A NOVEL CONTROLLER FOR A VOLTAGE SOURCE SINE WAVE TRANSFORMERLESS BOOST INVERTER

L.Devinda.A.Molligoda

(108410V)

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

January 2014

A NOVEL CONTROLLER FOR A VOLTAGE SOURCE SINE WAVE TRANSFORMERLESS BOOST INVERTER

L.Devinda.A.Molligoda

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

January 2014

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: Date: L.Devinda A.Molligoda Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date

Prof. S. Rohan Munasinghe

I dedicate this to my wife, parents and brother. University of Morahuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

I was able to reach the final goal of this work successfully, as a result of many helpful hands behind it. I am happy to take this as an opportunity to acknowledge them.

First and foremost I would like to express my deepest gratitude to my academic supervisor Prof. Rohan Munasinghe for guiding me and giving valuable advice right throughout the design.

I would like to thank Dr. Tusitha Abeyasekera at Vestas for giving me expert advice. Also I am grateful for my Project Manager and my team members at GSI Application Development Centre Sri Lanka for the support they have given me. I am thankful to Prasanna for helping me to find literature, and my colleague Ganesh who always gave me a helping hand.

Last but not least I would like to thank my wife, parents and my brother who constantly motivated me to complete this work.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

In this thesis a transformerless voltage source sine wave inverter is proposed. A previously developed tri-state boost converter is utilized for the stepping up operation. By using this topology the dynamic response of the inverter is increased, by avoiding the right hand plane zero in the converter's small-signal control-tooutput transfer function when operating in the continuous conduction mode. The reference voltage for the tri-state boost converter is determined from the measured output voltage of the sine wave inverter, and the calculated instantaneous value of the sine wave. The inverter with the tri-state boost converter and the inverter with a classical boost converter with voltage mode control and current mode control are compared for the dynamic response and efficiency. The analytical work of the design has been verified using a simulation. Furthermore, the boost converter is implemented in hardware to verify the boost inverter calculations. The current mode control and the tri-state logic hardware implementation is ongoing, and it is presented as future work. Finally, two user selectable modes are proposed for the inverter optimized for dynamic performance or efficiency. sertations

Index Terms – Tri-state boost converter, sine wave inverter, regulation, dynamic performance, efficiency

Table of Contents

Declaration	ii
Acknowledgement	iv
Abstract	v
Table of Contents	vi
List of Figures	viii
List of abbreviations	x
List of Appendices	xi
1 INTRODUCTION	1
2 BOOST INVERTER: BACKGROUND INFORMATION	4
2.1 Boost converter overview	4
2.2 Modeling the Boost Converter	5
2.2.1 State Space Representation	6
2.2.2 Average Large Signal Model	7
2.2.3 Small Signal Analysis & Dissertations	8
2.3 Boost converter calculations	10
2.3.1 Magnetic Design	13
2.4 Boost Converter Control Techniques	14
2.4.1 Voltage mode control	14
2.4.2 The effect of the Right Hand Plane Zero	15
2.4.3 Current mode control	21
2.4.4 Constant duty cycle approach	24
2.5 Tri-state boost converter	24
2.5.1 Freewheel State	27
2.5.2 Modeling the tri-state boost converter	27
2.5.3 Constant charge time method	30
2.6 Switching Techniques used in H-bridge inverters	30
2.6.1 Square wave with filter	30
2.6.2 Sine Pulse Width Modulated (SPWM) wave	31
2.7 Selecting an appropriate switching frequency	32
3 PROBLEM STATEMENT	33

3.1 Problem in Step-Up Inverters	
3.2 Importance of avoiding the RHP zero of the boos	st inverter 33
4 PROPOSED SOLUTION	35
4.1 Tri-state boost converter with the H-bridge	36
4.1.1 Controller Design	36
4.2 Simulation	39
4.2.1 Dynamic response comparison	42
4.3 Hardware Considerations	46
4.3.1 Boost Converter Hardware	46
4.3.2 Inverter Hardware	54
4.3.3 Power dissipation	60
4.3.4 Snubber Design	62
4.3.5 Heat-sink Design	65
4.3.6 Boost Inverter Plant	67
5 CONCLUSION AND FUTURE WORK	71
5.1 Future work	72
Reference University of Moratuwa, Sri Lanko	73
Electronic Theses & Dissertations	75
www.lib.mrt.ac.lk	75
A. Finding the L at the boundary	75
B. Finding current ripple for a given inductance	75
C. Torroid calculation Testing 287 highflux	75
D. Heat sink calculations	76
E. MOSFET related losses	76
F. Snubber Calculations	77
G. Modeling the Plant	78
H. Modeling the Controller	79
I. Tri-State boost converter	79

List of Figures

Figure 1 Boost Converter Topology	5
Figure 2 On mode	5
Figure 3 Off mode	5
Figure 4 Analysis around the steady state point	8
Figure 5 Boost converter plant	9
Figure 6 Open loop step response of the plant	10
Figure 7 Selecting the inductor using the boundary current	12
Figure 8 Pole Zero map of plant	16
Figure 9 open loop step response	17
Figure 10 Undershoot highlighted	18
Figure 11 root locus of the loop transfer function	19
Figure 12 Simulink model of VMC boost converter	19
Figure 13 Step response of the closed loop system	20
Figure 14 Discrete VMC Simulink model	21
Figure 15 Discrete VMC step response	21
Figure 16 Simulink model of CMC boost converter	23
Figure 17 Voltage step from 80V to 81.25V in CMC boost converter	23
Figure 18 Tri-state Boost Converter	24
Figure 19 Steady state waveform of inductor current	25
Figure 20 Freewheeling mode	26
Figure 21 Unipolar switching	32
Figure 22 System block diagram	35
Figure 23 Reference Sine voltage generation	39
Figure 24 Reference Sine wave generated using LUT	39
Figure 25 Simulation of Tri-state boost converter	40
Figure 26 Simulation of voltage source transformerless boost inverter	41
Figure 27 Response time comparison	42
Figure 28 Load step comparison	43
Figure 29 Load step comparison – inverter output	44
Figure 30 Inverter output voltage at 65ms	45

Figure 31 Inverter output voltage at 75ms	45
Figure 32 Boost Converter schematic	48
Figure 33 H-Bridge schematic	49
Figure 34 Automatic chopper	50
Figure 35 Hybrid PWM Gate pulses to the H-bridge	55
Figure 36 Dead time in the H-bridge gate pulses	55
Figure 37 Output filter frequency response	59
Figure 38 Turn off snubber	63
Figure 39 Turn-on Snubber	64
Figure 40 Boost heat sink	66
Figure 41 H-bridge heat sink	67
Figure 42 DC-link Voltage Waveform	68
Figure 43 Voltages at arm mid points in the H-bridge	68
Figure 44 Output Voltage waveform after the LC filter	69
Figure 45 Boost Inverter test bench with controller	69
Figure 46 Boost Inverter Plant University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	70

www.lib.mrt.ac.lk

List of abbreviations

ССМ	Continuous Conduction Mode
DCM	Discontinuous Conduction Mode
VMC	Voltage Mode Control
СМС	Current Mode Control
RHP zero	Right Hand Plane Zero
UPS	Uninterrupted power supply
LUT	Look up table
MCU	Micro controller unit
EMI	Electro Magnetic Interference
LTI	Linear Time Invariant
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
IGBT	Insulated Gate Bipolar Transistor
PWM	Pulse Width Modulation

List of Appendices

Appen	dix Description	Page
A	Finding the L at the boundary	75
В	Finding current ripple for a given inductance	75
С	Torroid calculation Testing 287 Highflux	75
D	Heat sink calculations	76
E	MOSFET related losses	76
F	Snubber Calculations	77
G	Modeling the Plant	78
Н	Modeling the Controller	79
Ι	Tri-State boost controller	79

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk