A STUDY ON GROUND VIBRATION DUE TO ROCK BLASTING AT METAL QUARRY: A CASE STUDY

T.A.Madanayaka

(09/8815)

Department of Civil Engineering

University of Moratuwa Sri Lanka

January 2013

A STUDY ON GROUND VIBRATION DUE TO ROCK BLASTING AT METAL QUARRY: A CASE STUDY

T.A.Madanayaka

(09/8815)

Thesis submitted in partial fulfillment of the requirement for the degree Master of Engineering in Foundation Engineering and Earth Retaining system

Department of Civil Engineering

University of Moratuwa Sri Lanka

January 2013

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:....

Date:....

The above candidate has carried out research for the Master Dissertation under my supervision with the second seco

Signature of the supervisor: Date: Date:

Dr.L.I.N. De Silva

B.Sc. Eng (Moratuwa), M.Eng (Tokyo), Ph.D. (Tokyo)

Senior Lecturer,

Department of Civil Engineering,

University of Moratuwa,

Moratuwa,

Sri Lanka.

Abstract

A Study on Ground Vibration Due to Rock Blasting at Metal Quarry

Ground vibration, air blast and fly-rock are unavoidable environmental impacts of rock blasting. Despite these, blasting is the widely accepted method of rock breaking in quarrying industry because of cost effectiveness, higher efficiency, convenience and ability to break hard rock. Among the environmental impacts, ground vibration is the most critical since it can cause damages to nearby structures.

This study was carried out to compare vertical and horizontal bench blast(s) at a granitic gneiss rock quarry located in Colombo, Sri Lanka and predict the resulting peak particle velocities of ground vibration levels.

To achieve these objectives, particle velocities and frequencies of 38 and 35 blasts respectively were measured in three perpendicular directions for horizontal and vertical bench blast(s) with the use of Instantel Blastmate II seismographs. In the blast(s), Ammonium Nitrate (ANFO)(blasting agent) primed by a Gelatin Dynamite primer were electrically initiated. Scaled distance parameters (Maximum charge weight per delay and distance between blasting points to monitoring location) were also recorded.

The extensively used equation for seismic law of propagation, proposed by Devine (1962) and Devine and Duvall (1963), was used for the prediction of peak particle velocities. Points were plotted with Peak Particle Velocity (PPV) in Y- axis against Scaled Distance ($D/Q^{0.5}$) in X- axis. Regression analysis was performed to define the line of best fit. At the end of statistical analysis, an empirical relationship with good correlation was established for prediction of peak particle velocity. Frequency analysis was also done for dominant frequency and zero crossing frequency to identify the effect of frequency of ground vibration to structural damages and identifying the onest suitable type of frequency analysis to define the single frequency value for ground vibration. The established relationship, frequency analysis and result obtained are presented.

To My Loving Mother

ACKNOWLEDGEMENTS

First of all I would like to extend my heartiest gratitude to the supervisor, **Dr.L.I.N. De Silva**, Senior Lecturer, Department of Civil Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, for his kind guidance, supervision and constructive suggestions throughout this study.

As well as, I wish to offer my sincere gratitude to **Prof. P.G.R Dharmaratne**, Senior Professor, Department of Earth Resource Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa for his kind guidance and suggestions during this study.

I wish to express my deepest appreciation to Prof. U.G.A. Puswewala, Dean, Faculty of Engineering, Prof. M.T.R Jayasinghe, Head of the Civil Engineering Department, Prof. S A S Kulathilaka, Head of the Geotechnical Engineering Division of Civil Engineering Department, Prof. H.S. Thilakasiri, Senior Lecturer at the Department of Civil Engineering, Dr. U.P. Nawaganuwa, Course, Co-ordinator of M.Eng./P.G. Diploma in Foundation Engineering and Eagth Retaining Systems and Senior Lecture at the Department with Civil Engineering for their kind guidance and other non-academic members of Department of Civil Engineering ,University of Moratuwa, Moratuwa, for their contribution in providing facilities throughout the course.

Also, I would like to extend my sincere thanks to Eng. B A Peris, Director General of Geological Survey and Mines Bureau, Mr. Sarath Silva, Chief Executive Officer of Geological Survey and Mines Bureau (Technical Service), Eng. D. M Wijayapala, Chief Mining Engineer of Hyundai Engineering and Construction Company, Eng. S.D.L.D Jayalath and Eng. P.H Gunawardena, Mining Engineers of Geological Survey and Mines Bureau (Technical Service) for their kind suggestion and providing technical support and details for this study.

Finally I would like to express my indebtedness to my mother and my sister for their continuous support throughout my life.

TABLE OF CONTENTS

Declaration of the candidate & Supervisor		i
Abstract		ii
Dedication		iii
Acknowledge	ements	iv
Table of conte	ent	v
List of Figure	s	viii
List of Tables		X
List of Abbre	viation	xi
List of Appendices		xii
Chapter 1:	Introduction	1
	1.1Objectives	2
	1.2 Scope of the work	- 3
Chapter 2:	Literature Review	5
1	2.1 Mechanishi of Rock Breakagea, Sri Lanka.	5
	Electronic Theses & Dissertations 2.1.1 Strong shock zone or hydrodynamic zone	5
	2.1.2 Non-linear zone	6
	2.1.3 Elastic zone	6
	2.2 Vibration Terminology	8
	2.3 Principal of Ground Vibrations	9
	2.3.1 Types of vibration waves	9
	2.3.2 Wave parameters	13
	2.3.3 Method of measuring frequencies	14
	2.4 Controllable Parameters of Rock Blasting for	15
	Ground Vibration	
	2.4.1 Geometric parameters	15
	2.4.2 Physiochemical parameters	18
	2.5 Uncontrollable Parameters of Rock Blasting for	19
	Ground Vibration	

	2.5.1 Effect of rock properties on the	19
	ground vibration	
	2.6 Structural Response to Ground Vibration	20
	2.6.1 Effect of frequency on structural response to	20
	ground vibration	
	2.6.2 Effect of compression (P) wave propagation	21
	on structural response	
	2.6.3 Effect of shear (S) wave propagation	21
	on structural response	
	2.6.4 Effect of wave length on structural response	22
	2.7 Concept of Scaled Distance	23
Chapter 03:	Methodology	25
	3.1 Location of the Quarry Site	26
	3.2 Geological Condition	27
	3.2.1 Regional geology	27
	3.2.2 Prominently structural and external features University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations 3.3 Field Work mrt ac.lk	27 29
	3.3.1 Blasting parameters to be adjusted	29
	3.3.2 Blasting method	29
	3.3.3 Monitoring procedure	31
	3.4 Data Analysis	32
	3.4.1 Presentation and analysis of data	32
	3.4.2 Determination of allowable charge weight per delay	33
Chapter 04:	Statistical Analysis and Discussion	34
	4.1 Presentations of Data	34
	4.2 Statistical Analysis of Results	34
	4.2.1 Analysis of the particle velocity data	34
	4.2.2 Analysis of frequency data	45

Chapter 05:	Conclusions and Recommendations	59
	5.1 Conclusions	
	5.1.1 Analysis of ground vibration data	59
	5.1.2 Analysis of frequency data	59
	5.2 Recommendations	60
	5.3 Recommendations for Further Research	61
References		62

LIST OF FIGURES

Figure 2.1	Sequence of events occurring in the rock mass after detonation	07
Figure 2.2	Ways of propagating seismic waves	09
Figure 2.3	Particle motion characteristics of P- waves and S- waves	10
	in solid medium	
Figure 2.4	Particle motion characteristics of Rayleigh waves	11
	and Love waves in solid medium.	
Figure 2.5	Vibration Components	12
Figure 2.6	Geometry parameter of bench blasting	15
Figure 2.7	Principal direction of rock movement with a face covered	17
	by buffer zone	
Figure 2.8	Magnifying effect when a structural resonance phenomenon	21
	occurred	
Figure 2.9	Effect of S- Wave and P- Wave propagation on structural damage	22
Figure 2.10	Effect of wave length on the structural damage	23
Figure 3.1	Aerial map, of quarry mine areas	26
Figure 3.2	Blasting geometry of the vertical bench blast	29
Figure 3.3	Blasting geometry of the horizontal bench blast	30
Figure 4.1	Peak Particle Velocity (PPV) Vs Scaled Distance (SD) for	35
	vertical bench blasts	
Figure 4.2	Peak Particle Velocity Vs Scaled Distance for	36
	horizontal bench blasts	
Figure 4.3	Ground vibration contours for vertical blasts	39
Figure 4.4	Ground vibration contours for horizontal blasts	40
Figure 4.5	Contours of allowable explosive quantity for vertical blasts	43
Figure 4.6	Contours of allowable explosive quantity for vertical blasts	44
Figure 4.7	Frequency distribution of transverse component for	46
	vertical blasts	
Figure 4.8	Frequency distribution of vertical component for vertical blasts	47
Figure 4.9	Frequency distribution of longitudinal component for	48
	vertical blasts	

Figure 4.10	Frequency distribution of transverse component for	50
	horizontal blasts	
Figure 4.11	Frequency distribution of vertical component for	51
	horizontal blasts	
Figure 4.12	Frequency distribution of longitudinal component for	52
	horizontal blasts	
Figure 4.13	Frequency content of ground vibration of vertical blasting for	54
	granitic gneiss rock	
Figure 4.14	Frequency content of ground vibration of horizontal blasting for	55
	granitic gneiss rock	
Figure 4.15	Variation of ground vibration with distance for vertical blasting	56
Figure 4.16	Variation of ground vibration with distance for horizontal blasting	57

LIST OF TABLES

Table 3.1	GPS co-ordinates of quarry boundaries	26
Table 3.2	Details of fractures system	28
Table 3.3	Blasting parameters of vertical bench blast	30
Table 3.4	Blasting parameters of Horizontal bench blast	31
Table 4.1	Co-efficient of attenuation equation for horizontal and	37
	vertical blasts	
Table 4.2	Frequency distribution of transverse component for	46
	vertical blasts	
Table 4.3	Frequency distribution of vertical component for	47
	vertical blasts	
Table 4.4	Frequency distribution of longitudinal component for	48
	vertical blasts	
Table 4.5	Frequency distribution of transverse component for	49
	horizontal blasts	
Table 4.6	Frequency distribution of vertical component for	50
1	porizontal blasts Theses & Dissertations	
Table 4.7	Frequency distribution of longitudinal component for	51
	horizontal blasts	
Table 4.8	Comparison of dominant and zero crossing frequency for	52
	transverse component	
Table 4.9	Comparison of dominant and zero crossing frequency for	53
	vertical component	
Table 4.10	Comparison of dominant and zero crossing frequency for	53
	longitudinal component	
Table 4.11	Frequency range of dominant frequency for	55
	horizontal and vertical blasting	

LIST OF ABBREVIATIONS

Abbreviation	Description
SD	Scaled Distance
PPV	Peak Particle Velocity
GSMB	Geological Survey and Mines Bureau
CEA	Central Environmental Authority
GPS	Global Positioning System
ANFO	Ammonium Nitrate and Fuel Oil
IML	Industrial Mining License
AML	Artisanal Mining License
IEER	Initial Environmental Examination Report

LIST OF APPENDICES

Appendices	Description	
Appendix-A	Sample report of a vibration event	62
Appendix-B	Table of measured vibration data for Vertical bench blast	63
Appendix-C	Table of measured vibration data for	64
	Horizontal bench blast	
Appendix-D	Predicted Peak Particle Velocity (PPV) data	65
Appendix-E	Maximum allowable explosive quantity	66

