SEISMIC VULNERABILITY ASSESMENT OF REINFORCED CONCRETE FRAMED BUILDINGS IN SRI LANKA: A CASE STUDY

Susitha Kumara Abeywickrama Gunaratne

09/8912

Degree of Master of Engineering in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2013

SEISMIC VULNERABILITY ASSESMENT OF REINFORCED CONCRETE FRAMED BUILDINGS IN SRI LANKA: A CASE STUDY

Susitha Kumara Abeywickrama Gunaratne

09/8912

Thesis submitted in partial fulfillment of the requirements for the degree Master of Engineering in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2013

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision Electronic Theses & Dissertations www.lib.mrt.ac.lk

Signature of the supervisor:

Date:

ACKNOWLEDGEMENTS

I would like to convey my sincere gratitude to:

The Department of Civil Engineering, University of Moratuwa for selecting me for M.Eng Degree in Structural Engineering Design Course and Central Engineering Consultancy Bureau (CECB) for providing full sponsorship and granting the duty leave for successful completion of the course.

Dr. C.S. Lewangamage, Research supervisor for guiding me throughout the research and for his encouragement up to its completion. And Dr.K.Baskaran, Research Coordinator for timely organizing the research presentations and reviewing the progress of the research.

Eng.K.L.S.Sahabandu, Additional General Manager (Design, Research and Development), CECB for directing me to some of the short courses and seminars related to the subject of research and helping me for this study.

Dr. Yogendra Singh, Asst. Professor, Dept of Earthquake Engineering, Indian Institute of Technology (IIIT-Roorke) for giving methe assistance in this regard.

Dr. Naveed Anwer, Associated Director, Asian Center for Engineering Computations and Software, AIT(Thailand) for giving me valuable comments on nonlinear analysis through Email and during his short visit to Sri Lanka.

Last but not the least, my friends who helped me and worked together up to the completion of the course.

S.K.A.Gunaratne

ABSTRACT

Earthquakes are one of nature's greatest hazards to life. Sri Lanka is considered to be in an aseismic zone away from major plate boundaries or any active faults. However, the first Earthquake hazard recorded on 14th April 1615 in Colombo with 2000 deaths and destroying 200 houses. Since then, there have been many seismic events in Sri Lanka and neighbouring areas which are small to moderate in magnitude of which the trimmers were felt by the people in some of the regions in Sri Lanka. In addition, geologists suspect that there is a formation of a new plate boundary dividing Indo-Australian plate. Moreover, there is a possibility of occurrence of an intra-plate type earthquake within Indo-Australian plate (Eg. Maharashtra earthquake in 1993).

Considering the above facts, there is a risk of occurrence of a small to moderate type earthquake in the vicinity of Sri Lanka. Hence, it is high time to commence not only the design and detailing of the buildings for seismic resistance but also the seismic assessment and retrofitting of the existing public buildings, because almost all of the existing buildings in Sri Lanka have not been designed or detailed for earthquake resistance.

However, detailed seismic performance assessments are new to Sri Lanka though most of the earthquakes proven countries have already been reaping the benefits of such assessments considering in-situ conditions of the buildings.

Therefore, it is intended to study the seismic performance of a medium rise building which is a reinforced concrete framed building situated in Colombo, Sri Lanka. Pushover procedure given in ATC 40 and the hinge parameters given in FEMA 356 guidelines were used to carry out the performance assessment.

One of the outcomes expected from this study is to check the applicability and importance of pushover analysis for seismic assessments of a medium rise building having a large floor area incorporating all Asbuilt details and found that it is applicable and realistic results can be obtained to a

As per UBC world seismic zoning, Sri Lanka is situated in seismic zone 0. However, considering the future seismic risk, the building was assessed for seismic Zone 1 and 2A.

It was found from the study that the building performs at Immediate Occupancy performance level for serviceability earthquake in seismic zone $1(C_A=0.06, C_V=0.09)$. But not perform well for serviceability earthquake in seismic zone $2A(C_A=0.12, C_V=0.18)$. In addition found that the building can safely withstand a maximum ground motion having acceleration coefficients of $C_A=0.11$ and $C_V=0.17$ performing at Immediate Occupancy performance level.

Furthermore, it was observed that seismic performance of the building considered, can be improved significantly in shorter direction than in longer direction by strengthening some of the critical elements. The building performs well in shorter direction than in longer.

It was also found that pushover analysis helps to enhance the seismic resistance of a structure significantly by identifying and strengthening the critical elements with a small amount of additional cost. Finally, this analysis gives an indication of the integral seismic resistance of a reinforced concrete framed structure although specifically not designed for seismic loading. The recommendations were also made for proper seismic assessment and resistance verified from the study.

This study is to be continued to find out the significance of a 3D analysis compared to a 2D analysis with respect to the accuracy of analysis results and time taken for the evaluation. Furthermore, the seismic performance assessment of this building can be carried out with other software such as PERFORM 3D to verify the analysis results obtained from SAP 2000.

Key words: Seismic assessment, Seismic evaluation, Performance based design, Non linear static analysis and Pushover analysis.

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i		
Acknowledgements		
Abs	stract	iii
Tab	le of Content	iv-vii
List	of Figures	viii-ix
List	of Tables	Х
List	of Abbreviations	X
List	of Appendices	X
1.	INTRODUCTION	1-4
	1.1 Background	1
	1.2 Significance of the Study	2
	1.3 Objective	2
	14 Outcome University of Moratuwa, Sri Lanka.	2
	15 Building Selected the set & Dissertations	-
	1.6 The Arrangement of the Reporte.lk	3
2.	LITERATURE SURVEY	5-27
	2.1 Background	5
	2.2 Guidelines Available for Seismic Evaluation/	
	Rehabilitation of Buildings	5
	2.3 Past Researches on Seismic Assessments of Buildings	6
	2.4 Why Seismic Evaluation is needed	7
	2.5 Seismic Evaluation of Buildings	7
	2.6 Reliability of Assessment of Existing Buildings	9
	2.7 Collection of As-Built Data and Documents	10
	2.8 Detailed In-Situ Investigation	11
	2.8.1 Material Properties	11
	2.8.2 Component Properties	11
	2.8.5 Condition Assessment 2.9 As-Built Data for the Building Modeling	12
	2.10 Analytical Methods Available	13
	2.11 Non-linear Static Analysis (Push-over Analysis)	14
	2.12 Limitations of Non-Linear Static Analysis	15
	2.13 Capacity Spectrum Method	16
	2.14 Performance Based Design	17

	2.15 Performance Level	17
	2.15.1 Structural Performance Levels	19
	2.15.2 Non Structural Performance Levels	20
	2.16 Seismic Hazard Level	21
	2.17 Performance Objectives	22
	2.18 Selection of Performance Objectives	23
	2.19 Primary Ground Shaking Criteria	23
	2.19.1 Site Geology and Soil Characteristics	24
	2.19.2 Site Seismicity Characteristics	24
	2.19.3 Site Response Spectra	24
	2.20 Outline of Capacity Spectrum Method	25
3.	METHODOLOGY	28-61
	3.1 Structural form of the Building	28
	3.2 Static Pushover Analysis Procedure	28
	3.3 Computer Modeling of the Building	31
	3.3.1 Material Property Data	31
	3.3.2 Defining the Frame sections	32
	3.3.3 Modeling of Frame Elements	34
	3.3.4 Assigning of As-Built Section Properties to	
	FrameElements	34
	3.3.5 Assigning Diaphragm Constraints	34
	3.3.6 Assigning Plastic Hinges to Frame Elements	35
	33.6.1 Brame Hinge Properties tuwa, Sri Lanka.	35
	133.6.2 Hinger Location and Generated Hinge Property	36
	33.6.4 Concrete Beams in Flexure	39 39
	3.3.6.5 Coupled P-M2-M3 Hinge	40
	3.3.6.6 Plastic Deformation Curve	41
	3.3.6.7 Moment-Rotation Curves	42
	3.3.6.8 Performance Levels on Plastic Deformation	
	Curve	42
	3.3.6.9 Scaling the Curve	42
	3.3.6.10 Strength Loss	43
	3.3.7 Assigning the Loads to Beam Elements (Load Patterns)	44
	3.3.8 Defining Load Patterns	44
	3.3.9 Defining Non Linear Load Cases	46
	3.3.9.1 Initial conditions	47
	3.3.9.2 Structural Response and Superposition	47
	3.3.9.3 Nonlinearity	48
	3.3.9.4 Displacement Control	49
	3.3.9.4.1 Conjugate Displacement Control	50
	3.3.9.5 Output Steps	50
	3.3.9.5.1 Saving Multiple Steps	51
	3.3.9.5.2 Minimum and Maximum Saved Steps	51

	3.3.9.5.3 Save Positive Increments Only	52
	3.3.9.6 Nonlinear Solution Control	53
	3.3.9.6.1 Maximum Total Steps	54
	3.3.9.6.2 Maximum Null (Zero) Steps	54
	3.3.9.6.3 Maximum Iterations per Step	55
	3.3.9.6.4 Iteration Convergence Tolerance	55
	3.3.9.6.5 Event-to-Event Iteration Control	55
	3.3.9.7 Hinge Unloading Method	56
	3.3.9.7.1 Unload Entire Structure	57
	3.3.9.7.2 Apply Local Redistribution	57
	3.3.9.7.3 Restart Using Secant Stiffness	58
	3.3.10 Defining Load Combinations	59
	3.4 Calculation of Seismic Coefficients	59
	3.4.1 Soil Type	59
	3.4.2 ZEN Value	60
	3.4.3 Seismic Zone Factor(Z)	60
	3.4.4 E Value	60
	3.4.5 Near Source Factor (N)	60
	3.4.6 Seismic Coefficients (C_A, C_V)	61
4.	ANALYSIS RESULTS roity of Morotuno Sri Lonko	62-91
	4.1 Modal Participating Mass Ratio	62
	4.2 Procedure for Reviewing Analysis Results	63
	4.3 Review of Hinge Analysis Results	63
	4.4 Review of Pushover Analysis Results of the Building	64
	4.5 Pushover Results for the Building (with As-Built Details)	65
	4.5.1 Base shear vs Monitored Displacement	65
	4.5.2 Pushover Results (ATC 40 Capacity Spectrum Method)	
	for Serviceability Earthquake for Seismic Zone 1	67
	4.5.2.1 Pushover Results for X direction	67
	4.5.2.2 Pushover Results for Y direction	70
	4.5.3 Pushover Results (ATC 40 Capacity Spectrum Method)	
	for Serviceability Earthquake for Seismic Zone 2A	73
	4.5.3.1 Pushover Results for X direction	73
	4.5.3.2 Pushover Results for Y direction	74
	4.5.4 Maximum Acceleration which the Building	
	Safely Withstands	75
	4.5.4.1 Maximum Acceleration in X direction	75
	4.5.4.2 Maximum Acceleration in Y direction	76
	4.6 Pushover Results after Structural Improvements to Some	
	of the Critical Elements	77

4.6.1	Base shear vs Monitored Displacement	79
4.6.2	Pushover Results (ATC 40 Capacity Spectrum Method)	
	for Serviceability Earthquake for Seismic Zone 2A	81
	4.6.2.1 Pushover Results in X direction	81
	4.6.2.2 Pushover Results in Y direction	84
4.6.3	Maximum Acceleration which the Building safely	
	withstands after Structural Improvements.	87
	4.6.3.1 Pushover Results in X direction	87
	4.6.3.2 Pushover Results in Y direction	88
4.7 Summ	nary of Analysis Results	89
4.7.1	For the Building with As-Built Details	89
4.7.2	For the Building after Structural Improvements	90
4.7.3	Comparison of Seismic Performance	91
CONCL	USION & RECOMMENDATIONS	92-93
5.1 Concl	lusion	92
5.2 Recor	mmendations	93
5.3 Futur	e work	93
ferences		94-95
pendix A pendix B	References from iChapfel (20ATO) 40(1996) Vanka. Electronic Theses & Dissertations Ferences from UBC 97 & Chapter 4 ATC 40(1996) V WWW.IID.mrt.ac.lk	ol. 1
	4.6.1 4.6.2 4.6.3 4.6.3 4.7 Sumr 4.7.1 4.7.2 4.7.3 CONCL 5.1 Concl 5.2 Recon 5.3 Futur ferences pendix A pendix B	 4.6.1 Base shear vs Monitored Displacement 4.6.2 Pushover Results (ATC 40 Capacity Spectrum Method) for Serviceability Earthquake for Seismic Zone 2A 4.6.2.1 Pushover Results in X direction 4.6.2.2 Pushover Results in Y direction 4.6.3 Maximum Acceleration which the Building safely withstands after Structural Improvements. 4.6.3.1 Pushover Results in X direction 4.6.3.2 Pushover Results in Y direction 4.6.3.2 Pushover Results in Y direction 4.6.3.2 Pushover Results in Y direction 4.7 Summary of Analysis Results 4.7.1 For the Building after Structural Improvements 4.7.2 For the Building after Structural Improvements 4.7.3 Comparison of Seismic Performance CONCLUSION & RECOMMENDATIONS 5.1 Conclusion 5.2 Recommendations 5.3 Future work ferences pendix A References from Chapfer JOATIO 40(1996) Volta. Electronic Theses & Dissertations pendix A References from UBC 97 & Chapter 4 ATC 40(1996) Volta.

Appendix C - References from Chapter 8, ATC 40(1996) Vol. 1

Appendix D - References from FEMA 356

LIST OF FIGURES

Figure 1-1	Isometric view of the building model	4
Figure 2-1	Construction of a 5 percent-Damped Elastic Response spectrum	25
Figure 2-2	Elastic Response spectrum in ADRS Format	25
Figure 2-3	Plot of Demand and Capacity spectrum in ADRS Format	26
Figure 2-4	Selection of a Trial Performance Point	26
Figure 2-5	Bilinear representation of capacity curve	26
Figure 2-6	Plotting of reduced demand spectrum	26
Figure 2-7	Locating the performance point	27
C		
Figure 3-1a	SAP 2000 Model (Isometric View)	29
Figure 3-1b	SAP 2000 Model (Plan View)	29
Figure 3-1c	Typical key plan	30
Figure 3-2a	Defining Column Sections	32
Figure 3-2b	Defining Column Reinforcements	32
Figure 3-3a	Defining Beam Sections	33
Figure 3-3b	Defining Beam Reinforcements	33
Figure 3-4	Concept of Modeling Frame Elements	34
Figure 3-5	Assigning Diaphragm Constraints	35
Figure 3-6a	Assigning Auto Hinges to Beams	37
Figure 3-6b	Assigning Auto Hinges to Columns	38
Figure 3-7a	Moment Rotation Data for a M3 Hinge	38
Figure 3-7b	Moment Rotation Data for a P-M2-M3-Hinge 1	39
Figure 3-8	Interaction Surface Definition for a P-M2-M3 Hinge	40
Figure 3-9	Plastic Force/Moment vs Deformation CurveOns	41
Figure 3-10	AssignmenvofiFrametLoads	44
Figure 3-11	Defining Load Patterns	45
Figure 3-12	Defining Load Cases	45
Figure 3-13	Defining Non Linear Gravity Load Cases	46
Figure 3-14	Defining Non Linear Pushover Load Cases	46
Figure 3-15	Load Application Control	50
Figure 3-16	Assigning saved steps	53
Figure 3-17	Non Linear Parameters	54
Figure 4-1	Modal Participating Mass Ratios	62
Figure 4-2a	Base shear vs monitored displacement curve for X-direction	65
Figure4-2b	Base shear vs monitored displacement curve for Y-direction	66
Figure 4-3	ADRS Graph (ATC 40 Capacity Spectrum Method)	
0	for X-direction	67
Figure 4-4a	Details of pushover steps for X-direction	68
Figure 4-4b	Hinge state at pushover steps for X-direction	68
Figure 4-5a	Hinge state at step 4 for X direction	69
Figure 4-5b	Hinge state at step 5 for X direction	69
Figure 4-6	ADRS Graph (ATC 40 Capacity Spectrum Method)	
C	for Y-direction	70
Figure 4-7a	Details of pushover steps for Y-direction	71

Figure 4-7b	Hinge state at pushover steps for Y-direction	71
Figure 4-8a	Hinge state at step 8 for Y direction	72
Figure 4-8b	Hinge state at step 10 for Y direction	
Figure 4-9	ADRS Graph (ATC 40 Capacity Spectrum Method)	
	for X-direction	73
Figure 4-10	ADRS Graph (ATC 40 Capacity Spectrum Method)	
	for Y-direction	74
Figure 4-11a	Parameters for ATC40 Spectrum for X-direction	75
Figure 4-11b	ADRS Graph (ATC40 Spectrum) for X-direction	75
Figure 4-12a	Parameters for ATC40 Spectrum for Y-direction	76
Figure 4-12b	ADRS Graph (ATC40 Spectrum) for Y-direction	76
Figure 4-13	Key plan showing the locations of structural improvements	78
Figure 4-14a	Base shear vs monitored displacement curve for X-direction	79
Figure 4-14b	Base shear vs monitored displacement curve for Y-direction	80
Figure 4-15	ADRS Graph for X-direction	81
Figure 4-16a	Details of pushover steps for X-direction	82
Figure 4-16b	Hinge state at pushover steps for X-direction	82
Figure 4-17a	Hinge state at step 6 for X direction	83
Figure 4-17b	Hinge state at step 7 for X direction	83
Figure 4-18	ADRS Graph for Y-direction	84
Figure 4-19a	Details of pushover steps for Y-direction	85
Figure 4-19b	Hinge state at pushover steps for Y-direction	85
Figure 4-20a	Hingerstate at step 5 for V direction Sri I anka	86
Figure 4-20b	Hinge state at step 6 for Y direction	86
Figure 4-21	Maximum Acceleration parameters for X direction	87
Figure 4-21	ADRS/Graph for Xidirection	87
Figure 4-22a	Maximum Acceleration parameters for Y-direction	88
Figure 4-22b	ADRS Graph for Y-direction	88

LIST OF TABLES

Table 2-1	Combinations of Structural and Nonstructural Performance	
	Levels to Form Building Performance Levels	18
Table 2-2	The Basic Safety Objective in ATC 40	23
Table 3-1	Summary of ZEN Values	61
Table 3-2	Summary of Seismic Coefficient CA, CV	61
Table 4-1	Amount of $R \setminus F$ at the locations of structural improvements	77
Table 4-2a	Performance of the Building (with As-Built Details) for SE	89
Table 4-2b	Performance of the Building (with As-Built Details) for DE	89
Table 4-2c	Maximum Seismic performance of the Building	
	(with As-Built Details)	89
Table 4-3a	Performance of the Building(after structural improvement) for SE	90
Table 4-3b	Performance of the Building (after structural improvement) for DE	90
Table 4-3c	Maximum Seismic performance of the Building	
	(after structural improvement)	90
Table 4-4	Comparison of Maximum Seismic Coefficients (g)	91
Table 4-5	Percentage of improvement in each direction	91
	(after structural improvement)	

LIST OF APPENDICES

Appendix A References from Chapter 3, ATC 40(1996) Vol.1
Appendix Kerefices Holl OBC 97 & Chapter 40(1996) Vol. 1 www.lib.mrt.ac.lk
Appendix C References from Chapter 8, ATC 40(1996) Vol. 1

Appendix D References from FEMA 356

LIST OF ABBREVIATIONS

B _{eff}	Effective damping ratio
C_A , C_V	Acceleration coefficients
T_{eff}	Effective period of vibration
Sa	Spectral acceleration
S _d	Spectral displacement
ATC	Applied Technology Council
FEMA	Federal Emergency Management Agency
V	Base shear
D	Displacement at the top of the building
I/O	Immediate occupancy performance level
L/S	Life safety performance level
C/P	Collapse prevention performance level
SP	Structural performance level
NP	Non structural performance level