REFERENCES

[1] Construction of 33 kV Double Circuit Tower Line from Thulhiriya Grid Substation to Narammala Gantry, Bill of Quantities.
[2] G. Mitra and K. Wolfenden, "A Computer Technique for Optimizing the Sites and Heights of Transmission Line Towers-a Dynamic Programming Approach", The Computer Journal (1968), The British Computer Society February 1968 research-article Articles.
[3] Wikipedia the free encyclopedia. (2013, October 10). Bellman equation. Available at http://en.wikipedia.org/wiki/Bellman_equation.
[4] F. R. Viera and J. Toledo H., "Optimal Location of Power Transmission Lines Towers Using Reformulated Dynamic Programming", IEEE 2006.
[5] PLS-CADD Version 11.0 software manual, Power Line Systems, Inc. 2011.
[6] Statistical Digest 2011, Ceylon Electricity Board, Sri Lanka.
[7] Contract for construction of 33 kV double circuit tower line, Tender Document, Ceylon Electricity Board, Revision-November 2005
[8] F. Kiessling, P. Nefzger and U. Kaintzyk, "Sag and Tension Calculations" in Overhead Power eisers Blamingat Pesionsfonstruction, Springer Berlin Heidelierg New York, 2003
[9] Consiructions standabd infort. adeldium Voltage Power Distribution Lines, CEB:DCS-4:1997, September 1997
[10] Beverly Sampford, Programming in Visual Basic 6.0
[11] Microsoft Developer Network, Introduction to the Visual Basic Programming Language, Available at http://msdn.microsoft.com/en-us/library
[12] Sonia Lee Cooke, MS Word and MS Excel: Macro Recorder and user defined functions ($1^{\text {st }}$ October, 2012), University of Birmingham
[13] Robert L. McDonald. An Introduction to VBA in Excel (3 ${ }^{\text {rd }}$ November, 2008), Available at http://www.few.vu.nl
[14] Wikipedia the Free Encyclopedia. Flowchart ($9^{\text {th }}$ November, 2012)
[15] IEEE Citation Reference Format, Available at http://www.ieee.org / documents/ieeecitationref.pdf

Appendix 1

University of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations
www.lib.mrt.ac.lk

Appendix 2

University of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations
www.lib.mrt.ac.lk

Appendix 3

University of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations
www.lib.mrt.ac.lk

Appendix 4

Cost of Construction and Design Parameters of Tower Type Structures

MV Line Cost Optimization Macro - User Guide

1. Data arrangement

1.1. Profile Survey Data Arrangement

Survey data co-ordinate file which is provided by the surveyor after detailed survey of the line route can be used for the MV Line Cost Optimization Macro.

4	A	B	Name Box	D	E	F	G	H
1				Profile	Surveying	g Data		
2	Proposed 33 kV Express line route From the Gantry at Jayanthipura to the GSS at Polonnaruwa							
3	From A-7 To TT-GSS POLONNARUWA						14	
4	urvey point I	Northing	Easting	Elevation	Height above	Feature	Remarks	
5		Cordinate(Y)	Cordinate(X)	(Z)m	ground (H)/m	Description		
6	9002	610276.315	525127.24	48.58		A-7		
7	578	610275.684	525132.2	48.281		BI S		
8	579	610273.75	525131.56	48.214		CL		
9	580	610271.21	525135.83	48.279		CL		
10	581	610257.618	525158.71	48.213		SH		
11	582	610255.514	525162.25	49.123		CL		
12	583	610251.087	525169.7	48.91		CL		
13	584	610249.973	525171.58	48.149		SH		
14	585	610264.106	525175.47	49.225		RD		
15	586	610261.025	525181.25	49.28		RD		
16	5873	610243.983	525147.74	49.199		RD	-ni T nn1ra	
17	g88	610200.121	$525235: 49$	Y 47.918	101	CLMa,	11.	
18	$5(589)$	610142.773	$1.525352 .02$	$C^{47} \cdot 416$	yes 8	C) 1 SS	ridalions	
19	590	. 610233.05	525285,24	47.101		EP HT		
20	(35)	-610208.162	W5252411.06.	11148.2	$\text { C. } 8.5$	CL-33KV	33KV LINE	
21	592	610185.444	525224.98	48.637		WMF		

Figure 1: A sample survey data file provided by the surveyor

Before using, the above three dimensional survey data provided by the surveyor should be converted to two dimensional profile survey data by mapping the survey points to centerline in section wise (Z co-ordinate; the ground height co-ordinate should be remained as same), as visualized in Figure 2.

Figure 2: Data mapping to centerline

Equations shown in following excel sheet (Figure 3) can be used for survey data arrangement. Horizontal distances for each survey point from the section starting point can be read from column K of excel work sheet shown in Figure 3.

Figure 3: Section wise data mapping to centerline

Prepare the data table shown in Table 1, using the arranged survey data. Fill "Required ground clearance" and "Required obstacle clearance" values appropriately according to the standards. The data arrangement shown in Table 1 can be directly paste to excel macro work sheet as the survey data input.

Table 1: Arranged survey data format for input to the Macro

Type of terrain - tot		Soil A - 1	Soil B - 2		Soil G-4	
Required Ground Clearance - rgc		Normal 6.1	Roads 6.4		Railway 7.3	
Required Obstacle Clearance - roc		LT line-3 Lt/Ht Pole - 4			132 line - 3.7	220 Line - 4.7
Index	Horizontal Dist	Ground HT	Obstacle HT from ground level	Description	Required Ground Clearance	Required Obstacle Clearance
i	$\mathrm{d}(\mathrm{i}) \mathrm{m}$	$\mathrm{g}(\mathrm{i}) \mathrm{m}$	o (i) m		$\mathrm{rgc}(\mathrm{i}) \mathrm{m}$	roc(i) m
0	0.000	62.869		A1	6.1	
1	561.381	62.703		CL	6.1	
2	550.718	62.928		B	6.4	
3	546.898	63.201		CL	6.1	
4	549.917	62.459		SH	6.1	
5	592.859	63.19		B	6.4	
6	585.799	63.365		CP	6.1	
7	585.506	63.629		CL	6.1	
8	579.135	66.692		HR	6.1	
9	68.958	63.417	6.7	EP line	6.1	3
10	67.274	63.243		CL	6.1	
11	65.506	62.869	3.7	TP line	6.1	3
12	72.550	62.728		CL	6.1	
13	4. 68,222iv 63s7ty of Moratuwa, Bri Lankrd.					
	(\%) Elect	tronic ' alingeme	heses \& ac.lk	isserta		

Two parameters of the conductor is required as input to the Macro program.

1. Conductor unit weight (w) in Nm^{-1} - This parameter can be obtained from conductor data sheet.
2. Conductor horizontal tension $\left(\mathrm{T}_{\mathrm{H}}\right) \mathrm{N}$ of the catenary curve at maximum temperature with zero wind - This parameter should be manually calculated applying conductor state change equation shown below, while satisfying defined conductor safety factors for maximum tension and every day tension conditions.

Conductor state change equation;

$$
f_{2}^{2}\left\{f_{2}-\left(f_{1}-\frac{a^{2} \delta^{2} Q_{1}^{2} E}{24 f_{1}^{2}}-\alpha t E\right)\right\}=\frac{a^{2} \delta^{2} Q_{2}^{2} E}{24}
$$

Where,
$\mathrm{A}=$ Cross section area of the conductor
$f_{1}=H_{1} / \mathrm{A} ; \quad \mathrm{H}_{1}=$ Horizontal tension at state 1 of the conductor
$f_{2}=\mathrm{H}_{2} / \mathrm{A} ; \quad \mathrm{H}_{2}=$ Horizontal tension at state 2 of the conductor
$a=$ Span length AB
$\delta=\mathrm{w} / \mathrm{A} ; \quad \mathrm{w}=$ unit weight of the conductor
$\mathrm{Q}_{1}=$ Wind factor at state 1
$\mathrm{Q}_{2}=$ Wind factor at state 2
$\alpha=$ Coefficient of linear expansion of the conductor
$\mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1} ; \quad \mathrm{t}_{1}=$ Temperature at state $1, \mathrm{t}_{2}=$ Temperature at state 2
$\mathrm{E}=$ Modulus of elasticity of the conductor

1.3. Structure data arrangement

Following parameters of the structure family used for the line are required as the input to the Macro program.

1. Height in meters to bottom conductor attachment point of each structure University of Moratuwa, Sri Lanka.
heightevel for three defined height deveds.
2. Towerind erecting cast for each height level of suspension type structure.
3. Tower and erecting cost for each height level of tension type structures.
4. Average foundation cost for a structure.
5. Maximum allowable wind span and weight span for the structure family.

2. Running the program

Step $1 \rightarrow$ Open Macro

Double click on "MV Cost Optimization-Macro.xlsm". In accordance with instructions given in information bar if required enable Macro content for the sheet.

Step $2 \rightarrow$ Profile data input

Profile data arranged as explained in section 1.1 of the User Guide, should be copied and pasted to the given area of MV Cost Optimization-Macro.xlsm.

Step $3 \boldsymbol{\rightarrow}$ Open UserForm

Use following steps to open Macro UserForm.

$$
\text { View } \rightarrow \text { Macros } \rightarrow \text { View Macros } \rightarrow \text { Macro } 1 \rightarrow \text { Run }
$$

UserForm will be appeared as shown in Figure 4.

Step $4 \rightarrow$ Conductor parameters input

Enter conductor unit weight and horizontal tension in the two text boxes shown in Area 1 of Figure 5.

Figure 4: UserForm

Figure 5: Conductor data input

Step $5 \boldsymbol{\rightarrow}$ Tower heights input

Enter tower bottom conductor attachment point height levels in the text boxes shown in Area 2 of Figure 5.

Step $\mathbf{6} \boldsymbol{\rightarrow}$ Tower costs and wind span and weight span input

Enter calculated suspension tower costs (tower + erection), tension tower costs (tower + erection + foundation cost) for , average foundation cost for suspension towers, start and end tower angle type for the line section and weight and wind span limits in the area shown in Figure 6.

Step $7 \rightarrow$ Define the design range

Enter starting tower point (j) survey data index and end tower point survey index in given text boxes according to arranged survey data sheet (integer appeared in excel sheet index number column for section starting point)

Figure 7: Defining starting and end point of the section

Step $8 \rightarrow$ Run the computation

First click "Multi span computation" command. When computation results appeared click on "Cost Computation" command button. Design solutions and cost computations will be shown in the UseFform as shown in Figure 8. The lowest cost solution will be highlighted in light blue color.

Figure 8: Results display

Step $9 \rightarrow$ Reading optimum design

After reading summary of the lowest cost design solution from the UserForm it can be closed. Detailed design can be read from the excel sheet by three columns under the selectedeenfiguration number of Moratuwa, Sni Lanka.

Figure 9: Results in excel work sheet
Tower positions with the heights are appeared as "TP1", "TP2" or "TP3" at each tower location survey point index row. Tower positions can be read along those rows by horizontal distance of each row. This design result can be visually displayed on Auto-CADD or PLS-CADD profile drawings.

Appendix 6

Cost of Construction and Design Parameters of Mast Type Structures

Double Circuit Support Type	Support Cost (LKR)	Erection Cost (LKR)	Foundation Cost for Good soil(LKR)	Maximum allowable wind span (m)	Maximum allowable weight span (m)
MDL+0	130,000	55,000	180,000	240	400
MDL+3	195,000	70,000			
MDL+6	242,000	80,000			
MDM +0	315,000	90,000	400,000	240	600
MDM+3	380,000	110,000			
MDM+6	410,000	130,000			
$\mathrm{MDH}+0$	485,000	105,000	$\begin{aligned} & \text { 600,000 } \\ & \text { Ioratuwa, } \\ & \text { es \& Dis } \end{aligned}$	Sri Lanka.	600
$\begin{aligned} & \mathrm{MDH}+3 \\ & \mathrm{MDH}+6 \end{aligned}$	$\begin{aligned} & \text { 515,000 } \\ & \text { inive } \\ & \text { electit } \end{aligned}$	$\begin{gathered} 140,000 \\ \text { issity of } \\ 155,000 \\ \text { onic } \end{gathered}$			
		b.mut.a			
MDT+0	410,000	130,000	800,000	240	600
MDT+3	630,000	160,000			
MDT+6	675,000	190,000			

