REFERENCES

- [1] Construction of 33kV Double Circuit Tower Line from Thulhiriya Grid Substation to Narammala Gantry, Bill of Quantities.
- [2] G. Mitra and K. Wolfenden, "A Computer Technique for Optimizing the Sites and Heights of Transmission Line Towers—a Dynamic Programming Approach", The Computer Journal (1968), The British Computer Society February 1968 research-article Articles.
- [3] Wikipedia the free encyclopedia. (2013, October 10). Bellman equation. Available at http://en.wikipedia.org/wiki/Bellman_equation.
- [4] F. R. Viera and J. Toledo H., "Optimal Location of Power Transmission Lines Towers Using Reformulated Dynamic Programming", IEEE 2006.
- [5] PLS-CADD Version 11.0 software manual, Power Line Systems, Inc. 2011.
- [6] *Statistical Digest 2011*, Ceylon Electricity Board, Sri Lanka.
- [7] Contract for construction of 33 kV double circuit tower line, Tender Document, Ceylon Electricity Board, Revision-November 2005
- [8] F. Kiessling, P. Nefzger and U. Kaintzyk, "Sag and Tension Calculations" in Overhead Power, Lines, Blanning Design Sconstruction, Springer Berlin Heidenberg New York, 2003 Electronic Theses & Dissertations
- [9] Construction Standard nfor Medium Voltage Power Distribution Lines, CEB:DCS-4:1997, September 1997
- [10] Beverly Sampford, *Programming in Visual Basic 6.0*
- [11] Microsoft Developer Network, *Introduction to the Visual Basic Programming Language*, Available at http://msdn.microsoft.com/en-us/library
- [12] Sonia Lee Cooke, MS Word and MS Excel: Macro Recorder and user defined functions (1st October, 2012), University of Birmingham
- [13] Robert L. McDonald. An Introduction to VBA in Excel (3rd November, 2008), Available at http://www.few.vu.nl
- [14] Wikipedia the Free Encyclopedia. Flowchart (9th November, 2012)
- [15] *IEEE Citation Reference Format,* Available at http://www.ieee.org / documents/ieeecitationref.pdf

Appendix 1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Appendix 2

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Appendix 3

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Double Circuit Support Type	Support Cost (LKR)	Erection Cost (LKR)	Foundation Cost (LKR)	Maximum allowable wind span (m)	Maximum allowable weight span (m)
TDL+0	437,872	73,120			
TDL+3	543,949	91,515	310,000	360	600
TDL+6	615,769	103,955			
TDM+0	449,228	11,0890			
TDM+3	796,516	136,435	723,294	360	1200
TDM+6	922,828	158,260			
TDH+0	755,191	129,530			
TDH+3	950,190	163,350	683,852	360	1200
TDH+6	1,066,411	183,500	loratuwa,	Sri Lanka.	
2.4	Electi	Tile search of		sertations	
TDT+0	675,000	164,950	5.IK		
TDT+3	1,121,760	208,465	637,423	360	1200
TDT+6	1,269,960	235,600			

Cost of Construction and Design Parameters of Tower Type Structures

MV Line Cost Optimization Macro – User Guide

1. Data arrangement

1.1. Profile Survey Data Arrangement

Survey data co-ordinate file which is provided by the surveyor after detailed survey of the line route can be used for the MV Line Cost Optimization Macro.

	А	В	Name Box	D	E	F	G	н	Γ		
1				Profile	Surveyin	g Data			Γ		
2	2 Proposed 33kV Express line route From the Gantry at Jayanthipura to the GSS at Polonnaruwa										
3	From A-7 To TT-GSS POLONNARUWA 14										
4		Northing	Easting	Elevation	Height above	Feature					
5	urvey point ID	Cordinate(Y)	Cordinate(X)	(Z)m	ground(H)/m	Description	Remarks				
6	9002	610276.315	525127.24	48.58		A-7					
7	578	610275.684	525132.2	48.281		BLS					
8	579	610273.75	525131.56	48.214		CL					
9	580	610271.21	525135.83	48.279		CL					
10	581	610257.618	525158.71	48.213		SH					
11	582	610255.514	525162.25	49.123		CL					
12	583	610251.087	525169.7	48.91		CL					
13	584	610249.973	525171.58	48.149		SH					
14	585	610264.106	525175.47	49.225		RD					
15	586	610261.025	525181.25	49.28		RD					
16	587	610243.983	525147.74	49.199	Tarat	RD	Sri Lonko				
17	588	610200.121	525255.49	y 47.918	viorat	elva,	pii Lalika.				
18	589	610142.773	-525353.02	C 47.444	ses &	Diss	ertations				
19	590	610233.05	525285,24	47.101	11	EP HT					
20	691	010208.162	1525241.96	mrasa	C. 18.5	CL-33KV	33KV LINE				
21	592	610185.444	525224.98	48.637		WMF					

Figure 1: A sample survey data file provided by the surveyor

Before using, the above three dimensional survey data provided by the surveyor should be converted to two dimensional profile survey data by mapping the survey points to centerline in section wise (Z co-ordinate; the ground height co-ordinate should be remained as same), as visualized in Figure 2.

Figure 2: Data mapping to centerline

Equations shown in following excel sheet (Figure 3) can be used for survey data arrangement. Horizontal distances for each survey point from the section starting point can be read from column K of excel work sheet shown in Figure 3.

А	В	С	D	E	F	G	Н		J	К
x	у	z	h	m Ur (Ya2-Ya1)/(Xa2-Xa1)	Fvers Ya1-mXa1	ImXn-Vn+c	sart(112)+1)	tra. Sri Lanka	Dn= Sqrt((Xn-Xa1)^2+(Yn-Ya1)^2)	Horizontal Distance Ln=Sqrt(Dn^2+dn^2)
609346.80	610474.92	62.869	-	-0.523	39127.631	110 6.666	eses dái28	Dissertation.soo	0.000	0.000
609353.89	610053.17	62.703		No.	www.lil	418,039	o 11- 1.128	370.445	421.805	561.381
609379.92	610055.97	62.928		WV	v vv . III	401.636	1.128	355.909	420.261	550.718
609382.55	610058.36	63.201				397.861	1.128	352.564	418.086	546.898
609381.70	610056.25	62.459				400.421	1.128	354.832	420.123	549.917
609386.79	610023.14	63.19				430.867	1.128	381.811	453.544	592.859
609395.65	610026.97	63.365				422.408	1.128	374.316	450.608	585.799
609395.36	610027.23	63.629				422.295	1.128	374.216	450.311	585.506
609388.89	610033.08	66.692				419.829	1.128	372.030	443.837	579.135
609405.99	610439.73	63.417	6.7			4.235	1.128	3.753	68.856	68.958
609403.53	610439.16	63.243				6.090	1.128	5.397	67.057	67.274
609400.00	610437.63	62.869	3.7			9.469	1.128	8.391	64.966	65.506
609408.97	610437.75	62.728				4.664	1.128	4.133	72.432	72.550
609405.00	610439.59	63.717				4.895	1.128	4.338	68.084	68.222

Figure 3: Section wise data mapping to centerline

Prepare the data table shown in Table 1, using the arranged survey data. Fill "Required ground clearance" and "Required obstacle clearance" values appropriately according to the standards. The data arrangement shown in Table 1 can be directly paste to excel macro work sheet as the survey data input.

Type of terra	in - tot	Soil A - 1	Soil B - 2		Soil G - 4	
Required Ground Clearance - rgc		Normal 6.1	Roads 6.4		Railway 7.3	
Required Obs	stacle Clearance - roc	LT line - 3	Lt/Ht Pole - 4		132 line - 3.7	220 Line - 4.7
Index	Horizontal Dist	Ground HT	Obstacle HT from ground level	Description	Required Ground Clearance	Required Obstacle Clearance
i	d(i) m	g(i) m	o(i) m		rgc(i) m	roc(i) m
0	0.000	62.869		A1	6.1	
1	561.381	62.703		CL	6.1	
2	550.718	62.928		В	6.4	
3	546.898	63.201		CL	6.1	
4	549.917	62.459		SH	6.1	
5	592.859	63.19		В	6.4	
6	585.799	63.365		СР	6.1	
7	585.506	63.629		CL	6.1	
8	579.135	66.692		HR	6.1	
9	68.958	63.417	6.7	EP line	6.1	3
10	67.274	63.243		CL	6.1	
11	65.506	62.869	3.7	TP line	6.1	3
12	72.550	62.728		CL	6.1	
13	68.222	ve933747 c	f Moratu	va, <mark>B</mark> ri L	ankæ.4	
	Elec	tronic T	Theses & I	Dissertati	ons	

Table 1: Arranged survey data format for input to the Macro

1.2. Conductor Data Arrangement

Two parameters of the conductor is required as input to the Macro program.

- 1. Conductor unit weight (w) in Nm⁻¹- This parameter can be obtained from conductor data sheet.
- Conductor horizontal tension (T_H) N of the catenary curve at maximum temperature with zero wind – This parameter should be manually calculated applying conductor state change equation shown below, while satisfying defined conductor safety factors for maximum tension and every day tension conditions.

Conductor state change equation;

$$f_2^2\left\{f_2 - \left(f_1 - \frac{a^2\delta^2 Q_1^2 E}{24f_1^2} - \alpha tE\right)\right\} = \frac{a^2\delta^2 Q_2^2 E}{24}$$

Where,

A = Cross section area of the conductor

 $f_1 = H_1/A$; H_1 = Horizontal tension at state 1 of the conductor

 $f_2 = H_2/A$; $H_2 =$ Horizontal tension at state 2 of the conductor

a =Span length AB

 $\delta = w/A$; w = unit weight of the conductor

 Q_1 = Wind factor at state 1

 Q_2 = Wind factor at state 2

 α = Coefficient of linear expansion of the conductor

 t_1 = Temperature at state 1, t_2 = Temperature at state 2 $t = t_2 - t_1;$

E = Modulus of elasticity of the conductor

1.3. Structure data arrangement

Following parameters of the structure family used for the line are required as the input to the Macro program.

- 1. Height in meters to bottom conductor attachment point of each structure heightevel for three defined height levels. Electronic Theses & Dissertations
- 2. Tower and erecting cost for each height level of suspension type structure.
- 3. Tower and erecting cost for each height level of tension type structures.
- 4. Average foundation cost for a structure.
- 5. Maximum allowable wind span and weight span for the structure family.

2. Running the program

Step 1 \rightarrow Open Macro

Double click on "MV Cost Optimization-Macro.xlsm". In accordance with instructions given in information bar if required enable Macro content for the sheet.

Step 2 \rightarrow Profile data input

Profile data arranged as explained in section 1.1 of the User Guide, should be copied and pasted to the given area of MV Cost Optimization-Macro.xlsm.

Step 3 → Open UserForm

Use following steps to open Macro UserForm.

```
View \rightarrow Macros \rightarrow View Macros \rightarrow Macro 1 \rightarrow Run
```

UserForm will be appeared as shown in Figure 4.

Step 4 \rightarrow Conductor parameters input

Enter conductor unit weight and horizontal tension in the two text boxes shown in Area 1 of Figure 5.

UserForm1							X
MULTI SPA	AN COMPUTATION A	ND COST CALCU	LATION			Section Startin	g & End Towers
Weight per unit length of conductor w 8.355	N/m Tower P1 Height of lowest cr	ross arm 14 m T	wer P1 Cost per tower	r with erection	0.511 m Rs	Start Tower Type	M=1, H=2, T=3
Horizontal tension of conductor TH 12376	N Tower P2 Height of lowest cr	ross arm 17 m T	wer P2 Cost per tower	r with erection	0.635 m Rs	End Tower Type	Medium P1 Cost 1.483
Start Point - First Pole j = 0	Tower P3 Height of lowest cr	ross arm 20 m T	wer P3 Cost per tower	r with erection	0.72 m Rs	Tower Cost with	Medium P2 Cost 1 656
Maximum No. of Spans 25	From Tower Config	guration 1 F	undation+Accessories of	cost per T	0.315 m Rs	erection & foundation	Medium P3 Cost 1.804
Limitting end point of line 256	To Tower Config	guration 10 C	ther Line Cost per kilo m	neter	0 m Rs		
	Ē	w	ind span & Weight s	span		Heavy P1 Cost 1.568	Terminal P1 Cost 1.477
Mutli Span Computation Cost Compu	Itation Erase all Clearances	End	aximum Allowable Wind	i Span	360 ^m	Heavy P2 Cost 1.797	Terminal P2 Cost 1.978
		M	aximum Allowable Weig	iht Span	600 ^m	Heavy P3 Cost 1.934	Terminal P3 Cost 2.142
Tower Line Configuration	1 2	3 4	5	6	7	8	9 10
Number of spans							
Total of Span Lengths in m							
Number of TP1 Towers							
Number of TP2 Towers							
Number of TP3 Towers							
Start of last Span	Univercit	ty of M	rature	Sri	Lonk	- _ _	
End of last Span	Cut voi su		наште	$\mathbf{a},$ or \mathbf{a}	Laur		
Tower Cost with erection (The Page 1)	Electroni	C These	c & Di	deerto	tions	2	
Foundation Cost in mRs		to Those	SCLI	sseria	nuone		
Other Line Cost in mRs	www.lib	mrt ac		-			
Total Cost in m Rs	VV VV VV.110.	. <u></u>		<u> </u>			
Maximum Weight span in m					-	i i	
Tower position for Weight span max	ii	<u> </u>	—i—	<u> </u>	<u> </u>	-ii	
Maximum Wind span in m	ii		— — —	<u> </u>	<u> </u>		——————————————————————————————————————
Tower position for Wind span max				<u> </u>			
Tower Type Check		Wind and Weight	5pan Weight Sp	pan in m	Left m	Right m	Weight Span
Tower configuration 10 Span number	1 End point Tower	Tower configuration	10 Tower nur	mber	I Config.		
Check Tower Type Change to P1	Change to P2 Change to P3	Tower Number Tower number from zer	2 Wind Spar to end point Tower nu	n in m umber	Left m T Config.	Right m	Wind Span

Figure 4: UserForm

Figure 5: Conductor data input

Step 5 \rightarrow Tower heights input

Enter tower bottom conductor attachment point height levels in the text boxes shown in Area 2 of Figure 5.

Step 6 \rightarrow Tower costs and wind span and weight span input

Enter calculated suspension tower costs (tower + erection), tension tower costs (tower + erection + foundation cost) for , average foundation cost for suspension towers, start and end tower angle type for the line section and weight and wind span limits in the area shown in Figure 6.

Step 7 \rightarrow Define the design range

Enter starting tower point (j) survey data index and end tower point survey index in given text boxes according to arranged survey data sheet (integer appeared in excel sheet index number column for section starting point)

Weight per unit length of conductor w	8.355 N/m	Tower P1 Height of lowest cross	arm 14	m
Horizontal tension of conductor TH	12376 N	Tower P2 Height of lowest cross	arm 17	m
Start Point - First Pole j =	0	Tower P3 Height of lowest cross	arm 20	m
Maximum No. of Spans	25	From Tower Configurat	ion 1	
Limitting end point of line	256	To Tower Configurat	ion 10	
Mutli Span Computation Cost	Computation	Erase all Clearances	End	

Figure 7: Defining starting and end point of the section

Step 8 \rightarrow Run the computation

First click "Multi span computation" command. When computation results appeared click on "Cost Computation" command button. Design solutions and cost computations will be shown in the UseFform as shown in Figure 8. The lowest cost solution will be highlighted in light blue color.

Tower Line Configuration	1	2	3	4	5	6	7	8	9	10
Number of spans	12	11	10	9	11	9	9	10	9	10
Total of Span Lengths in m	3223	3298	3338	3093	3318	3105	3142	3105	3093	3278
Number of TP1 Towers	13	7	6	2	6	0	1	5	1	6
Number of TP2 Towers	0	5	0	7	6	6	0	0	4	3
Number of TP3 Towers	0	0	5	1	0	4	9	6	5	2
Start of last Span	245	250	250	229	249	230	235	230	229	245
End of last Span	267	272	274	256	273	257	260	257	256	271
Tower Cost with erection in m Rs	7.957	8.066	7.98	7.501	8.239	8.102	8.417	8.413	8.077	7.725
Foundation Cost in mRs	4.095	3.78	3.465	3.15	3.78	3.15	3.15	3.465	3.15	3.465
Other Line Cost in mRs	0	0	0	0	0	0	0	0	0	0
Total Cost in m Rs	12.052	11.846	11.445	10.651	12.019	11.252	11.567	11.878	11.227	11.19

Figure 8: Results display

Step 9 → Reading optimum design

After reading summary of the lowest cost design solution from the UserForm it can

be closed. Detailed design can be read from the excel sheet by three columns under University of Moratuwa, Sri Lanka.

	Electronic Theses & Dissertations											
	150	31 1	noon	ome	1110	D	00.00	D199	ertau	0112		
Tow	er configura	tion 2	Tow	enconfigura	tion 3	L	11_ Tow	er configurat	tion 4	Towe	er confi <mark>gura</mark> t	tion 5
Conductor Ground Clearance	Conductor Obstacle Clearance	Tower position and type Lowest catenary point C	Conductor Ground Clearance	Conductor Obstacle Clearance	Tower posi and type Lowest cate point C	on ary	Conductor Ground Clearance	Conductor Obstacle Clearance	Tower position and type Lowest catenary point C	Conductor Ground Clearance	Conductor Obstacle Clearance	Tower position and type Lowest catenary point C
cgc(i) m	coc(i) m		cgc(i) m	coc(i) m			cgc(i) m	coc(i) m		cgc(i) m	coc(i) m	
14.0000		TP1	14.0000		TP1		14.0000		TP1	17.0000		TP2
12.9941			12.9941				12.9941			15.9263		
12.1668			12.1668				12.1668			15.0380		
10.9559			10.9559				10.9559			13.7187		
9.6906			9.6906				9.6906			12.3317		
8.7253			8.7253				8.7253			11.2650		
8.1388			8.1388				8.1388			10.6041		
7.5974			7.5974				7.5974			9.9951		
7.3635			7.3635				7.3635			9.6937		
6.9973			6.9973				6.9973			9.2532		
6.7785			6.7785				6.7785			8.9736		
6.6472			6.6472		'		6.6472			8.7748		

Figure 9: Results in excel work sheet

Tower positions with the heights are appeared as "TP1", "TP2" or "TP3" at each tower location survey point index row. Tower positions can be read along those rows by horizontal distance of each row. This design result can be visually displayed on Auto-CADD or PLS-CADD profile drawings.

Double Circuit Support Type	Support Cost (LKR)	Erection Cost (LKR)	Foundation Cost for Good soil(LKR)	Maximum allowable wind span (m)	Maximum allowable weight span (m)
MDL+0	130,000	55,000			
MDL+3	195,000	70,000	180,000	240	400
MDL+6	242,000	80,000			
MDM+0	315,000	90,000			
MDM+3	380,000	110,000	400,000	240	600
MDM+6	410,000	130,000			
MDH+0	485,000	105,000			
MDH+3	515,000	.140,000	600,000	Sri I 240	600
MDH+6	548,000	155,000	rec & Dic	sertations	
		lib mrt ac	$\sim 1k$	sertations	
MDT+0	410,000	130,000			
MDT+3	630,000	160,000	800,000	240	600
MDT+6	675,000	190,000			

Cost of Construction and Design Parameters of Mast Type Structures