LB/20N/38/01

DEVELOPMENT AND TESTING OF A SET OF MATHEMATICAL MODELS FOR TRAVEL DEMAND ESTIMATION

BY

W.W.M.R.K WIJESUNDERA

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

73282

<u>629</u> '0)' 353 : 51

38

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF MORATUWA

SRI LANKA

JUNE 2001

73282

. ^{I.}

- 7

J.C

DECLARATION

I certify that this dissertation does not incorporate without acknowledgement any material previously submitted for any other course in any university and to the best of knowledge and belief does not contain any material previously published or written or orally communicated by another person except where due reference is made in the text.

Date: 22/06/2001

PK Coyesunde 2a

Candidate's Signature (Mr.W.W.M.R.K.Wijesundera)

UOM Verified Signature

Project Supervisor's Signature

University of Mornauva, S(Dr. Amal S. Kumarage) Electronic Theses & Dissertations www.lab.met.ac.lk

Date:

¥

ABSTRACT

Regional traffic models are a useful tool in planning transport infrastructure in keeping with anticipated human settlement patterns and activities. The amount and nature of travel depend on the population size, income level and type of employment etc in the region. Therefore, by correlating the trip generations with socio-economic parameters, it is possible to develop mathematical models to predict the travel demand in terms of socio-economic variables.

The objective of this study is to develop a family of trip generation models for the Colombo Metropolitan Region to estimate travel demand for work, education and other purposes by available motorized forms of transport. While the main focus is on estimation of bus passenger demand, another set of models is calibrated estimate aggregate demand for bus, rail, car, motor cycle and three - wheeler travel. Finally, a mode choice model is developed to estimate the variation of bus passenger modal share for work trips in terms of availability of rail and private vehicles.

The regression facility available with SPSS V.10 software was used for the calibration of the models. Statistical testing methods such as R^2 value, F-statistic, t-statistic and residual analysis were used to identify the best predictor models.

The calibrated traffic generation models can be used for estimating future trip generations in the Colombo Metropolitan Region. In addition, these models may be used for trip generation estimates for other geographic regions after validating for such regions.

ACKNOWLEDGEMENT

٩

•

7

I express my sincere gratitude to Dr. Amal S. Kumarage, Head of Division of Transportation Engineering of University of Moratuwa for his guidance in completing this project. I am also grateful for the encouragement given by Dr. Saman Bandara, Senior Lecturer of Division of Transportation Engineering of University of Moratuwa.

It is with great respect I extend my sincere thanks to Prof. Mrs. N. Ratnayake, Director of Graduate Studies of University of Moratuwa for arranging financial assistance and conducting research assessment programme. I wish to thank Dr. Kolitha Weerasekara, Senior Lecturer, Open University of Sri Lanka for his valuable comments.

My sincere thanks to the fellow postgraduate researchers of the Division of Transportation Engineering, for the assistance and sharing their experience.

Finally, I wish to thank the staff of the Division of Transportation Engineering for their support in conducting this research.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix

CHAPTE	R 1	1
1.1	Background	1
1.2	Organization of the Thesis	2

CHAPTE	R 2 3
2.1	Demand Estimation Model for Inter-District Passenger Travel (DEMIDEPT). 3
2.1.1	Total Passenger Demand Estimation Model
2.1.1.1	Variables Used
2.1.1.2	Features of the DEMIDEPT Model
2.1.1.3	Shortcomings of the DEMIDEPT Model
2.1.2	Mode Choice Models
2.1.2.1	Bus Vs Bus
2.1.2.2	Bus Vs Rail7
2.1.3	Applications of DEMIDEPT
2.2	Inter City Demand Estimation for Auto Travel from Link Counts
2.2.1	Calibration of Demand Models
2.2.2	Maximum Entropy Models
2.2.3	Variables Used
2.2.4	Features of the Models 10
2.2.5	Shortcomings of the Models
2.2.6	Applications of the Models 10
2.3	Colombo Traffic Study (CTS/ TRANSPLAN -1) 11
2.3.1	Land Use Based Trip End Model11
2.3.1.1	Variables Used11

2.3.1.2	Features of the Model 1	1	
2.3.1.3	Shortcomings of the Model 1	2	
2.3.2	Trip End Distribution Model1	2	
2.3.2.1	Variables Used 1	2	
2.3.2.2	Features of the Model 1	2	
2.3.3	Route Choice Model 1	2	
2.3.3.1	Features of the Model 1	3	
2.3.3.2	Shortcoming of the Model 1	3	
2.3.4	Speed -Flow Model 1	3	
2.3.4.1	Variables Used 1	3	
2.3.4.2	Shortcomings of the Model 1	4	
2.3.5	Uses of TRANSPLAN - 1 Models 1	4	
2.4	Greater Colombo Traffic Model (GCTM/ TRANSPLAN - 2) 1	4	
2.4.1	Variables Used 1	4	
2.4.1.1	Socio-economic Variables 1	4	
2.4.1.2	Impredance Variables 1	5	
2.4.2	Features of the Models 1	5	
2.4.3	Shortcomings of the Models	5	
2.4.4	Applications of the Models	5	
2.5	A Mehod io Enhance the Performance of Synthetic Origin-Destination		
	Trip Table Estimation Models 1	6	
CHAPTE	R 3 1	7	
3.1	Existing Models 1	.7	
3.2	Selected Family of Models for Calibration 1	8	
3.3	Research Methodology2	20	
2.4	Study Region	21	
CHAPTE	CHAPTER 4		
4.1	Introduction2	25	
4.1.1	Home Based Work Trips	27	

4.1.2	Home Based Educational Trips
4.1.3	Home Based Other Trips
4.1.4	Non-home Based Trips
4.2	Trip Generation Analysis
4.2.1	Factors that Affect Trip Generation
4.2.2	Models of Trip Generation
4.3	Statistical Testing of Regression Analysis
4.3.1	Coefficient of Determination (R ²)
4.3.2	The Standard Error of Estimate (S)
4.3.3	F-Test
4.3.4	t - Statistic
4.3.5	Statistical Significance
4.3.6	Residual Analysis
CHAPT	ER 5
5.1	Data Used for Trip Generation Modelling
5.1.1	Travel Data
5.1.1.1	Sampling and Survey Errors
5.1.2	Socio-Economic Data
5.2	Data Preparation
5.2.1	Household Trip Rates
5.2.2	Socio-Economic Variables
5.2.3	Categorization of Zonal Population by Employment Type 40
5.2.4	Rail Station Density 41
5.3	Preliminary Analysis
5.3.1	Percentage Distribution of Trip Generations by Trip Purpose
5.3.2	Analysis of the Variation of a Single Variable
5.3.2.1	Home Based Work Trips per Household 44
5.3.2.2	Home Based Educational Trips per Household 45
5.3.2.3	Home Based Other Trips per Household
5.3.2.4	Non-Home Based Trips per Household 50

>

>

4

5.3.2.5	Vehicle Ownership per Household	50
5.3.2.6	Rail Station Density Distribution	54
5.3.3	Analysis of Variation of Two variables	54

.4

•

CHAPTER	\$ 6	58
6.1	Strategy	58
6.2	Form of the Models	59
6.3	Selection of the Base Variable	60
6.3.1	Home Based Work Trips (HBWT) Vs Households in DSD (HHTOT)	60
6.3.2	Home Based Work Trips (HBWT) Vs Population in DSD (POP)	61
6.4	Home Based Work Trip Generation Model	62
6.4.1	Analysis of Independent Variables	64
6.4.1.1	Number of Households	64
6.4.1.2	Private Vehicle Ownership	64
6.4.1.3	Rail Station Density	68
6.4.1.4	Percentage of School/University Population	68
6.4.2	Prediction of Home Based Work Trips (Bus) for Validation DSD's in CMR	.69
6.5	Home Based Education Trip (HBEDT) Generation Model	71
6.5.1	Analysis of Independent Variables	72
6.5.1.1	Number of Households	72
6.5.1.2	Rail Station Density	73
6.5.2	Other Observations	74
6.5.3	Prediction of Home Based Educational Trips (Bus) for Validation DSD's in	l
	CMR	74
6.6	Home Based Other Trip (HBOT) Generation Model	74
6.6.1	Analysis of Independent Variables	76
6.6.1.1	Number of Households	76
6.6.1.2	Percentage of Unemployed Population	77
6.6.2	Other Observations	77
6.6.3	Prediction of Home Based Other Trips (Bus) for Validation DSD's in CMR	178
6.7	Discussion	78

CHAPTI	ER 7	80
7.1	Introduction	
7.2	Home Based Total Work Trips	
7.3	Home Based Total Educational Trips	
7.4	Home Based Total Other Trips	
7.5	Discussion	

CHAP	PTER 8	87
8.1	Introduction	87
8.2	Modal Share Model For Home Based Work Trips (Bus)	88
8.3	Sensitivity Analysis	89

CHAPTER	. 9	93
9.1	Conclusions	93
9.2	Recommendations	97

REFERENCES

4

•

7

4

APPENDICES

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

v

LIST OF TABLES

Page
Table 3.1: Available Demand Models 17
Table 3.2: Selected Models for Calibration 18
Table 3.3: DSD's within CMR 23
Table 3.4: Calibration DSD's
Table 3.5: Validation DSD's
Table 5.1: Locations of Household Interviews and Sample Size 35
Table 5.2: Travel Information Collection Duration at Different AGA's 36
Table 5.3: Sample of Trip Generation Rate Calculation from Household Interviews 38
Table 5.4: Annual Growth Rates Applied for Socio-economic Variables
Table 5.5: Calculation of Socio-economic Variables for the Base Year = 1998
Table 5.6: Rail Station Distribution Data for CMR 42
Table 6.1: Statistical Comparison of Alternative Base Variables for Bus Model 61
Table 6.2: Regression Statistics of HBWT Model
Table 6.3: Regression Statistics of Independent Variables of HBWT Generation Model
Table 6.4: Predicted Trip Generation Rates for Validation DSD's 70
Table 6.5: Regression Statistics of HBEDT Model 71
Table 6.6: Regression Statistics of Independent Variables of HBEDT Generation
Model 71
Table 6.7: Regression Statistics of HBOT Model 75
Table 6.8: Regression Statistics of Independent Variables of HBOT Generation Model 75

•

Y

Table 7.1:	Regression Output for Total Home Based Work Trip (HBWTT) Generation	
	Model	81
Table 7.2:	Regression Output for Total Home Based Educational Trip (HBEDTT)	
	Generation Model	83
Table 7.3:	Regression Output for Total Home Based Other Trip (HBOTT) Generation	
	Model	84
Table 8.1:	Estimated HBWT Values from Direct and Indirect Models	91
Table 9.1:	Summary of Demand Models	93

4

₽

>

4

ş

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Figure 2.1:	Nested Mode Choice Model	6
Figure 3.1:	Alternative Methods for Bus Passenger Travel Demand Estimation	18
Figure 3.2:	Structure of the Family of Trip Generation Models Developed	20
Figure 3.3:	Colombo Metropolitan Region	22
Figure 5.1:	Percentage Distribution of Bus Trips by Purpose of Travel	43
Figure 5.2:	Home Based Work Trip Generation Rates per Household	46
Figure 5.3:	Home Based Educational Trip Generation Rates per Household	47
Figure 5.4:	Home Based Other Trip Generation Rates per Household	49
Figure 5.5:	Private Vehicle Ownership per Household	53
Figure 5.6:	Observed Rail Station Densities in CMR	55
Figure 5.7:	Modal Share of Bus Work Trips Vs Private Vehicle Ownership	56
Figure 5.8:	Modal Share of Bus Work Trips Vs Rail Station Density	57
Figure 6.1:	Bus Mode Based Work Trip Rate Vs Motor Cycle Ownership	66
Figure 6.2:	Bus Mode Based Work Trip Rate Vs Car Ownership	67
Figure 8.1:	Observed Variations in Work Trip Estimations Using Direct & Indirect	
	Methods	92

•

Y

LIST OF ABBREVIATIONS

4

•

Y

Abbreviation	Description
ADT	Average Daily Traffic
AGA	Assistant Government Agent
CMC	Colombo Municipal Council
CMR	Colombo Metropolitan Region
CMRSP	Colombo Metropolitan Regional Structure Plan
CTS	Colombo Traffic Study
CUTS-1	Colombo Urban Transport Study - Stage 1
DEMIDEPT	Demand Estimation Model for Inter District Passenger Travel
DSD	Divisional Secretariat Division
EDUPC	Percentage of Educational Population
EXPO	Exponential
GCTM	Greater Colombo Traffic Model
HBEDT	Home Based Educational Trips
НВОТ	Home Based Other Trips
HBWT	Home Based Work Trips
НН	Household
ННТОТ	Total Households per Zone
MULTI	Multiplicative
NHBT	Non Home Based Trips
NTM	National Traffic Model
O-D	Origin - Destination
PV	Private Vehicle
PVHH	Private Vehicles per Household
STDEN	Rail Station Density
TRANSPLAN	TRANSPLAN [™] - University of Moratuwa
UDA	Urban Development Authority
UNEMPC	Percentage of Unemployed Population
UoM	University of Moratuwa