CHEMICAL PROCESS ROUTE SELECTION BASED ON ASSESSMENT OF INHERENT ENVIRONMENTAL HAZARD, OCCUPATIONAL HEALTH AND SAFETY (IEHS)

Sureshinie Warnasooriya

(118010E)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Degree of Master of Science

Department of Chemical & Process Engineering

University of Moratuwa Sri Lanka

September 2013

CHEMICAL PROCESS ROUTE SELECTION BASED ON ASSESSMENT OF INHERENT ENVIRONMENTAL HAZARD, OCCUPATIONAL HEALTH AND SAFETY (IEHS)

Sureshinie Warnasooriya

(118010E)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science

Department of Chemical & Process Engineering

University of Moratuwa

Sri Lanka

September 2013

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signaturet Signaturet Www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Thesis under my supervision.

Signature of the supervisor: Date:

Dr. (Ms.) M.Y. Gunasekera Senior Lecturer Department of Chemical & Process Engineering, University of Moratuwa, Sri Lanka.

Abstract

Chemical process route selection is one of the main design decisions that needs to be taken during the preliminary stages of chemical plant design and development. A chemical process route is considered as the raw materials and the sequence of reaction steps that converts them in to desired products. Previously, the most important factor considered in selecting the chemical process route was plant economics. However, now other issues such as safety, environment and occupational health have also become important considerations. Therefore, at early stages of chemical process plant design and development it is necessary to apply methodologies to identify and assess environmental, occupational health and safety hazards involved in the process routes.

This work proposes a methodology for assessing chemical process routes to manufacture a chemical based on inherent environmental, occupational health and safety hazards. The method developed in this work can be used during early design stages of a chemical process plant. The process route selection is done based on impacts due to emissions from the ongoing operational conditions of the plant. It considers the potential toxicological impacts on the environment, potential impacts on the occupational health due to fugitive emissions and the potential chemical and process safety impacts within the plant.

As the outcome of the methodology, an integrated index called "Inherent Chemical Process Route Index" (ICPRI) is proposed which can be used for the selection of the 'best' chemical process route for a chemical process plant, based on inherent environmental hazard, occupational health and safety (IEHS). The lower the ICPRI the more inherently environmentally friendly, inherently occupational healthier and inherently safer the route is. The methodology developed in this work can also rank alternative chemical process routes based on inherent environmental hazard on occupational health chazard and or safety hazard separately. The method was applied on four possible process routes to produce acetone. The propene oxidation route showed the lowest ICPRI value indicating potentially the 'best' chemical process route for acetone manufacturing process based on the IEHS assessment.

Keywords:

Inherent Environmental hazard, occupational health, Inherent Safety, Chemical process route

DEDICATION

I dedicate this thesis to my wonderful family.

Without their patience, understanding, support and most of all love, the

completion of this work would not have been possible.... University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

Completion of this thesis has been one of the most significant academic challenges I have ever had to face. This research becomes a reality because of the untiring efforts of many knowledgeable people and I would like to thank all of those people who helped make this dissertation possible.

In the first place I would like to give my sincere gratitude to my main supervisor, Dr. M. Y. Gunasekera for her inspiring and motivating guidance throughout this research with supervision.

I am indebted to Dr. Shantha Walpolage who is the former postgraduate coordinator in the department and provided a helping hand to move my M.Sc. forward.

I am immensely grateful to Dr. A.D.U.S. Amarasinghe, former Head of the University of Moratuwa, Sri Lanka. Department of Chemical and Process Engineering, University of Moratuwa, for Electronic Ineses & Dissertations giving me the opportunity to do the M.Sci in the department.

Also I gratefully acknowledge, Dr. H.M.R. Premasiri, Department of Earth Resources Engineering, for his great advices and comments as the chairperson of the progress review committee.

My grateful thank to Dr. P.G, Rathnasiri, Head of the Department of Chemical and Process Engineering, University of Moratuwa and the coordinator of the MSc in Sustainable Process Development course for assisting me with my course work component.

I would like to thank all members of the academic staff of Department of Chemical & Process Engineering for advising and helping me in many ways. My special thanks go to the University of Moratuwa Senate Research Grant for their financial support. This research project was supported by University of Moratuwa Senate Research Grant Number SRC/LT/2011/13.

It is my pleasure to remind Sri Lanka Custom Department for providing organic chemicals import data in order to select my case study.

I am thankful to non academic staff of Department of Chemical & Process Engineering for helping me in many ways.

Last but not the least I would like to thank all the colleagues, Staff members of PG division, Examination branch, Accounts division and Library for the help and cooperation given.

Most importantly, none of these would have been possible without the love and patience of my family. I am deeply indebted to my loving parents and parents inlaw who have given me their fullest support, my understanding and patient husband Nalin, who is behind me in my every step, our loved son Navitha, who is the joy of our lives and my brothers and sisters who always supported and encouraged me, in my entire endeavour.

I thank all who helped me in numerous ways and regret my inability to mention them individually.

S. Warnasooriya

TABLE OF CONTENTS

DECL	LARAT	ION OF	F THE CANDIDATE & SUPERVISOR	i
ABSTRACT				ii
DEDICATION				iii
ACKI	NOWLE	EDGEM	IENTS	iv
TABL	LE OF C	CONTE	NT	vi
LIST	OF FIG	URES		Х
LIST	OF TAI	BLES		xi
LIST OF ABBREVIATIONS & NOMENCLATURE				
1.	INTR	ODUCT	ΓΙΟΝ	1
	1.1.	Backg	round	1
	1.2.	Resea	rch Objectives and Scope	2
	1.3.	Thesis	Structure	3
2.	LITE	RATUR	EREVIEW	4
	2.1	Conce	pt of Inherent Environmental hazard, occupational	4
	(55	Leed Safety (FHSEs & Dissertations	
	2.2	Inhere	nt Environmental Fliendliness	5
		2.2.1	Environmental impact categories	6
			2.2.1.1 Toxicity	6
			2.2.1.2 Photochemical smog	7
			2.2.1.3 Acid deposition	8
			2.2.1.4 Global warming	8
			2.2.1.5 Stratospheric ozone depletion	9
		2.2.2.	Inherent environmental friendliness assessment methods	9
		2.2.3.	The fate of chemical substances in the environment when	11
			continuously released from a chemical plant	
	2.3	Inhere	ent Occupational Health	12
		2.3.1	Inherent occupational health assessing parameters	13
			2.3.1.1 Process activities	13
			2.3.1.2 Process conditions	14

		2.3.1.3 Material properties	14
		2.3.1.4 Worker exposure concentration	14
	2.3.2	Worker exposure concentration estimation methods	15
	2.3.3	Inherent occupational health hazard assessment methods	16
2.4	Inhere	ent Safety	18
	2.4.1	Inherent safety assessing parameters	22
		2.4.1.1 Inventory	22
		2.4.1.2 Phase	23
		2.4.1.3 Temperature	23
		2.4.1.4 Pressure	24
		2.4.1.5 Heat of reaction	24
		2.4.1.6 New phase generation	25
		2.4.1.7 Catalysts	25
		2.4.1.8 Side reactions	25
		2.4.1.9 Waste and co-products	25
li-1	- T	2.4.1.10 Yield	25
		Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	25
144		2.4.1.12 Viscosity www.lib.mrt.ac.lk	26
		2.4.1.13 Flammability	26
		2.4.1.14 Explosiveness	26
		2.4.1.15 Toxicity	27
		2.4.1.16 Corrosiveness	27
		2.4.1.17 Chemical stability	27
	2.4.2	Inherent safety assessment methods	28
2.5	Aggre	gating Methodologies for Individual EHS Parameters	30
2.6	Metho	ods for Combined Assessments of Environmental	32
	Hazar	ds, Occupational Health and Safety	
DEVE	ELOPM	ENT OF INHERENT CHEMICAL PROCESS ROUTE	35
INDE	Х		
3.1	Proces	ss Flow Diagram and Material Balance	35
3.2	Evalua	ation of Inherent Environmental Hazard	36
	3.2.1	Predicted Environmental Concentration (PEC)	37

3.

	3.2.2	Toxic effect estimation parameters	41
		3.2.2.1Chronic concentration value of aquatic life	42
		3.2.2.2 Chronic toxicity to terrestrial ecosystem	43
		3.2.2.3 Inhalation chronic toxicity level	43
	3.2.3	Indices for evaluate hazards of individual chemicals	44
	3.2.4	Indices for evaluate hazards on environmental	46
		compartments	
	3.2.5	Aggregation of aquatic, terrestrial and atmospheric hazard	s 47
	3.2.6	Environmental Toxicity Hazard Index	48
3.3	Evalua	ation of Inherent Occupational Health Hazards	49
	3.3.1	Quantification of fugitive emissions rate	50
	3.3.2	Estimation of workplace chemical concentration	51
	3.3.3	Occupational health Hazard Index	52
3.4	Evalua	ation of Inherent Safety	53
	3.4.1	Scoring inherent safety parameters	54
and a	. т	3.4.1.1 Inventory	55
		Juiversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	56
2447		3.4.1.3.Flammability www.lib.mrt.ac.lk	57
		3.4.1.4 Explosiveness	57
		3.4.1.5 Temperature	58
		3.4.1.6 Pressure	59
	3.4.2	Weight factors for aggregation of inherent safety indices	61
		3.4.2.1 Aggregation of chemical safety parameters	62
		3.4.2.2 Aggregation of process safety parameters	63
	3.4.3	Chemical Route Safety Index	63
3.5	Inhere	ent Chemical Process Route Index (ICPRI)	65
APPL	ICATIO	ON & DISCUSSION	69
4.1	Possib	ble Acetone Manufacturing Routes	69
	4.1.1	Cumene oxidation process (R1)	70
	4.1.2	2-Propanol dehydrogenation process (R2)	70
	4.1.3	Propene oxidation process (R3)	71
	4.1.4	p-Diisopropylbenzene Oxidation process (R4)	71

4.

	4.2	IEHS	Assessment of Routes to Manufacture Acetone	72
		4.2.1	Environmental Toxicity Hazard Index for acetone	72
			manufacturing routes	
		4.2.2	Occupational health Hazard Index for acetone	75
			manufacturing routes	
		4.2.3	Chemical Route Safety Index for acetone manufacturing	76
			routes	
	4.3	Interp	retation of Inherent Chemical Process Route Index (ICPRI)	77
5.	CONC	CLUSIC	ONS & RECOMMENDATIONS	79
	5.1	Concl	usions	79
	5.2	Recon	nmendations	79
REFF	ERENC	ES		81
APPE	NDIX A	A Que	estionnaire for the expert judgement study	85
APPENDIX B Database of pre-calculated fugitive emission rates for			87	
AFFE				0,
AFFE			cess module stream developed in the estimation of	01
APPE	NDIX	pro fug Pre- Exp	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules Electronic Theses & Dissertations	88 89
APPE APPE	NDIX	pro fug Pre- Exp para	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules Electronic Theses & Dissertations ert judgement results for relative importance of safety	88
APPE APPE APPE	NDIX (NDIX I	pro fug Pre- Exp para E Pro	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules Electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.lk	88 89
APPE APPE APPE	NDIX (NDIX I NDIX F	pro fug Pre- Exp para E Pro	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.fk ameters cess Flow Diagrams of Acetone manufacturing routes al chemical inventory present in Acetone manufacturing	88 89 90
APPE APPE APPE APPE	NDIX (NDIX I NDIX F	pro fug Pre- Exp para E Pro Tota rout	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.fk ameters cess Flow Diagrams of Acetone manufacturing routes al chemical inventory present in Acetone manufacturing	88 89 90
APPE APPE APPE APPE	NDIX (NDIX I NDIX F	pro fug Pre- Exp para E Pro Tota rout G Che	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa Sri Lanka calculated area estimates of standard process modules Electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.lk ameters cess Flow Diagrams of Acetone manufacturing routes al chemical inventory present in Acetone manufacturing tes	88 89 90 94
APPE APPE APPE APPE	NDIX (NDIX I NDIX F	pro fug Pre- Exp para E Pro Tota rout G Che Envi	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules Electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.lk ameters cess Flow Diagrams of Acetone manufacturing routes al chemical inventory present in Acetone manufacturing tes	88 89 90 94
APPE APPE APPE APPE APPE	NDIX (NDIX I NDIX F NDIX (pro fug Pre- Exp para E Prod Tota rout G Che Envi H Exa	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa, Sri Lanka calculated area estimates of standard process modules Electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.fk ameters cess Flow Diagrams of Acetone manufacturing routes al chemical inventory present in Acetone manufacturing tes emical inventory emitted to the environment and Predicted ironmental Concentrations of chemicals in the environment	88 89 90 94 95
APPE APPE APPE APPE APPE APPE	NDIX F NDIX F NDIX F NDIX C	pro fug Pre- Exp para E Prod Tota rout G Che Envi H Exa Prod	cess module stream developed in the estimation of itive emissions Iniversity of Moratuwa Sri Lanka calculated area estimates of standard process modules electronic Theses & Dissertations ert judgement results for relative importance of safety www.flo.mrt.ac.fk ameters cess Flow Diagrams of Acetone manufacturing routes al chemical inventory present in Acetone manufacturing tes emical inventory emitted to the environment and Predicted ironmental Concentrations of chemicals in the environment ample calculation for ETHI	88 89 90 94 95 96

LIST OF FIGURES

Page

Figure 2.1: Opportunities for installing inherent safety for a process plant		
Figure 3.1: Schematic diagram to assess a chemical process route		
Figure 3.2: Schematic diagram for ETHI development	37	
Figure 3.3: Cross section of a unit world environment	38	
Figure 3.4: Schematic diagram to OhHI calculation for a chemical process route	50	
Figure 3.5: Inventory sub index in ISI and InI for plant inventory	56	
Figure 3.6: Temperature scores in PIIS and corresponding TI values for	59	
different temperatures		
Figure 3.7: Pressure scores in improved PIIS and PI for different pressures	60	
Figure 3.8: Results from the experts for relative importance of damages on		
environment, occupational health and safety		
Figure 4.1: Reaction steps of Cumene oxidation route	70	
Figure 4.2: Reaction steps of <i>p</i> -Diisopropylbenzene oxidation route University of Moratuwa, Sri Lanka. () Electronic Theses & Dissertations	72	
www.lib.mrt.ac.lk		

LIST OF TABLES

Page

Table 2.1: Health effects due to the photochemical smog (Meenakshi, 2005)	7
Table 2.2: Summary of inherent environmental friendliness assessment methods	12
Table 2.3: Summary of inherent occupational health hazard assessment methods	18
Table 2.4: Summary of inherent safety assessment methods	30
Table 2.5: Summary of parameters aggregating methodologies	32
Table 2.6: Summary of combined assessment methodologies	34
Table 3.1: Expert's scores on environmental compartments	48
Table 3.2: Weights factors for three environmental compartments	48
Table 3.3: Classification of safety parameters	54
Table 3.4: Achieving inherent safety principles via safety parameters	54
Table 3.5: Inventory scoring table	56
Table 3.6: Temperature scoring table	59
Table 3.7: Pressure scoring table for pressure (P) up to 20.68 MPaUniversity of Moratuwa, Sri Lanka.Table 3.8: Weight factors for safety parametersLiectronic I heses & DissertationsTable 3.9: Results from the experts for importance of damages on environment,	60 61 66
occupational health and safety	
Table 3.10 Average weight factors on damage categories	67
Table 4.1: Notations for Acetone manufacturing routes	69
Table 4.2: CWHI, CTHI and CAHI for chemicals in acetone manufacturing routes	73
Table 4.3: ETHI for Acetone manufacturing routes	74
Table 4.4: OhHI for Acetone manufacturing routes	75
Table 4.5: CRSI for Acetone manufacturing routes	76
Table 4.6: ETHI, OhHI, CRSI and ICPRI values for Acetone manufacturing routes	:77
Table 4.7: Ranking acetone process routes based on IEHS assessment	77

LIST OF ABBREVIATIONS & NOTATIONS

Abbreviation Description

ACP	Acetophenone
AHI	Atmospheric Hazard Index
AHP	Analytical Hierarchy Process
AP	Acidification Potential
CAHI	Chemical Atmospheric Hazard Index
CEL	Chemical Exposure Limit
CFC	Chlorofluorocarbon
СНР	Cumenehydroperoxide
ChV	Chronic concentration Value
CRSI	Chemical Route Safety Index
CSI	Chemical Safety Index
CTHI CWHI DMPC	Chemical Terrestrial Hazard Index University of Moratuwa, Sri Lanka. Chemical Water Hazard Index Electronic Theses & Dissertations Wimethylphenylcarbinol
ECOSAR	ECOlogical Structure Activity Relationship
EHI	Environmental Hazard Index
EHS	Environment, Health and Safety
EI	Explosiveness Index
EPA	Environment Protection Agency
ETHI	Environmental Toxicity Hazard Index
FI	Flammability Index
GWP	Global Warming Potential
HI	Hazard Index
HQI	Health Quotient Index
IBI	Inherent Benign-ness Index
ICPRI	Inherent Chemical Process Route Index

IEHS	Inherent Environmental hazard, occupational Health and
	Safety
IETH	Inherent Environmental Toxicity Hazard
inhChL	inhalation Chronic toxicity Level
inhLC ₅₀	Inhalation LC ₅₀ of chemical
InI	Inventory Index
IOHI	Inherent Occupational Health Index
IPB	Isopropylbenzene
IRIS	Integrated Risk Information System
ISI	Inherent Safety Index
ISPI	Inherent Safety Potential Index
LC ₅₀	Lethal Concentration of chemical that that kills 50% of the test
	population, mol/m ³
LD ₅₀	Lethal Dose of chemical that kills 50% of the test population,
	mg/kg body weight
LEL	Lower Explosive Limit
NFPA E	National Fire Protection Association Lectronic Theses & Dissertations No Observable Adverse Effect Level Www.lib.mrt.ac.lk
OHHI	Occupational Health Hazard Index
OhHI	Occupational health Hazard Index
OHI	Occupational Health Index
oralChL	oral Chronic toxicity Level
OSHA	Occupational Safety and Health Administration
OSI	Overall Safety Index
<i>p</i> -DIPB	<i>p</i> -diisopropylbenzene
<i>p</i> -DIPBDHP	<i>p</i> - diisopropylbenzenedihydroperoxide
PEC	Predicted Environmental Concentration
PFD	Process Flow Diagram
PI	Pressure Index
PID	Piping and Instrumentation Diagram
PIIS	Prototype Index for Inherent Safety
ppb	parts per billion

	PRHI	Process Route Healthiness Index
	PSI	Process Safety Index
	RAHI	Route Atmospheric Hazard Index
	RfD	Reference Dose
	RI	Reactivity Index
	RTHI	Route Terrestrial Hazard Index
	RWHI	Route Water Hazard Index
	SHE	Safety, Health and Environmental
	TI	Temperature Index
	TLV	Threshold Limit Value
	TLV-C	Threshold Limit Value-Ceiling
	TLV-STEL	Threshold Limit Value-Short Term Exposure Limit
	TLV-TWA	Threshold Limit Value-Time Weighted Average
	UEL	Upper Explosive Limit
	UV	Ultraviolet
	VOCs	Volatile Organic Compounds
	WC	University of Moratuwa, Sri Lanka. Workplace Chemical Concentration Electronic Theses & Dissertations
	Adamste	www.lib.mrt.ac.lk
NOT	ATIONS	
	CELi	Chemical exposure limit for chemical i, mg/m ³
	ChV_i	Chronic concentration value of chemical i for aquatic
		organisms, mol/m ³
	C ^S	solubility in water, mol/m ³
	Ei	Emission rate of chemical i to the unit world, mol/h
	f	fugacity, Pa
	FEi	Fugitive emissions rate of chemical i, kg/hr

- FE_k pre-calculated fugitive emission rate for process unit k
- F_{NFPA} NFPA scores for flammability
- i chemical i involved with the route.
- inhChL_i Inhalation chronic toxicity level of chemical i, mol/m^3
- k_A first order rate constant in air, h^{-1}

K _{OW}	octanol water partition coefficient
ks	first order rate constant in soil, h ⁻¹
kw	first order rate constant in water, h ⁻¹
L	mass fraction organic matter
М	Molecular weight of chemical, g/mol
MF _{ik}	Mass fraction of chemical i in process unit k
n	number of chemicals in the route
oralChL _x	Oral Chronic toxicity Level of species x, mg/kg body
	weight/day
р	number of process units involved in the route
PECai	PEC of chemical i in air compartment from daily operational
	releases, mol/m ³
PEC _{si}	PEC of chemical i in soil compartment from daily operational
	releases, mol/m ³
PEC _{wi}	PEC of chemical i in water compartment from daily
P ^S R R R1	operational releases, mol/m ³ Jniversity of Moratuwa, Sri Lanka. Vapor pressure, Pa Electronic Theses & Dissertations gas constant (8.314 Pa m ³ /mol K) vww.lib.mrt.ac.lk Cumene oxidation route
R2	2-Propanol dehydrogenation route
R3	Propene oxidation route
R4	<i>p</i> -Diisopropyl benzene oxidation route
R _{NFPA}	NFPA scores for reactivity
Т	emission temperature, K
TDI _{fx}	daily food intake of animal species x, g/kg body weight/day
TDI _{wx}	daily fluid intake of animal species x, g/ kg body weight /day
V	Volumetric air flow rate, m ³ /hr
VA	Volume of air compartment, m ³
Vs	Volume of soil compartment, m ³
V_{W}	Volume of water compartment, m ³
WA	Weight factor for the atmospheric environment
WCC _i	Workplace Chemical Concentration of chemical i, mg/m ³

WF _E	Weight Factor for explosiveness
WF_{F}	Weight Factor for flammability
WF _{In}	Weight Factor for inventory
WF _P	Weight Factor for pressure
WF _R	Weight Factor for reactivity
WF _T	Weight Factor for temperature
WT	Weight factor for the terrestrial environment
W_W	Weight factor for the aquatic environment
Z _A	fugacity capacity of air, mol/m ³ Pa
Z_S	fugacity capacity of soil, mol/m ³ Pa
Z_W	fugacity capacity of water, mol/m ³ Pa
ρ_s	density of soil, kg/m ³
$ ho_w$	density of water, kg/m ³

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk