ESTIMATION OF VEHICLE KILOMETERS TRAVELLED IN SRI LANKA

Darshika Anojani Samarakoon Jayasekera

(108610J)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Degree of Master of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa
Sri Lanka

March 2014
ESTIMATION OF VEHICLE KILOMETERS TRAVELLED IN SRI LANKA

Darshika Anojani.Samarakoon Jayasekera

(108610J)

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa
Sri Lanka

March 2014
Declaration

“I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters under my supervision.

Signature: Date:
Abstract

Vehicle kilometers traveled (VKT) is the total kilometers traveled by motor vehicles on the highway system during a given period (particular year). Vehicle kilometers traveled by passenger automobile is an important factor in Transport planning, allocating resources, estimating vehicle emissions computing energy consumption, assessing traffic impact, analysis of accidents (i.e. the number of deaths per billion vehicle kilometers driven) Infrastructure investment decision and to make policy decisions.

In this report VKT is calculated by multiplying of vehicle factor, total fuel sale volume, and fuel consumption rate. Vehicle factor was estimated by dividing the fuel usage each vehicle type by total fuel usage. In order to estimate the vehicle factor, initially vehicles are classified, based on the Petrol and Diesel vehicles and prepared the Survey form in order to collect the fuel usage data and fuel consumption rate. By analyzing the collected data, vehicle factor and average fuel consumption rate were determined for each vehicle type. Since direct measurement of vehicle kilometers traveled has never been used, the several assumptions have been made in this study.

VKT has been calculated for each vehicle type for the year 2012 based on survey carried out in the year 2012. Considering the 2010, 2011 and 2012 fuel sale data, fuel sale growth factor is calculated for the year 2013 and 2014. VKT has been estimated for the year 2013 and 2014 for each vehicle type assuming the vehicle factor is used in 2012 is same for the year 2013 and 2014. In similar manner VKT for each vehicle type can be determined for the future years, Fuel consumption and fuel sale data can be obtained for each year and vehicle factor need to be estimated since it may not be same for each year. Therefore in this report illustrates the methodology to find the minimum no of Survey location for estimation of vehicle factor at a 95% of accuracy. It was found that Motor Cycle factor for Colombo District can be estimated using eight number of Survey locations.
Acknowledgement

The author is immensely grateful to the research supervisor, Dr. W.K. Mampearachchi of the Department of Civil Engineering for his invaluable guidance and support throughout the research period.

The fruitful support given by Eng. R.W.R. Pemasiri, Secretary, Ministry of Highways Ports and Shipping, Eng. W.A.S Weerasinghe, Director General of Road Development, Eng. H.M.K.G.G. Bandara, Director of Planning Division, Eng. Mrs. Namali Siyamblapitiya Deputy Director of Planning Division Road Development Authority, all the Provincial Directors, Chief Engineers, Executive Engineers and all the other staff members in Road Development Authority who helped in collecting data is greatly appreciated.

The support given by Prof. M.R.T. Jayasinghe (Head, Department Civil Engineering) and Prof. J.M.S.J. Bandara (Research Coordinator, Department of Civil Engineering) are greatly appreciated.

Finally, author extend her kind appreciation to all the staff of the Department of Civil Engineering, all the non-academic staff of the Department of Civil Engineering and all people who helped and encouraged her to complete this research successfully.
Contents

Abstract ... iii
Acknowledgement ... iv
1. INTRODUCTION ... 1
 1.1 General .. 1
 1.2 Objectives .. 2
 1.3 The Methodology .. 2
 1.4 The Scope of the Research ... 3
2. LITERATURE REVIEW .. 4
 2.1 Introduction ... 4
 2.2 Models Developed to Calculate VKT ... 5
 2.3 Traffic Measurement Methods ... 5
 2.3.1 Odometer Reading Method .. 5
 2.3.2 Traffic Counts (Road-Based Method) .. 6
 2.4 Non-traffic measurement methods .. 6
 2.4.1 Household/Driver survey method ... 7
 2.4.2 Fuel sales ... 9
 2.5 Definitions Related to Calculation of VKT ... 11
3. THE PROPOSED METHOD FOR CALCULATING THE VKT .. 12
 3.1 Sample Calculation for the Base Year 2012 ... 12
 3.2 Calculation Steps ... 12
 3.2.1 Sample Calculation for Motor Cycles in Colombo District 13
 3.3 Sample Calculation with Fuel Growth ... 14
4. DATA COLLECTION AND ANALYSIS .. 16
 4.1 Data Collection .. 16
 4.2 Analysis of Petrol Vehicles .. 17
 4.3 Analysis of Diesel Vehicles .. 28
5. DEVELOPMENT OF METHODOLOGY TO FIND THE FUTURE VKT .. 38
 5.1 The Sample Calculation Performed for Colombo District for Motor Cycles 38
5.1.1 Accuracy of the Selected Sample Stations in Colombo District with Use of Central Limit Theorem .. 39
5.1.2 Testing the Sample with Hypothesis Testing .. 39
5.2 Analysis with Randomly Selected Station .. 41
5.2.1 Analysis with Randomly Selected 8 Station .. 41
5.2.2 Analysis with Randomly Selected 5 Station .. 44
5.2.3 Analysis with Randomly Selected 3 Station .. 47
6. CONCLUSION ... 49
7. FURTHER RESEARCH ... 51
8. REFERENCES ... 52
9. Annexes
9.1 Annex I - Survey Form for Petrol and Diesel .. 53
9.2 Annex II - Summary of the Data collection ... 54
9.3 Annex III - Collected Fuel Consumption Rates for each Vehicle type 65
9.4 Annex IV - Night time Factor .. 71
9.5 Annex V - Vehicle Factors in District wise ... 72
9.6 Annex VI - Fuel Sale Data ... 74
9.7 Annex VII - Average Fuel Consumption Rate for Petrol vehicle in District wise 75
9.8 Annex VIII - Average Fuel Consumption Rate for Diesel vehicle in District wise...... 76
9.9 Annex IX - VKT for Petrol Vehicles in 2012, 2013 ... 77
9.10 Annex IX - VKT for Diesel Vehicles in 2012, 2013 .. 87
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Predicted Fuel Growth Factor</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>VKT of Passenger Vans</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>VKT of Diesel Vehicles in Whole Country</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>VKT of Three Wheelers</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>VKT of Pick Ups</td>
<td>33</td>
</tr>
<tr>
<td>4.5</td>
<td>VKT for cars and wagons</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>VKT for Jeeps and Pajeros</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>VKT of Passenger Van</td>
<td>34</td>
</tr>
<tr>
<td>4.8</td>
<td>VKT for Mini Bus</td>
<td>35</td>
</tr>
<tr>
<td>4.9</td>
<td>VKT for Bus</td>
<td>35</td>
</tr>
<tr>
<td>4.10</td>
<td>VKT for Light Truck</td>
<td>36</td>
</tr>
<tr>
<td>4.11</td>
<td>VKT for Medium Truck</td>
<td>36</td>
</tr>
<tr>
<td>4.12</td>
<td>VKT for Large Truck</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Motor Cycle factor of the population</td>
<td>38</td>
</tr>
</tbody>
</table>
Table of Tables

Table 3.1: Calculation of Motor Cycle Factor...13
Table 3.2: Annual VKT Calculation 2012..14
Table 3.3: Fuel Sale Data Collected from IOC and CEYPETCO....................................14
Table 4.1: VKT for petrol vehicles in Province vise and Island wide in 2012.................18
Table 4.2: VKT for Diesel Vehicles in 2012..29
Table 4.3: VKT for Diesel Vehicles in 2012..30
Table 4.4: VKT for Diesel Vehicles in 2012...31
Table 5.1: Randomly Selected 8 Stations...41
Table 5.2: Randomly Selected 8 Stations...42
Table 5.3: Randomly Selected 8 Stations...43
Table 5.4: Randomly Selected 5 Station ...44
Table 5.5: Randomly Selected 5 Station ...45
Table 5.6: Randomly Selected 5 Station ...46
Table 5.7: Randomly Selected 3 Station ...47
Table 5.8: Randomly Selected 3 Station ...47
Table 5.9: Randomly Selected 3 Station ...48