ANALYSIS OF POWER QUALITY AND IMPROVEMENT TECHNIQUES OF GRID CONNECTED WIND POWER PLANT

(CASE STUDY: 3MW PILOT WIND POWER PLANT-HAMBANTOTA)

W.N.Jayalath

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2013

ANALYSIS OF POWER QUALITY AND IMPROVEMENT TECHNIQUES OF GRID CONNECTED WIND POWER PLANT

(CASE STUDY: 3MW PILOT WIND POWER PLANT-HAMBANTOTA)

W.N.Jayalath

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2013

Declaration of the Candidate & Supervisor

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I herby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations The above candidate has carried but research for the Masters thesis under my supervision.

Signature of the supervisor: Prof: J.P.Karunadasa Date:

Date:

Signature of the supervisor: Mr. A.M.A.Alwis

Page i

Acknowledgement

I take this opportunity to express my sincere thanks to those who assisted and guided me in this study. This thesis would not have been possible without their support and encouragement.

It is with immense gratitude that I acknowledge the support and help of my supervisors Prof. J.P.Karunadasa and Mr. A.M.A.Alwis for their supervision, advice and guidance from the very early stage of this research as well as giving me extraordinary experiences throughout the work.

I convey special acknowledgement to Mr. Suranga Silva, Electrical Superintendant of Ceylon Electricity Board when collecting data form Puttalama and Hambantota Wind Plants and the staff of Seguwanthiu/Vidatamuni Wind Power Plant for their kind support.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

Analysis of Power Quality and Improvement Techniques of Grid Connected Wind Power Plant (Case Study: 3MW Pilot Wind Power Plant-Hambantota)

Wind Electricity Generation has come to the foremost form of renewable energy conversion method in the modern world. At the same time critics raise their concerns over the intermittency associated with wind power and its implications on national grids all over the world. There are various methods of grid integration of wind energy which has its own draw backs and advantages. One of the major concerns is the effect on national grid due to power quality issues associated with wind power generation.

Ceylon Electricity Board (CEB) commissioned the country's first ever grid connected wind power plant in 1999 in Hambantota. Since then number of wind farms have been commissioned and grid connected. These wind farms employs different power conversion technologies. Accordingly the power quality issues presented at the point of grid interconnection also assume different forms. The main objectives of this research is to identify and assess the power quality issues pose by Hambantota wind farm and compare with latest developed wind power conversion technologies.

The problems found with the Hambantota wind plant were power factor, reactive power consumption, harmonics, flicker and the voltage distortions level at the existing distribution feeder.

To investigate the above problems, it has been carried out data collection on Power production, Power Factor, Reactive Power absorption, Voltage variations, Harmonics and Flicker at the point of common coupling of Hambnatota Plant. With the collected 10 minutes average data, graphically presented the performance of the wind plant and compared the same with newly commissioned Vidathamuni/Seguwanthiu Plants at Puttalarnac. Ik

With the above study, it can be concluded that the Power Factor and the Reactive Power Consumption of the Hambantota Wind Plant has to be improved. Present days, Flexible AC Transmission (FACT) devices are developed and widely coming to the power system improvements. It is capable of correcting Power Factor and Reactive Power Requirement in Real Time Basis and virtually acts as a Synchronous Condenser (STATCOM-Static Synchronous Var Compensator). Therefore, a FACT device named PQC-STATCOM available in the market has been introduced to be installed at the point of common coupling of the Hambantota Wind Plant.

Table of Contents

Declaration of the candidate & Supervisor	i
Acknowledgements	ii
Abstract	
Table of content	iv
List of Figures	vi
List of Tables	ix
List of abbreviations	X
Chapter 1 : Introduction	1
1.1 Wind Power Generation	1
1.2 Sri Lankan Perspective	1
1.3 The Study	2
Chapter 2 : Wind Turbine Design	8
2.1 Wind Turbine Design	8
2.2 Fixed Speed Wind Turbines	9
2.3 Variable - Speed Wind Burbides atuwa, Sri Lanka	10
2.4 Electrical System in Wind Generator Systemsations	11
Chapter 3 : Power Quality.www.lib.mrt.ac.lk	15
3.1 Concept of Power Quality	15
3.2 Power Quality Measures	15
3.3 Reactive Power Consumption and Power Factor	17
3.4 Voltage Variations	18
3.5 Flicker	20
3.6 Harmonics	21
3.7 Transient Effects	21
Chapter 4 : Power Factor and Reactive Power	23
4.1 Measurement of the Pf & Reactive Power at Hambantota Plant	23
4.2 Measurement of the Pf & Reactive Power at Puttalam Vidathamur	nai Plant26
4.3 Comments on Power Factor and Reactive Power Requirement	27
Chapter 5 : Power Variations	32
5.1 Power Variations	32
5.2 Results of Measurements	33
5.3 Comments on the Power Variations	33
Chapter 6 : Switching and Transient Events	37
6.1 Switching and Transient Events	37

Chapter 7 : Harmonics	40
7.1 Voltage Harmonics	40
7.1.1 Results on Voltage THD Measurement	40
7.1.2 Voltage Harmonic Components	43
7.1.3 Comment on Voltage Harmonics at both Plants	46
7.2 Current Harmonics	47
7.3 Current Inter Harmonics	48
Chapter 8 : Flicker	50
8.1 Definition of Flicker	50
8.2 Effects of Voltage Fluctuations	52
Chapter 9 : Power Quality Improvement Techniques	53
9.1 Requirement of Improvement	53
9.2 Low power factor and high reactive power consumption	53
9.3 Advantages and Disadvantages of PF Correction Methods	55
9.4 Mitigation of Voltage Fluctuations in Power Systems	57
9.5 Voltage and Current Harmonic Limits	59
9.6 Filtering of Harmonics by Harmonic Filters	60
Chapter 10: Cost of Power Quality Improvement Techniques Lanka.	
10.1. Interdonnection to the Grid 33k & Bubssertations	65
10.2 Real Time Rower Factor Correction System.	65
10.3 Sizing of Real Time Power Factor Correction System,	65
Chapter 11: Conclusion	
References	

Appendices

Appendix	A : Circuit Diagram	of Soft Starter of th	e NEG MICON	Model NM	500/43
	Wind Machine				71

List of Figures

Figure 1.1 -	Grid connection schematics of fixed speed wind turbines at Hambnatota5
Figure 1.2 -	Diurnal Wind Pattern at Hambantota Site5
Figure 1.3 -	Typical Arrangement of a variable speed converter type wind machine (Vidathamunai Plant Model)
Figure 2.1 -	Wind speed-Power curve for 600kW, stall regulated wind Turbine9
Figure 2.2 -	Schematic Diagram of a Typical Fixed Speed Wind Turbine10
Figure 2.3 -	Schematic Diagram of a Typical Variable Speed Wind Turbine10
Figure 2.4 -	Schematic Diagram of a Typical Electrical System of a Fixed Speed Wind Turbine
Figure 2.5 -	Schematic Diagram of a Typical Electrical System of a Variable Speed Wind Turbine with an Inverter
Figure 3.1 -	Reactive Power Consumption of a Fixed Speed Induction Type Wind Plant17
Figure 3.2 -	Long Duration Voltage Variation
Figure 3.3 -	Short Duration Voltage Variation
Figure 3.4 -	Voltage Sags B Phase Oscilloscope and RMS Diagram19
Figure 3.5 -	Flicker CullerAccording of IEC 60868va, Sri Lanka
Figure 3.6 -	HarmonicsEnd the Wolling Three Curren Divaverbations
Figure 3.7 -	Transfent at Grid Voltage Dropsk
Figure 3.8 -	Transient Events at Capacitor Switching
Figure 4.1 -	Data Logger Installed at 33 kV Grid Interconnection Control Panel23
Figure 4.2 -	Variation of Power Factor Against the Farm Normalized Active Power24
Figure 4.3-	Frequency of occurrence of Power Factor at 33 kV grid interconnection point at Hambantota Plan
Figure 4.4 -	Variation of Normalised Reactive Power against the Normalized Active Power. Measured at 33 kV grid Interconnection Point
Figure 4.5 -	Variation of Power Factor of the Puttalama plant against its Normalized Active Power Measured at 33 kV Interconnection Point
Figure 4.6 -	Variation of Normalised Reactive Power of the Puttalama Plant Against its Normalized Active Power Measured at 33 kV Interconnection Point
Figure 4.7 -	Reactive Power Consumption and average Wind Speed at Hambantota Plant29
Figure 4.8 -	Reactive Power Consumption and average Wind Speed at Hambantota Plant.29
Figure 4.9 -	Reactive Power Consumption and average Wind Speed at Hambantota Plant.29
Figure 4.10 -	Frequency of Occurrence of Power Factor, Measured at the Grid Interconnection Point. Bin Center is Mentioned on the X-axis of the Graph 30
Figure 5.11 -	Standard Deviation of Power, Against its Mean for Averaging 10 minutes Period South-West Wind Regime

Figure 5.2 -	Co-efficient of Variability of Power, Against Mean Wind Speed for Averaging 10 minutes Period. South-west Wind Regime
Figure 5.3 -	Co-efficient of Variability of Power, Against Mean Wind Speed for Various Turbulence Intensities (T %). South-west Wind Regime
Figure 5.4 -	Standard Deviation of Power, Against its Mean for Averaging 10 minutes period North-east Wind Regime
Figure 5.5 -	Co-efficient of Variability of Power, against Mean Wind Speed for Averaging 10 minutes Period. North-east Wind Regime
Figure 5.6 -	Co-efficient of Variability of Power, Against Mean Wind Speed for Various Turbulence Intensities (T %). North-east Wind Regime
Figure 6.1 -	Starting of a Typical Fixed Speed Wind Machine
Figure 6.2 -	Soft Starter Operation at the Cut in of Generator at Hambantota
Figure 6.3 -	RMS Voltage and current variation at Cut in Generator at Habmantota
Figure 6.4 -	Switching of Capacitors
Figure 7.1 - '	Typical Day Variation of THD% Wind Plant Shut Down & Measured at 33kVInterconnection Point at Hambantota40
Figure 7.2 -	Voltage THD% with Power Output at Hambantota Plant at 33 kV Level41
Figure 7.3 -	Current THD% with Power Output at Hambantota i Plant at 33kV Level42
Figure 7.4 -	Voltage THD% with Power Output at Vidathaniuni Plant at 33 kV Level 42
Figure 7.5 -	Current THE % with Power Output at Vidathannin Plant at 33 kV Level44
Figure 7.6 -	Voltage Harmoniclomponents Comparison
Figure 7.7 -	Current Harmonics of Hambantota Plant at 33 kV Level49
Figure 7.8 -	Voltage Harmonics componentsat VidtahamuniPlant at 33 kV Level 45
Figure 7.9 -	Current Harmonic Components of Vidathamuni Plant at 33 kV Level
Figure 7.10 -	Voltage Harmonics components Comparison at 33 kV Level 46
Figure 7.11 -	Current Harmonics components Comparison at 33 kV Level 48
Figure 7.12 -	Total Current Interharmonics D istortion with Power Output Hambantota Plant at 33 kV Level
Figure 7.13 -	Total Current Interharmonics D istortion with Power Output Puttalama Plant at 33 kV Level
Figure 8.1 -	Flicker Curve according to IEC 60868
Figure 8.2 -	Short Term Flicker at Hambantota Wind Plant at 33 kV PCC51
Figure 8.3 -	Long Term Flicker at Hambantota Wind Plant at 33 kV PCC51
Figure 8.4 -	Short Term Flicker at Vidathamunai Wind Plant at 33 kV PCC52
Figure 8.5 -	Long Term Flicker at Vidathamunai Wind Plant at 33kV PCC52
Figure 9.1 -	Static VAR Compensator
Figure 9.2 -	Parallel Operation of Soft Starter and SVC Reactor Controller

Figure 9.3 -	Classification of Dynamic Voltage Stabilizers	59
Figure 9.4 -	Voltage Stabilization Control System Using a Synchronous Compensator	59
Figure 10.1-	Typical Connection Diagram of a Thyristor Switched RTPFC	66
Figure 10.2	Typical Connection Diagram of PQC-STATCON	67

List of Tables

Table 1.1 - Wind Turbine at Hambantota: Technical specifications	5
Table 1.2 - Wind Turbine at Puttalama: Technical specifications	7
Table 3.1 - Power Quality effects and Reasons 1	6
Table 4.1 -Reactive Power Consumption as a Percentage to the Active Power Production a Hambantota Plant	
Table 7.1 - Results of the Voltage THD % Measurement at 33kV 4	3
Table 7.2 - Summary of Voltage Harmonic Components at Hambantota Wind Plant4	4
Table 7.3 - Summary of Voltage Harmonic Components at Vidathamunai Wind Plant4	6
Table 7.4 - Other Voltage Harmonic Components at Vidathamunai Wind Plant4	
Table 9.1 - IEEE Harmonic Voltage Limits Moratuwa, Sri Lanka. 6	0
Figure 1 Electronic Theses & Dissertations Fable 9.2 - IEBE transmonic Current Limits 6 www.lib.mrt.ac.lk	0

List of Abbreviations

А	Ampere
AC	Alternative current
AC-DC-AC	Conversion of power from AC to DC and AC
CIRCUTOR AR	Power Quality Analyzer
COV	Co-efficient of Variability of Power
Ср	Power conversion efficiency
ĊŢ	Current Transformer
GS	Grid Substation
Hz	Hertz
IEC	International Electro-Technical Commission
IEEE	International Electrical and Electronic Engineer
IGBT	Integrated Bipolar Transistor
kA	Kilo Amperes
kHz	Kilo Hertz
Km	Kilo meter
kVA	Kilo Volt Amperes
kW	Kilo Watts
М	Meter
m/s	Meters per second
m2	Square meter
mm2	Square millimeter
N-E	North Eastversity of Moratuwa, Sri Lanka.
P (if	Power loctronic Thoses & Discortations
PCC 💊	Point of common coupling Power factor. 110. mrt. ac.lk
Pf 🦉	Power factor 110. mrt. ac.1K
POC	Point of connection
PT	Potential transformer
PWM	Pulse Width Modulation
Rms	Route mean square value
Rpm	Revolution per minute
RTRPC	Real Time Reactive Power Correction Systems
SCADA	Supervisory Control and Data Acquisition
SVC	Static Var Compensator
S-W	South-West
Т	Torque
Τ%	Turbulence Intensity
THD	Third Harmonics Distortion
V	wind speed
Var	Reactive power
XLPE	Cross link polyurethane
Р	air density
ω	Rotational speed which is fixed
FACT	Flexible AC Transmission
STATCOM	Static Synchronous Var Compensator