IDENTIFICATION OF CAUSES OF DISTRIBUTION TRANSFORMER FAILURES AND INTRODUCTION OF MEASURES TO MINIMIZE FAILURES

Munasinghe Vidana Pathirana Geetha Udayakanthi

(09/8675)

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science

Department of Electrical Engineering

University of Moratuwa
Sri Lanka

March 2014
DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

M.V.P.G Udayakanthi
Date: 25th March 2014

The above candidate has carried out research for the Masters dissertation under my supervision.

Prof. J.R Lucas
Senior Professor,
University of Moratuwa
ABSTRACT

Distribution Transformers are costly and critical equipments in electricity distribution network. The Ceylon Electricity Board (CEB) has nearly 24,500 number of distribution transformers installed island wide which are connected to 11kV or 33kV Medium Voltage (MV) networks to meet the present power demand of consumers.

Failure of a distribution transformer results to interruption of power supply to the consumers and involve high expenditure in repair or replacement of transformer. Hence protection of distribution transformer is very important. Transformer failure rate of the CEB is nearly 2.5% where internationally acceptable level is less than 2%.

When a Distribution Transformer is failed, it is replaced with a new transformer, but there is no proper method established by the CEB to analyze the cause of failure. A detailed investigation of failed transformer is vital important to understanding the actual failure scenario and prevent further incidents.

The objective of the study was to identify main causes of distribution transformer failures and propose measures to minimize those failures. This thesis presents the CEB distribution substation installation practices and practical situation of distribution substations which would be the causes for failures. Detail investigation procedure for failed transformers was established in order to find out exact cause for each transformer failure.

Through the literature review, different failure modes were identified for each transformer component and common transformer failure causes are lightning, short circuit faults in network, aging, overloading, oil leaks, loose connections and bad workmanship. Failed transformers during the year 2011 were inspected in order find the root causes for failures.

It was observed that lightning and overloading are the major causes for transformer failures in Southern Province. It was observed that 28% of transformer failures are due to lightning and 25% are due to overloading.

Onsite investigations were carried out and failed transformers were opened whenever necessary to identify the exact causes for failures. Several tests were done before opening failed transformers such as insulation resistant test, polarization index test, ratio test and LV short circuit test.

To minimize transformer failures, several measures were proposed. Maintaining the surge arrestor earth electrode resistance less than $10\,\Omega$, replacing of faulty surge arrestors, installation of LV surge arrestors, proper fuse selection, balancing of loads, and proper crimping of lugs are few recommendations. It is strictly recommended to train the field staff to follow the CEB construction standards of distribution substations when constructing as well as doing operation and maintenance works.
ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor, Prof. J.R Lucas, Senior Professor, Faculty of Engineering, University of Moratuwa for his guidance, valuable comments and immense knowledge giving me to carry out thesis works. His guidance helped me in all the time of research and writing of this dissertation.

I take this opportunity to extend my gratitude to Eng. W.D Anura S. Wijayapala, Senior Lecturer, Faculty of Engineering, University of Moratuwa for his valuable comments and guidance given to me.

My sincere thanks go to the officers in the Post Graduate Office, Faculty of Engineering, University of Moratuwa, for helping me in various ways to clarify the things related to my academic work in time with excellent cooperation.

I would like to pass my sincere thanks to Eng. S.S. Kahanda, Chief Engineer (Planning and Development) and Eng. Anil Ranjith, Chief Engineer (Construction), Southern Province, CEB for their support and valuable comments given to me.

Also I would like to thank my staff of the Transformer Maintenance Unit in Southern Province, CEB for supporting me in various ways to carry out certain assignments related to the research work.

Finally my sincere appreciation goes to my loving husband, Eng. D.D.K.G.Sandasiri, and my family, many individuals, my friends and colleagues, for their companionship, great understanding and continues encouragement in this educational process to success. May be I could not have made it without your supports.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>x</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Motivation</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Scope of Work</td>
<td>4</td>
</tr>
<tr>
<td>2. Literature Review</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Distribution Transformer</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Distribution Transformer Components</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Core</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Windings</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3 Transformer Tank</td>
<td>8</td>
</tr>
<tr>
<td>2.2.4 Tap Changer</td>
<td>8</td>
</tr>
<tr>
<td>2.2.5 Bushings</td>
<td>9</td>
</tr>
<tr>
<td>2.2.6 Pressure Relief Valve</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Overview of Transformer Operation</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Transformer Protection</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1 Fuse Protection</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2 Surge Protection</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 Earthing of Substation</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Transformer Failure Modes</td>
<td>22</td>
</tr>
<tr>
<td>2.5.1 Core</td>
<td>22</td>
</tr>
<tr>
<td>2.5.2 Winding</td>
<td>23</td>
</tr>
</tbody>
</table>
5.3.4 Timely Planning 60
5.3.5 Balancing of Transformer Loads 60
5.4 Prevention of Oil Leakages 61
5.4.1 Corrosion of Transformer Tank 61
5.4.2 Oil Leak through Drain Valve 62
5.4.3 Oil Leak through Bushing Gaskets 62
5.5 Good Workmanship Practices 63
5.5.1 Crimping of Lugs 63
5.5.2 Proper Torque of Bolted Connections 64
5.5.3 Corrosion of Nuts and Bolts 65
5.6 Increase the Quality of Fabrication of transformers 65
5.7 Advantages of Reduction of Transformer Failures 66

6 Conclusion 67
6.1 Conclusion and Discussion 67
6.2 Recommendations 69

References List 70
Appendices

Appendix 1 Format of transformer failure report 71
Appendix 2 Format of detail investigation report 72
Appendix 3 Format of test report for failed transformer 74
Appendix 4 Format of test report for repaired transformer 75
Appendix 5 List of failed transformers in 2011 76
Appendix 6 Distribution Transformer Failures in NWP, WPS1, WPS2, SG and SP – 2011 78
Appendix 7 Thunder days in Galle, Hambantota Meteorological Stations 79
Figure 2.1: Pole mounted distribution transformer	Page 6
Figure 2.2: Typical arrangement of distribution substation	Page 6
Figure 2.3: Stacking of transformer core	Page 7
Figure 2.4: Assembling three windings	Page 8
Figure 2.5: Wiring diagram of a tap changer	Page 9
Figure 2.6: Primary bushing	Page 9
Figure 2.7: Secondary bushing	Page 10
Figure 2.8: Coupling between a transformer coils and its core	Page 10
Figure 2.9: Damage and Inrush curves for 33/0.4kV160kVA transformer	Page 15
Figure 2.10: Time Current Characteristics curves	Page 16
Figure 2.11: DDLO type expulsion fuse	Page 17
Figure 2.12: HRC fuses	Page 18
Figure 2.13: Fuse switch disconnector	Page 19
Figure 2.14: Two different practices of positioning the surge arrestor	Page 20
Figure 2.15: Common transformer earthing practices	Page 21
Figure 2.16: Investigation flow chart	Page 28
Figure 4.1: Average thunder days – Galle Meteorological station and Average transformer failures of Galle, Matara districts (during 2007 to 2011)	Page 34
Figure 4.2: Average thunder days – Hambantota Meteorological station and Average transformer failures of Hambantota districts (during 2007 to 2011)	Page 35
Figure 4.3: Age wise details of distribution transformer failures in SP	Page 36
Figure 4.4: Age wise analysis of distribution transformer failures in SP	Page 36
Figure 4.5: Arrestor mounted on transformer tank and cross arm	Page 40
Figure 4.6: Middle limb of transformer windings displaced	Page 41
Figure 4.7: DDLO switch of the middle phase with “gal mattu”	Page 42
Figure 4.8: Cable directly connected without HRC fuse	Page 42
Figure 4.9: Tear down inspection of the failed transformer	Page 48
Figure 4.10: Transformer that removed from service due to corrosion 50
Figure 4.11: Oil leaked transformer and its corroded fins 51
Figure 4.12: Oil leaked through LV bushing gaskets 51
Figure 4.13: Oil leaked through LV bushing gasket of failed transformer due to bad connections 53
Figure 4.14: Transformer with wrong connection of wires and failed transformer due to excessive heat of connection 54
Figure 4.15: Failed transformer at Silvary substation 55
Figure 5.1: LV surge arrestor installed at Gongala (TNL transmission station) 58
Figure 5.2: Sectional view of current practice of cover plate design 63
Figure 5.3: Sectional view of proposed cover plate design 63
Figure 5.4: ABC lugs 63
Figure 5.5: Five ton bundle tool and dies 64
Figure 5.6: Tail wire connection to flags 64
LIST OF TABLES

Table 1.1: Distribution transformer data of Southern Province 2
Table 2.1: Primary and secondary current of different transformer capacities 11
Table 2.2: Protection devices of distribution transformer 12
Table 2.3: Transformer categories ... 13
Table 2.4: Short time thermal load capability of oil immersed transformers 13
Table 2.5: Fuse ratings used for CEB 33kV transformer 17
Table 2.6: Fuse ratings used for CEB 11kV transformer 18
Table 2.7: Failure causes and failure modes of core 23
Table 2.8: Failure causes and failure modes of windings 23
Table 2.9: Failure causes and failure modes of transformer tank 24
Table 2.10: Failure causes and failure modes of solid insulation 24
Table 2.11: Failure causes and failure modes of oil insulation 25
Table 2.12: Failure causes and failure modes of bushings 26
Table 3.1: Polarization index values .. 31
Table 4.1: Distribution transformer data of NWP, WPS1, SG, WPS2 and SP for year 2011 33
Table 4.2: Transformer failures in Southern Province from 2007 to 2011 34
Table 4.3: Age wise details of distribution transformer failures in SP 36
Table 4.4: Transformer failures in capacity wise .. 37
Table 4.5: Surge arrestor and neutral earth resistance of substations that suspect failed due to lightning 39
Table 4.6: Transformer failure rate of some CSC in SP 39
Table 4.7: Relative ageing rate with hot-spot temperature 44
Table 4.8: Current and temperature limitations for normal loading transformers ... 46
Table 4.9: Load reading of some transformers that were failed due to overload 47
Table 4.10: Load reading of Gamdoragama New substation at night peak 49
Table 5.1: Transformer earth electrode resistances 56
Table 5.2: Examples to transformers having 1 phase overloaded in Amb. Area 61
Table 5.3: Annual cost saving ... 66
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Arial Bundle Conductor</td>
</tr>
<tr>
<td>AC</td>
<td>Alternative Current</td>
</tr>
<tr>
<td>AMU</td>
<td>Area Maintenance Unit</td>
</tr>
<tr>
<td>CEB</td>
<td>Ceylon Electricity Board</td>
</tr>
<tr>
<td>CSC</td>
<td>Consumer Service Center</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DDLO</td>
<td>Drop Down Lift Off</td>
</tr>
<tr>
<td>DP</td>
<td>Degree of polymerization</td>
</tr>
<tr>
<td>HRC</td>
<td>High Rupturing Capacity</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>LECO</td>
<td>Lanka Electricity Company</td>
</tr>
<tr>
<td>LV</td>
<td>Low Voltage</td>
</tr>
<tr>
<td>MCCB</td>
<td>Molded Case Circuit Breaker</td>
</tr>
<tr>
<td>MV</td>
<td>Medium Voltage</td>
</tr>
<tr>
<td>NWP</td>
<td>North Western Province</td>
</tr>
<tr>
<td>SG</td>
<td>Sabaragamuwa Province</td>
</tr>
<tr>
<td>SP</td>
<td>Southern Province</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>TCC</td>
<td>Time Current Characteristic</td>
</tr>
<tr>
<td>TMU</td>
<td>Transformer Maintenance Unit</td>
</tr>
<tr>
<td>TIG</td>
<td>Tungsten Inert Gas</td>
</tr>
<tr>
<td>WPS 1</td>
<td>Western Province South 1</td>
</tr>
<tr>
<td>WPS 2</td>
<td>Western Province South 2</td>
</tr>
</tbody>
</table>