REFERENCES:

- Yan, L., Chouw, N., Experimental study of flex FRP tube enclosed coir fibre reinforced concrete composite column, Construction and Building Materials, 1118-1127, 40, 2013.
- [2] Satyanarayana, K.G., Kulkarni, A.G., Rohatgi, P.G., Structure and properties of coir fibres, Regional Research Laboratory, Trivandrum, 695 019.
- [3] Available at:http://www.matbase.com/material/fibres/natural/coir/properties, (Accessed on 2011/02/26)
- [4] Narendar, R., Dasan, K. P., Nair, M., Development of coir pith/nylon fabric/epoxy hybrid composite: Mechanical and ageing studies, Materials and Design, 644-651, 54, 2014.
- [5] Romli, F. I., Alias, A. Z., Rafie, A. S. M., Majid, D. L. A. A., Factorial study on the tensile strength of a coir fiber rainforced epoxy composite, AASRI Procdia, 242-247, 3, 2012.
- [6] Available at:http://www.wbdg.org/design/midg_materials.php, (Accessed on 2011/03/01)
- [7] Available at:http://www.sager.ch/images/upload/Prospekt_Saglan_e_729.pdf, (Accessed on 2011/02/15)
- [8] Zhang, L., Hu, Y., Novel lignocellulosic hybrid particlesboard composites made from rice straws and coir fibers, Materials and Design, 19-26, 55, 2014.
- [9] Fouladi, M. H., Nor, M. J. M., Ayub, M. D., Leman, Z. A., Utilization of coir fiber in multilayer acoustic absorption panel, Applied Acoustics, 241-249, 71, 2010.
- [10] Liu, M. Y. J., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., Evaluation of thermal conductivity mechanical and transport properties of lightweight aggregate foamed geopolymer concreate, Energy and Buildings, 238-245, 72, 2014.
- [11] Brasileiro, G. A. M., Viera, J. A. R., Barreto, L. S., Use of coir pith particles in composites with portland cement, Journal of Environmental Management, 228-238, 131, 2013.

APPENDICES:

6.1 APPENDIX 01: (Method of calculation-calibration of setup)

Figure A.1: Heat flow configuration

The notations used are follows:

- \succ q : Heat flow rate
- ➢ K : Thermal conductivity (W/m K)
- A : Cross sectional area of the specimen $(0.000491m^2)$
- \succ T : Temperature (°C)
- \blacktriangleright L : Length of the specimen (m)
- C : Specific heat capacity of water (4180J/kg K)
- \rightarrow \dot{m} : Water flow rate (25kg/hr or 25/3600 kg/s)
- \blacktriangleright Diameter (Cu) = 25mm
- \blacktriangleright Diameter (SS) = 25mm

The calculations are done for all the specimens according to the above equations.

6.2 APPENDIX 02: (Values for SS and Cu specimens)

	Time		Ten	nperature	Values	(°C)	
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}
1	0	171	162	131	75	28.5	29.5
2	150	175	164	133	77	28.5	29.5
3	300	178	168	136	78	28.5	29.5
4	450	180	171	138	79	28.5	29.5
5	600	183	174	141	79	28.5	29.5
Av	Average 177.4 167.8		135.8	77.6	28.5	29.5	
Tł	nermal con	nductivity	of Cu =	307.915	W/m K	-	
Tl	nermal co	nductivity	of SS =	25.395	W/m K	2	

Table A.1: Experiment 1: Apparatus calibration

Table A.2: Experiment 2: Apparatus calibration

	Time		Temperature Values (°C)								
	(s)	T ₁	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}				
1	0	164	152	s & 132 mil	ms 92	30	31				
2	150	167	155	135	94	30	31				
3	300	168	157	137	94	30	31				
4	450	172	158	136	92	30	31				
5	600	173	160	137	93	30	31				
Average 168		168.8	156.4	135.4	93	30	31				
Thermal conductivity of $Cu = 238.386$ W/m K											
The	rmal con	ductivity	of SS =	34.858	W/m K						

	Time		Temperature Values (°C)									
	(s)	T_1	T_2	T ₃	T_4	$T_{w,in}$	T _{w,out}					
1	0	180	165	145	100	29.5	30.5					
2	150	182	167	148	102	29.5	30.5					
3	300	183	169	148	102	29.5	30.5					
4	450	184	170	149	103	29.5	30.5					
5	600	185	172	150	104	29.5	30.5					
Ave	Average 182.8 168.6		148	102.2	29.5	30.5						
The	rmal cor	nductivit	y of Cu =	208.167	W/m K							
The	rmal cor	nductivit	y of SS =	32.27	W/m K							

Table A.3: Experiment 3: Apparatus calibration

Table A.4: Experiment 4: Apparatus calibration

	Time		T	emperatu	re Values	(°C)			
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}		
1	0	182	168	148	104	28.5	30		
2	150	184	171	149	105	28.5	30		
3	300	186	173	151	106	28.5	30		
4	450	188	lec 174 The	152	ons 10 6	28.5	30		
5	600	189	175	154	107	28.5	30		
Average 185.8		185.8	172.2	150.8	105.6	28.5	30		
The	Thermal conductivity of $Cu = 326.027$ W/m K								
The	rmal con	ductivit	y of $SS =$	49.048	W/m K				

	Time		Temperature Values (°C)								
	(s)	T_1	T_2	T ₃	T_4	$T_{w,in}$	T _{w,out}				
1	0	181	167	144	98	28	29.5				
2	150	183	169	146	102	28	29.5				
3	300	185	171	148	103	28	29.5				
4	450	187	173	149	104	28	29.5				
5	600	188	175	151	105	28	29.5				
Ave	Average 184.8 171		171	147.6	102.4	28	29.5				
Ther	mal cond	ductivity	of Cu =	321.302	W/m K						
Ther	mal con	ductivity	of SS =	49.048	W/m K	- -					

Table A.5: Experiment 5: Apparatus calibration

6.3 APPENDIX 03: (Method of calculation-initial experiments)

The notations used are follows:

	q	: Heat flow rate							
	Κ	: Thermal conductivity (W/m K)							
	А	: Cross sectional area of the specimen $(0.000491m^2)$							
	Т	: Temperature (°C)							
\triangleright	L	: Length of the specimen (m)							
\triangleright	С	: Specific heat capacity of water (4180J/kg K)							
	ṁ	: Water flow rate (25kg/hr or 25/3600kg/s)							
\triangleright	Diame	ter (Coir) $= 25 \text{ mm}$							
\triangleright	Diame	ter (SS) $= 25$ mm							

The calculations are done for all the specimens according to the above equations.

6.4 APPENDIX 04: (Results for initial experiments)

	Time		Temperature Values (°C)									
	(s)	T_1	T_2	T ₃	T_4	$T_{w,in}$	T _{w,out}					
1	0	165	91	59	49	29	29.5					
2	150	174	94	61	50	29	29.5					
3	300	182	99	62	51	29	29.5					
4	450	188	104	63	52	29	29.5					
5	600	195	110	65	52	29	29.5					
Average		180.8	99.6	62	50.8	29	29.5					
Thermal conductivity of $SS = 65.981$ W/m K												
	Ther	mal condu	activity o	f coir =	6.967	W/m K						

Table A.6: Experiment 6: Thermal conductivity measuring of specimen 1

Table A.7: Experiment 7: Thermal conductivity measuring of specimen 2

	Time		Т	emperat	ure Value	es (°C)	
	(s)	T_1	T_2	T ₃	T_4	T _{w,in}	T _{w,out}
1	0	197	103	68	51	29	30
2	150	202	110	70	52	29	30
3	300	207	116	75	54	29	30
4	450	214	121	^{c.lk} 80	55	29	30
5	600	219	127	88	56	29	30
Average 20		207.8	115.4	76.2	53.6	29	30
	The	rmal cond	65.397	W/m K			
	Therr	nal condu	uctivity o	of coir =	10.287	W/m K	

	Time			Tempera	ture Valu	ies (°C)				
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}			
1	0	178	120	79	63	28	28.5			
2	150	185	127	84	67	28	28.5			
3	300	195	137	92	77	28	28.5			
4	450	198	141	95	75	28	28.5			
5	600	204	147	101	81	28	28.5			
6	750	210	153	106	88	28	28.5			
Average 195 137.5 92.83					75.16	28	28.5			
	Thermal conductivity of $SS = 41.829$ W/m K									
	Therm	nal cond	uctivity	of coir =	10.123	W/m K				

Table A.8: Experiment 8: Thermal conductivity measuring of specimen 3

Table A.9: Experiment 9: Thermal conductivity measuring of specimen 4

	Time		Т	emperatu	re Value	s (°C)				
	(s)	T ₁	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}			
1	0	198	120	91	88	25.5	26			
2	150	205	125	97	78	25.5	26			
3	300	212	139	Mor 104 Sri	81	25.5	26			
4	450	217	ww141mrt.	c lk 110	95	25.5	26			
5	600	223	141	115	91	25.5	26			
6	750	227	153	121	101	25.5	26			
Av	erage	213.6	136.5	106.3	89	25.5	26			
	Thermal conductivity of $SS = 42.634$ W/m K									
	The	ermal co	nductivity	of coir =	5.969	W/m K				

6.5 APPENDIX 05: (Thermal conductivity values for 1, 2 & 3 specimens)

	Time	Temperature Values (°C)							
	(s)	T_1	T_2	T ₃	T_4	$T_{w,in}$	T _{w,out}		
1	0	80	67	53	46	29	29.2		
2	150	82	69	55	48	29	29.2		
3	300	84	72	57	48	29	29.2		
4	450	85	74	57	48	29	29.2		
5	600	85	75	57	48	29	29.2		
Average		83.2	71.4	55.8	47.6	29	29.2		

Table A.10: Experiment 10: Thermal conductivity neasuring of specimen 1

Table A.11: Experiment 11: Thermal conductivity measuring of specimen 2

	Time	Temperature Values (°C)						
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}	
1	0	78	64	52	45	29	29.2	
2	150	79	65	52	46	29	29.2	
3	300	81	68	53	46	29	29.2	
4	450	82	70	55	47 A	29	29.2	
5	600	84	lectro72 Thes	is & 55ertation	ms 47	29	29.2	
Average		80.8	67.8	53.4	46.2	29	29.2	

Table A.12: Experiment 12: Thermal conductivity measuring of specimen 3

	Time		Т	'emperatu	re Values	(°C)	
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}
1	0	82	69	52	47	29	29.2
2	150	82	72	53	47	29	29.2
3	300	85	74	55	48	29	29.2
4	450	86	75	55	48	29	29.2
5	600	87	77	57	49	29	29.2
Ave	erage	84.4	73.4	54.4	47.8	29	29.2

6.6 APPENDIX 06: (Thermal conductivity values for 9, 11 & 12 specimens)

	Time			Temper	ature Val	ues (°C)	
	(s)	T_1	T_2	T ₃	T_4	$T_{w,in}$	T _{w,out}
1	0	90	78	59	50	29.3	29.5
2	150	92	79	61	51	29.3	29.5
3	300	93	80	62	51	29.3	29.5
4	450	95	81	62	52	29.3	29.5
5	600	97	82	63	52	29.3	29.5
Aver	rage	93.4	80	61.4	51.2	29.3	29.5

Table A.13: Experiment 13: Thermal conductivity measuring of specimen 9

Table A.14: Experiment 14: Thermal conductivity measuring of specimen 11

	Time		Т	emperatu	re Values	(°C)	
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}
1	0	79	67	52	47	29.3	29.5
2	150	81	68	54	48	29.3	29.5
3	300	84	72	57	50	29.3	29.5
4	450	86	74	57	51	29.3	29.5
5	600	88	110176 hes	58	ns 52	29.3	29.5
Ave	rage	83.6	71.4	55.6	49.6	29.3	29.5

Table A.15: Experiment 15: Thermal conductivity measuring of specimen 12

	Time		Te	mperatu	re Value	s (°C)	
	(s)	T_1	T ₂	T ₃	T_4	$T_{w,in}$	T _{w,out}
1	0	81	67	55	48	29.3	29.5
2	150	83	69	57	49	29.3	29.5
3	300	84	72	57	50	29.3	29.5
4	450	86	74	58	51	29.3	29.5
5	600	87	75	60	51	29.3	29.5
Av	verage	84.2	71.4	57.4	49.8	29.3	29.5

6.7 APPENDIX 07: (Thermal conductivity values for glass wool)

	Time			Tempera	ture Valu	ies (°C)	
	(s)	T_1	T_2	T ₃	T_4	T _{w,in}	T _{w,out}
1	0	75	65	58	50	28.8	29
2	150	76	66	59	50	28.8	29
3	300	78	68	60	51	28.8	29
4	450	79	68	62	52	28.8	29
5	600	80	69	62	52	28.8	29
Ave	erage	77.6	67.2	60.2	51	28.8	29
The	Thermal conductivity of Glass Wool =					W/m K	
	The	rmal co	nductivit	y of $SS =$	34.107	W/m K	

Table A.16: Experiment 16: Thermal conductivity measuring for glass wool

6.8 APPENDIX 08: (Critical thickness calculation for coir fibre insulation)

The following calculations are used to calculate the thermal conductivity at each thickness of coir fibre insulation in order to find out the critical thickness of the coir fibre insulation.

First allow ice to dissolve in water. Then temperature of water comes to a minimum and ice is totally dissolved. After that, temperature of water will increased by acquiring heat from environment. In this case heat is transfer through coir and beaker materials. I measured time period from minimum temperature of water to maxim recorded. I have plotted Time Vs Temperature curves of water in beaker for each and every sample. By these plots we can find time period of heat transfer and increase of temperature of water.

Heat gain from the water after ice is melt

= Heat flow through the insulation and the Pyrex wall of the beaker.

Where;

- *k* Thermal conductivity of coir insulation
- *A* Area of the cross sectional area of heat transfer of the beaker
- *l* Thickness of the heat transfer medium
- ΔT Temperature difference across the insulation (in °C)
- *m* Mass of water [ρ (Density) × V (Volume)]
- *C* Specific heat capacity of water
- $\Delta \theta$ Temperature rise of water (in °C)
- *t* Time period

Table A.17: values of the variable

Variable	Calculation
Q dot	Need not to be calculated
k	Value to be calculated
A	$\left[\frac{\pi}{4} \times 0.085^2 \times 2\right] + \left[\pi \times 0.085 \times 0.07\right] = 0.03005\mathrm{m}^2$
	0.085m-Diameter of the Beaker
	0.07m-Height of the Beaker
l	Varies as 1+0.4cm, 2+0.4cm, 3+0.4cm, 4+0.4cm and
	5+0.4cm (+0.4cm is thickness of Beaker material)
ΔT	85° F - Δt_{min} (85° F is Atmospheric Temperature)
m	$400 \times 10^{-6} \times 1000 = 0.4$ kg
С	$4.1813 \times 10^3 = 4181.3 \text{J}^{\circ}\text{C}^{-1}\text{kg}^{-1}$
$\Delta heta$	$T_{water, final} - T_{water, min} = T_1 - T_2$

Then the equation simplifies to;

$$\frac{k \times 0.03005 \times (85 - T)}{l} = 0.4 \times 4181.3 \times (\frac{\Delta\theta}{t})$$
$$\frac{k}{l} = \frac{0.4 \times 4181.3 \times (\frac{\Delta\theta}{t})}{0.03005 \times [85 - (\frac{T1 + T2}{2})]}$$

For the first specimen;

$$\frac{k}{0.014} = \frac{0.4 \times 4181.3 \times (48 - 43.5)/(38 \times 60)}{0.03005 \times [85 - \left(\frac{48 + 43.5}{2}\right)]}$$

k = 0.0391 W/m K

For the second specimen;

$$\frac{k}{0.024} = \frac{0.4 \times 4181.3 \times (67.5 - 62.5)/(38 \times 60)}{0.03005 \times [85 - (\frac{67.5 + 62.5}{2})]}$$

$$k = 0.1464 \text{ W/m K}$$

For the third specimen;

$$\frac{k}{0.034} = \frac{0.4 \times 4181.3 \times (63 - 56.5)/(36 \times 60)}{0.03005 \times [85 - \left(\frac{63 + 56.5}{2}\right)]}$$

 $k = 0.2255 \mathrm{ W/m K}$

For the fourth specimen;

$$\frac{k}{0.044} = \frac{0.4 \times 4181.3 \times (51 - 45)/(44 \times 60)}{0.03005 \times [85 - \left(\frac{51 + 45}{2}\right)]}$$

k = 0.1504 W/m K

For the fifth specimen;

$$\frac{k}{0.054} = \frac{0.4 \times 4181.3 \times (49 - 43.5)/(51 \times 60)}{0.03005 \times [85 - \left(\frac{49 + 43.5}{2}\right)]}$$

k = 0.1394 W/m K

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Heat transfer through the wall of the beaker and the coir insulation:

Figure A.3: Heat transfer direction

Thermal resistivity
$$= \frac{l}{k \times A}$$

 $\frac{l}{k \times A} = \frac{l1}{k1 \times A} + \frac{l2}{k2 \times A}$

$$\frac{l}{k} = \frac{l1}{k1} + \frac{l2}{k2}$$

Thermal conductivity of Pyrex glass (k2) = 1.005 W/m K

$$\frac{l}{k} = \frac{l1}{k1} + \frac{0.004}{1.005}$$

For the first specimen:

$$\frac{0.014}{0.0391} = \frac{0.01}{k1} + \frac{0.004}{1.005}$$

k1 = 0.028 W/m K

For the second specimen:

$$\frac{0.024}{0.1464} = \frac{0.02}{k1} + \frac{0.004}{1.005}$$
$$k1 = 0.125 \text{ W/m K}$$

For the third specimen:

$$\oint \frac{0.034}{0.2255} = \frac{0.03}{k1} + \frac{0.004}{1.005}$$

k1 = 0.204 W/m K

For the fourth specimen:

$$\frac{0.044}{0.1504} = \frac{0.04}{k1} + \frac{0.004}{1.005}$$

$$k1 = 0.138 \text{ W/m K}$$

For the fifth specimen:

$$\frac{0.054}{0.1394} = \frac{0.05}{k1} + \frac{0.004}{1.005}$$

$$k1 = 0.130 \text{ W/m K}$$

Heat transfer values for each insulation mat:

$$Q \ dot = \frac{k * A * \Delta t}{l}$$

No. of the	Thickness of the	Thermal	Heat transfer rate through
specimen	insulation	Conductivity	the coir insulation
01	1cm	0.0283	3.23W
02	2cm	0.125	7.14W
03	3cm	0.204	7.37W
04	4cm	0.138	4.58W
05	5cm	0.130	3.99W

Table A.18: Table of thermal conductivity values obtained

6.9 APPENDIX 09: (Analysis of performance of insulation mat with coir pith)

The following calculations are used to calculate the thermal conductivity at each thickness of coir fibre insulation in order to find out the optimum coir pith amount.

First, allow ice to dissolve in water. Then temperature of water comes to a minimum and ice is totally dissolved. After that, temperature of water will increased by acquiring heat from environment. In this case heat is transfer through coir and beaker materials. I measured time period from minimum temperature of water to maxim recorded. I have plotted Time Vs Temperature curves of water in beaker for each and every sample. By these plots we can find time period of heat transfer and increase of temperature of water.

Heat gain from the water after ice is melt

= Heat flow through the insulation and the Pyrex wall of the beaker.

 $Q \, dot = \frac{k \times A \times \Delta t}{t} = \frac{m \times C \times \Delta \theta}{t}$ Electronic Theses & Dissertations www.lib.mrt.ac.lk

Where;

Q dot	- Rate of heat transfer
k	- Thermal conductivity of coir insulation
A	- Area of the cross sectional area of heat transfer of the beaker
l	- Thickness of the heat transfer medium
ΔT	- Temperature difference across the insulation (in ^o F)
т	- Mass of water [ρ (Density) × V (Volume)]
С	- Specific heat capacity of water
$\Delta heta$	- Temperature rise of water (in ^o F)
t	- Time period

Variable	Calculation
Q dot	Need not to be calculated
k	Value to be calculated
A	$\left[\frac{\pi}{4} \times 0.085^2 \times 2\right] + \left[\pi \times 0.085 \times 0.07\right] = 0.03005 \text{ m}^2$
	0.085m-Diameter of the Beaker
	0.07m-Height of the Beaker
l	1cm
Δt	85° F - Δt_{min}
т	$400 \times 10^{-6} \times 1000 = 0.4$ kg
С	$4.1813 \times 10^3 = 4181.3 \text{ J}^{\circ}\text{C}^{-1}\text{kg}^{-1}$
$\Delta \theta$	$T_{water, final} - T_{water, min} = T_1 - T_2$

Table A.19: Values of the variables

Then the equation simplifies to;

$$\frac{k \times 0.0206 \times (85 - t)}{0.014 \text{ is of Morningan Schlanks}} = 0.4 \times 4181.3 \times (\frac{\Delta\theta}{t})$$

$$k = \frac{0.014 \times 0.4 \times 4181.3 \times (\frac{\Delta\theta}{t})}{0.03005 \times [85 - (\frac{T1 + T2}{2})]}$$

For the first specimen;

$$k = \frac{0.014 \times 0.4 \times 4181.3 \times (52 - 42.5)/(49 \times 60)}{0.03005 \times [85 - (\frac{52 + 42.5}{2})]}$$
$$k = 0.0667 \text{ W/m K}$$

For the second specimen;

$$k = \frac{0.014 \times 0.4 \times 4181.3 \times (57 - 46)/(51 \times 60)}{0.03005 \times [85 - (\frac{57 + 46}{2})]}$$
$$k = 0.0836 \text{ W/m K}$$

For the third specimen;

$$k = \frac{0.014 \times 0.4 \times 4181.3 \times (50.5 - 43)/(39 \times 60)}{0.03005 \times [85 - (\frac{50.5 + 43}{2})]}$$

 $k = 0.0653 \mathrm{W/m K}$

For the fourth specimen;

$$k = \frac{0.014 \times 0.4 \times 4181.3 \times (50 - 44.5)/(41 \times 60)}{0.03005 \times [85 - (\frac{50 + 44.5}{2})]}$$
$$k = 0.0461 \text{ W/m K}$$
$$Thermal resistivity = \frac{l}{k \times A}$$
$$\frac{l}{k \times A} = \frac{l1}{k1 \times A} + \frac{l2}{k2 \times A}$$
$$\frac{l}{k} = \frac{l1}{k1} + \frac{l2}{k2}$$
Thermal conductivity of Pyrex glass (k2) = 1.005W/m K

 $\frac{l}{k} = \frac{l1}{k1} + \frac{0.004}{1.005}$

For the first specimen:

$$\frac{0.014}{0.0667} = \frac{0.01}{k1} + \frac{0.004}{1.005}$$

k1 = 0.0485 W/m K

For the second specimen:

$$\frac{0.014}{0.0836} = \frac{0.01}{k1} + \frac{0.004}{1.005}$$
$$k1 = 0.0611 \text{ W/m K}$$

For the third specimen:

$$\frac{0.014}{0.0653} = \frac{0.01}{k1} + \frac{0.004}{1.005}$$
$$k1 = 0.0475 \text{ W/m K}$$

For the fourth specimen:

$$\frac{0.014}{0.0461} = \frac{0.01}{k1} + \frac{0.004}{1.005}$$
$$k1 = 0.0334 \text{ W/m K}$$

The thermal conductivity values are tabulated in the following table.

Table A.20: Table of therma	l conductivity values obtained
-----------------------------	--------------------------------

No. of the	Coir pith ingredient	Thermal conductivity of the
specimen		coir insulation
01	5g	0.0485 W/m K
02	10g	0.0611 W/m K
03	15g	0.0475 W/m K
04	20g	0.0334 W/m K

