.5	Mix P	Proportions for High Strength Concrete	16

2.6	Water Cement ratio	
2.7	Curing	19
	2.7.1 Moisture requirements	22
	2.7.2 Internal Curing	25
	2.7.3 Temperature Requirements	26
	2.7.4 Curing of High Strength	26
	2.7.5 Initial Set	27
	2.7.6 Rate of Temperature Rise	27
	2.7.7 Maximum Temperature	27
2.8	Mechanical Property of High Strength Concrete	28
	2.8.1 Stress-Strain behavior in uniaxial Compression	28
	2.8.2 Modules of Elasticity	29
	2.8.3 Poisson Ratio	31
	2.8.4 Shrinkage of High Strength Concrete	32
	2.8.5 Plastic/ Autogenous/Drying Shrinkage,	33
	2.8.6 Effect of Silica Fume/Fly ash/ Chemical Admixture	33
2.9	Creep University of Moratuwa, Sri Lanka.	34
2.10	Pre-stress Losses in Pre-tensioned High Strength Concrete Bridge	34
	Girders WWW.IID.mrt.ac.IK	
	2.10.1 Components of Pre-stress Losses in Pre-tensioned Girders	35
2.11	Pre-Stressing Steel	36
2.12	Pre-stress Concrete Bridge Beam	38
	2.12.1 M-beam Deck	41
2.13	High Strength Concrete Application	44
	2.13.1 Bridge Beam	44
	2.13.2 Summary	46
Chapt	er 3- Case Study	
3.1	Introduction (Example structure)	47
3.2	Bridge Girder M beam Section	47
3.3	Grillage analysis from SAP 2000 Computer model	50
	3.3.1 The details of longitudinal beam	
	3.2.2 The details of Transverse beams	50
	3.2.3 loading on Bridge	51
		IV

3.4	.4 The strategy for design of Pre-stress Concrete Beams		4	54
	3.4.1	Design calculations for M6 Beam	4	57
Cha	Chapter 4- The main finding of the project			
	4.1	General	e	52
	4.2	Parametric Analysis for M beams	e	52
	4.3	Comparison of Span loading Chart Grade 50 and Grade 6	0 6	55
Chapter 5- Conclusion & Future work		6	7	
References		ť	58	
Appendix A Appendix/1-159		159		

1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 2.1	: Concrete Strength Grade	06
Table 2.2	: Physical properties of silica fume	09
Table 2.3	: Strength development of several Concrete mixtures	10
Table 2.4	: Typical HSC mixes used in Other Countries	16
Table 2.5	: Trail mix	1 7
Table 2.6	: Modules of Elasticity	31
Table 2.7	: BS W 5896	37
Table 2.8	: Beam and deck types	39
Table2.9	: HSC used in Bridge Construction	45
Table 3.1	: M-beam section Properties	49
Table 3.2	: Span Loading Chart	49
Table 3.3	: Maximum moment due to Imposed load (Span 22.5 m) Electronic Theses & Dissertations	59
Table 3.4	: Valve 1/P and ev.lib.mrt.ac.lk	59
Table 3.5	: Limitation Valve for M6 Section	60
Table 4.1	: Alternative Beams	62
Table 4.2	: Sectional Properties of Composite Section (Grade 50)	62
Table 4.3	: Sectional Properties of Composite Section (Grade 60)	63
Table 4.4	: Sectional Properties of Composite Section (Grade 70)	63
Table 4.5	: Sectional Properties of Composite Section (Grade 80)	64
Table 4.6	: Maximum Moment due to imposed load	64
Table 4.7	: Comparison Span Loading Chart, 30 Units HB Loading for Grade 60	65
Table 4.8	: Comparison Span Loading Chart, 30 Units HB Loading for Grade 70	65
Table 4.9	: Comparison Span Loading Chart, 30 Units HB Loading for Grade 70	66