MAINSTREAMING RENEWABLE ENERGY DEVELOPMENTS INTO TRADITIONAL PLANNING

J.H.K. Kanchana Chathuranga

109204C

Degree of Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2014

MAINSTREAMING RENEWABLE ENERGY DEVELOPMENTS INTO TRADITIONAL PLANNING

J.H.K. Kanchana Chathuranga

109204C

Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2014

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the author J.H.K.K. Chathuranga

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision Electronic Theses & Dissertations www.lib.mrt.ac.lk

Signature of the supervisor Eng. W.D.A.S. Wijayapala Senior Lecturer Department of Electrical Engineering University of Moratuwa Date:

Signature of the co-supervisor Prof. P.D.C. Wijayatunga Principal Energy Specialist Asian Development Bank Date:

ABSTRACT

Electricity is one of the key driving forces of the economy of a country and generation of electricity in an optimal way to meet the increasing demand has become a national priority in the recent years. Due to serious concerns with regard to energy security, global warming, rising costs and depleting reserves of fossil fuels, many countries are now actively seeking to mainstream NCRE power generation in to their generation portfolios as a future energy solution. Since generation planning plays a major role in a country's efforts to mainstream NCRE developments, the Sri Lankan generation planning practices were examined and several methodological changes and models were proposed to successfully integrate and evaluate NCRE resources in the present planning approaches.

The CEB generation planning process was reviewed and associated issues concerning NCRE planning were identified. These issues were first addressed conceptually and the proposed solutions were subsequently applied to the Sri Lankan system to assess their applicability. This thesis provides a new insight into the capacity contribution of NCRE plants and also discusses the constraints to mainstream adoption of NCRE technologies in Sri Lanka along with the present policy and regulatory interventions relating to NCRE developments. The use of peak period capacity factor method was suggested to calculate the capacity credit of NCRE generation and since the associated fists are not explicitly evaluated in the present approaches, the Mean Variance Portfolio Theory of proposed to assess the risks of generation portfolio. Two models were developed to calculate the wind power output from wind measurement data and to evaluate the portfolio risks of generation mixes which can be readily used in the present practices. In addition, methodologies were presented to model a wind power plant in WASP IV and to evaluate the benefits of modeled NCRE plants.

Keywords: Non-Conventional Renewable Energy Long Term Generation Planning Wien Automatic System Planning Package Capacity Credit Mean Variance Portfolio Theory

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisors Eng. W.D.A.S. Wijayapala and Prof. Priyantha Wijayatunga, for their continuous guidance, constructive feedback and support extended throughout this research. Despite their busy schedule, they always remained accessible and their guidance and advice, expertise and insights were by all means truly invaluable.

I would also like to thank Prof. J.R. Lucas, Prof. H.Y.R. Perera, Prof. J.P. Karunadasa, Dr. M.P. Dias and Dr. Asanka Rodrigo for their valuable feedback during the progress reviews.

It's with immense pleasure that I thank Mr. M.B.S. Samarasekara, Chief Engineer (Generation Planning) and Mr. T.L.B. Attanayake, Electrical Engineer (Generation Planning) of the Ceylon Electricity Board for their help with the WASP model, Mr. S.C. Diddeniya, CEO of Sri Lanka Energies (Pvt) Ltd. for providing the required wind measurement data of Mannar and Mr. Vladimir Koritarov of Argonne National Laboratory for his guidance introdeling and evaluating NGRE plants in the WASP model. Without theiFsoport, this Tesearch would not Have been successful.

www.lib.mrt.ac.lk

I am grateful to my parents for all the sacrifices they have made along the way and for all the support given to me during various endeavors in my life. Finally, I would like to sincerely thank my wife Rushani for being supportive and understanding, and for all her love and encouragement throughout this research.

J.H.K. Kanchana Chathuranga February 2014

TABLE OF CONTENTS

Declaration		i
Abstract		ii
Acknowledgements		iii
Table of Contents		iv
List of Figure	List of Figures	
List of Tables		viii
List of Abbre	viations	ix
List of Appen	dices	Х
Chapter 1.	Introduction	1
1.1	Objectives of the Research	4
1.2	Methodology	4
1.3	Outline of the Thesis	5
Chapter 2.	Mainstreaming NCRE Developments in Sri Lanka: Constraints and Strategies to Overcome the Barriers	7
2.1	Constraints to Mainstream Adoption of NCRE Technologies in Sri Lanka	7
2.2	Policy and Regulatory Interventions for NCRE Developments	9
2.2.1 Policy and regulatory interventions in Sri Lanka Electronic Theses & Dissertations 2.2.2 Policy lessons from around the world www.lib.mrt.ac.lk		9 10
Chapter 3.	Review of the CEB Generation Planning Process	15
3.1	Overview of the CEB Generation Planning Methodology	16
3.2	Wien Automatic System Planning Package (WASP)	17
	3.2.1 Objective function of the WASP IV package	18
	3.2.2 Principal capabilities and limitations of WASP IV	19
3.3	Other Generation Planning Tools	20
	3.3.1 Electric Generation Expansion Analysis System	20
	3.3.2 PLEXOS for Power Systems	21
3.4	2011-2025 Generation Expansion Plan of the CEB (Base Case Plan)	22
3.5	Identified Issues in the Present Generation Planning Process	
3.6	Proposed Concepts to Modify the Existing Planning Process	24
Chapter 4. Capacity Credit of Renewable Generation and Wind Power Output Model		26
4.1	Power System Planning and System Adequacy	26

4.2	Method Generat	s of Calculating the Capacity Credit of NCRE	26
	4.2.1	Effective Load Carrying Capability	28
	4.2.2	Approximation methods	29
	4.2.3	Proposed method to calculate the Capacity Credit of NCRE generation in Sri Lanka	31
4.3	Wind P	ower Output Model	32
	4.3.1	Output of the modeled wind park	34
	4.3.2	Analysis of the wind power output model	36
Chapter 5.	Modeli Packag	ng and Evaluating Wind Power Plants in WASP IV e	38
5.1	Method	ology of Modeling Wind Power in WASP IV	38
5.2	Results	of the WASP Simulations	40
5.3	Evaluat	ion of the Modeled Wind Park Using WASP IV	42
	5.3.1	Energy value of the wind park	44
	5.3.2	Capacity value of the wind park	45
	5.3.3	Emission benefits of the wind park	48
Chapter 6.	Mean-V	tion of the Sri Lankan Generation Mixes Using Variance Portfolio Theory	50
4610-	Plannin	ectronic Theses & Dissertations	50
6.2		aniance Portfolio. Theory Basics	52
6.3	Applica	tion of MVPT to Electricity Generation Assets	56
	1 ippiiou		
6.4		equired for the Application of MVPT to Generation os	59
6.4 6.5	Data Re Portfoli	1 11	59 60
	Data Re Portfoli Evaluat	os	
	Data Re Portfoli Evaluat 2025	os ion of the Sri Lankan Generation Mixes of 2012 and	60
	Data Re Portfoli Evaluat 2025	os ion of the Sri Lankan Generation Mixes of 2012 and Results and Discussion	60 63
	Data Re Portfoli Evaluat 2025 6.5.1	os ion of the Sri Lankan Generation Mixes of 2012 and Results and Discussion 6.5.1.1 Scenario one (With CO ₂ costs)	60 63 64
6.5	Data Re Portfoli Evaluat 2025 6.5.1 Summa	os ion of the Sri Lankan Generation Mixes of 2012 and Results and Discussion 6.5.1.1 Scenario one (With CO ₂ costs) 6.5.1.2 Scenario two (Without CO ₂ costs)	60 63 64 67
6.5 Chapter 7.	Data Re Portfoli Evaluat 2025 6.5.1 Summa	os ion of the Sri Lankan Generation Mixes of 2012 and Results and Discussion 6.5.1.1 Scenario one (With CO ₂ costs) 6.5.1.2 Scenario two (Without CO ₂ costs) ary and Conclusion	60 63 64 67 70
6.5 Chapter 7. 7.1	Data Re Portfoli Evaluat 2025 6.5.1 Summa Recomm	os ion of the Sri Lankan Generation Mixes of 2012 and Results and Discussion 6.5.1.1 Scenario one (With CO ₂ costs) 6.5.1.2 Scenario two (Without CO ₂ costs) ary and Conclusion ry and Key Findings	60 63 64 67 70 70
6.5 Chapter 7. 7.1 7.2	Data Re Portfoli Evaluat 2025 6.5.1 Summa Recomm	 a A A A A A A A A A A A A A A A A A A A	60 63 64 67 70 70 70 72
6.5 Chapter 7. 7.1 7.2 7.3	Data Re Portfoli Evaluat 2025 6.5.1 Summa Recomma Scope for	 a A A A A A A A A A A A A A A A A A A A	60 63 64 67 70 70 72 73

Appendix B	Curve Fitting of Reference Turbine Power Curve	78
Appendix C	Matlab Code of Wind Power Output Model	79
Appendix D	Base Load Demand Forecast of the CEB up to Year 2030	86
Appendix E	Details of the Candidate Thermal Plants used in the WASP Runs	87
Appendix F	Standard Deviation Values of Capital, Fuel, O&M and CO ₂ Costs	88
Appendix G	Correlation Coefficients of Fuel, O&M and CO ₂ Costs	89
Appendix H	Matlab Code of MVPT Analysis Model	90
References		104

LIST OF FIGURES

Figure 1.1	NCRE Project development from 1999 to 2012	2
Figure 4.1	Probability distribution of the plant output and capacity blocks	30
Figure 4.2	Typical system load profile of Sri Lanka	31
Figure 4.3	Flowchart of the wind power output model	34
Figure 4.4	Monthly Capacity Credit of the wind park	35
Figure 4.5	Monthly energy production of the wind park	35
Figure 6.1	Expected return and risk of two-asset portfolio	55
Figure 6.2	Portfolio effect for a two asset generation portfolio	58
Figure 6.3	Costs and risks of generating technologies (with CO2 costs)	62
Figure 6.4	Costs and risks of generating technologies (without CO2 costs)	62
Figure 6.5	Efficient frontier for the CEB Generation mix - Scenario 1	64
Figure 6.6	CEB generation mixes of 2012 and 2025 against EF - Scenario 1	65
Figure 6.7	Efficient frontier for the CEB Generation mix - Scenario 2	67
Figure 6.8	CEB generation mixes of 2012 and 2025 against EF - Scenario 2	67

LIST OF TABLES

Table 1.1	Present status of the NCRE sector in Sri Lanka (as at 31/12/2012)	2
Table 3.1	Principal capabilities and limitations of WASP IV	19
Table 3.2	2011-2025 Generation expansion plan of the CEB (Updated base case)	22
Table 5.1	Estimated output of the proposed wind park	40
Table 5.2	New capacity additions of the two expansion plans	41
Table 5.3	Capacity displacements due to the addition of wind park	43
Table 6.1	Expected returns and standard deviation of assets A and B	54
Table 6.2	MVPT analysis results of two-asset portfolio	55
Table 6.3	Levelised generating costs (US\$/MWh)	59
Table 6.4	Target generation mixes of 2012 and 2025	61
Table 6.5	Lower and upper bounds for the alternative technologies	61
Table 6.6	Technology shares of optimal portfolios – Scenario 1	65
Table 6.7	Technology shares of optimal portfolios – Scenario 2	68

LIST OF ABBREVIATIONS

AIC	Average Incremental Cost
BOI	Board of Investments
CCGT	Combined Cycle Gas Turbine
CEB	Ceylon Electricity Board
EF	Efficient Frontier
EGEAS	Electric Generation Expansion Analysis System
ELCC	Effective Load Carrying Capability
EMCAS	Electricity Market Complex Adaptive System
ENS	Energy-Not-Served
EPRI	Electric Power Research Institute
EU	European Union
FOR	Forced Outage Rate
IEA	International Energy Agency
LNG	Liquefied Natural Gas
LOI	Letter of Intent
LOLE	Loss of Load Expectation
LOLP	Loss of Load Probability
MIT	Massachusetts Institute lof Technology i Lanka.
MVPT (Mem Verience Portfelie Theory issertations
NCRE 🧏	Non-Conventional Renewable Energy
NREL	National Renewable Energy Laboratory
O&M	Operation and Maintenance
OECD	Organization for Economic Cooperation and Development
ORNL	Oak Ridge National Laboratory
PUCSL	Public Utilities Commission of Sri Lanka
PV	Present Value
ROR	Run-of-River
RPS	Renewable Portfolio Standard
SLSEA	Sri Lanka Sustainable Energy Authority
SPPA	Standardized Power Purchase Agreements
SYSIM	System SIMulation
TVA	Tennessee Valley Authority
WASP	Wien Automatic System Planning

LIST OF APPENDICES

Appendix A	Power Curve Values of the Reference Turbine	76
Appendix B	Curve Fitting of Reference Turbine Power Curve	78
Appendix C	Matlab Code of Wind Power Output Model	79
Appendix D	Base Load Demand Forecast of CEB up to Year 2030	86
Appendix E	Details of the Candidate Thermal Plants used in WASP Runs	87
Appendix F	Standard Deviation Values of Capital, Fuel, O&M and CO ₂ Costs	88
Appendix G	Correlation Coefficients of Fuel, O&M and CO ₂ Costs	89
Appendix H	Matlab Code of MVPT Analysis Model	90

