EFFICIENCY IMPROVEMENTS TO THE HYDRO POWER PLANTS IN THE LAXAPANA COMPLEX

Rangika Jeewantha Jayawardene

(109221B)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

EFFICIENCY IMPROVEMENTS TO THE HYDRO POWER PLANTS IN THE LAXAPANA COMPLEX

Coruwacancanange Don Rangika Jeewantha Jayawardene

(109221B)

of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge, and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)"

Signature: Date: [C.D.R.J. Javawardene] University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:

Date:

[Eng. W.D.A.S. Wijayapala Senior Lecturer Department of Electrical Engineering University of Moratuwa]

ACKNOWLEDGEMENT

I have taken great efforts in this project to do a realistic and meaningful work. However, it would not have been possible without the kind support and help of many individuals and the organization, Ceylon Electricity Board. I would like to extend my sincere thanks to all of them.

I take this opportunity to express my profound gratitude and deep regards to my supervisor Eng. W.D. Anura S. Wijayapala for his exemplary guidance, monitoring and constant encouragement throughout this research.

I am highly indebted to Mr Anura Herath, Chief engineer of the Laxapana generating station for providing the necessary data and information regarding the project.

I also take this opportunity to express a deep sense of gratitude to Mr. Erosh Fernando, Civil Engineer of the Laxapana complex, Mr. Tilan Fernando, Mechanical Engineer of the Laxapana Power Station and Mr Keerthi Samarasinghe, Station Engineer of the Samanala Power Station for giving me a great support by providing Electronic Theses & Dissertations me necessary data to complete this project.

Lastly, I thank, Almighty God, my parents, wife and my closest friends for their constant encouragement without which this project would not have been possible.

Rangika Jayawardene

ABSTRACT

Efficiency Improvements to the Hydro Power Plants in the Laxapana Complex

The main objective of this research is to present effective efficiency improvements to the hydropower plants in the Laxapana Complex. At present, electricity consumption in Sri Lanka is being increased at a rate of about seven present. Hence, improving the efficiency in an existing hydropower complex will lead to an increase in the electricity generation capacity of the National Grid using the same waters of the existing schemes.

In this research, observed key areas are techno-economically analyzed with the view of efficiency improvement. All the areas introduced are important when they are viewed as total energy improvement projects. However, In order to implement a project, it should be viable. Hence, in this report, certain areas are discussed, and only viable modifications are presented as efficiency improvement projects.

In this study, efficiency improvement to the Old Laxapana power station through a new generator design, capacity improvement to the Laxapana pond in order to minimize annual water spilling, new generator installation to the Samanala Power Station and leakage analysis of the New Laxapana tunnel have been proposed. For the analysis, past data and the findings of certain researches have been used in the certain to the samanala power station and leakage analysis of certain researches have been proposed.

The study of the Old Laxapana Power Station was carried out focusing on the Old Laxapana Stage-II generators. From the cost-benefit analysis, a simple payback period of four years was observed. Next, from the cost-benefit analysis of the capacity improvement of the Laxapana pond, a payback period of 14.3 years found, and it was accepted considering the lifetime of the dam proposed. After that, a seven-year simple payback period was observed by proposing a 13.6 MW-generator for the Samanala Power Station as capacity improvement. Finally, the tunnel leakage analysis for the New Laxapana power station was carried out, obtaining 6.5-year simple payback period, and, hence, it was recommended to implement the repair during the rehabilitation.

TABLE OF CONTENTS

De	eclarati	ion of the	e candidate & Supervisor	i
Acknowledgements				ii
Ał	ostract			iii
Та	ble of	contents		iv
Li	st of F	igures		viii
Li	st of T	ables		ix
Li	st of al	obreviatio	ons	Х
Li	st of A	ppendice	2S	xi
1.	Intro	oduction		1
	1.1.	Introdu	ction to the Laxapana Complex	1
	1.2.	The Ne	ed for Efficiency Improvement	2
	1.3.	Observ	ed Points to Investigate the Possibility of Efficiency	
		Improv	ement in the Laxapana Complex	3
	1.4.	Recom	mendations to solve the Key Issues rillanka	4
2.	Old	Laxapan	a Fower Station Capacity Improvement through A New	
	Gene	erator Do	esign	5
	2.1.	Two-G	enerator Design for the Old Laxapana Power Station	8
	2.2.	Two-Pe	enstock Design	9
	2.3.	Calcula	ation of the New Penstock Parameters	11
		2.3.1	Penstock diameter (D _p) calculation	11
		2.3.2	Penstock wall thickness calculation	12
		2.3.3.	Head loss calculation	16
			2.3.3.1. Friction head loss (h_f)	16
			2.3.3.2. Turbulences loss (h _t)	17
	2.4.	Runner	Designing	19
		2.4.1.	Power to the runner (P_t)	22
	2.5	Genera	tor Designing	23
	2.6	Turbine and Generator Costing 2		
	2.7.	Generat	or Sizing And Civil Construction Cost	23

Page

	2.8	Transformer Replacement	24
		2.8.1 Stage I transformer	24
		2.8.2. Stage II transformer	25
	2.9	Cost of the Loss of Generation during Outage for the Modification	25
		2.9.1. Outage plan for Stage I generator	25
		2.9.2. Outage plan for Stage II generator	25
	2.10	Cost of the Loss of Generation	26
	2.11	Total Cost of the New Design	28
	2.12	Benefits from the Project	29
	2.13	Cost Minimization Methods to the New Generator Design of the	
		OLPS	31
		2.13.1. Modification of the existing penstocks	31
		2.13.2. Cost of new penstock pipes	34
		2.13.3 Head-loss Calculation	35
		2.13.4 New annual income from one generator	36
		2.13.5 Cost-benefit analysis	36
3.	Anal	lysis of the capability of capacity improvement of the ponds	38
	3.1.	Laxapana Rondy. lib. mrt. ac. lk	40
	3.2	Issues of the Laxapana pond	40
	3.3.	Benefit from the modification	42
	3.4.	Viability of the modification	43
		3.4.1. Cost of the new construction	43
		3.4.2. Cost of the outage of the Power Stations	43
		3.4.3. Analysis of the modification	44
4.	Gene	erating Capacity Enhancement Study of the Samanala Power	
	Stati	on	46
	4.1	Data From of the Study Done in 1989	46
	4.2.	The Tunnel of the Samanala Power Station	47
		4.2.1. New Water Velocities in the Tunnel	47
	4.3.	Analysis for the Optimum Capacity of the New Generator	49
	4.4.	Annual Income from the 40.8 MW-Generator	51

	4.5.	Cost of the Maximum Capacity Loss of the Existing Generators			
	4.6.	Cost of	the Modification	52	
		4.6.1	The Penstock cost	52	
			4.6.1.1. The Penstock wall thickness	53	
		4.6.2.	Cost of the new generator	55	
		4.6.3.	Transformer cost	55	
		4.6.4.	Civil cost	55	
		4.6.5.	Plant Outage cost	55	
	4.7.	Cost-Be	enefit Analysis for 40.8 MW generator installation	56	
	4.8.	Consideration of Installing a Small-Capacity Generator			
	4.9.	The New	w Equivalent Capacity and the Cost of the Generator	57	
	4.10.	Annual	Income from 13.6 MW Generator	57	
	4.11.	Plant Ou	utage cost	57	
	4.12	New cos	st for the maximum capacity loss in the existing generators	58	
	4.13.	New Co	osts for the New Generator and the components	59	
		4.13.1.	Transformer cost	59	
		4.13.2.	Civil cost	59	
		4.13.3	Pensity of Moratuwa, Sri Lanka.	59	
			4E3 SotroWall Trickness calculationertations	60	
	4.14.	Cost-Be	enefit Analysis for 13.6 MW-generator installation	61	
	4.15, Consideration of Utilizing the Generator			62	
	4.16,	5, Cost-benefit Analysis after the utilization			
5.	New	v Laxapana Tunnel Leakage Analysis			
	5.1.	Data Ar	nalysis	66	
		5.1.1.	The Observation	66	
		5.1.2	The Analysis	66	
	5.2.		Total Cost Estimation	67	
		5.2.1.	Loss of generation during an outage time	67	
		5.2.2.	Actual cost of the loss of generation	69	
		5.2.3.	Generation mix	69	
		5.2.4.	Generation variable costs	69	
	5.3.	Benefit		71	
6.	Conc	lusions a	and Recommendations	73	
Re	Reference List 78				

Appendix-I : Penstock Refurbishment Procedure	79
Appendix-II : Spill Data of the Ponds and the Calculations	83
Appendix-III: NL Tunnel Leakage Measurement	90
Appendix-IV: The Load Curve	92

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Page

Figure 1	Cascaded view of the Laxapana Complex	1
Figure 2	Existing penstock-generator arrangement of the OLPS	5
Figure 3	Turbine efficiency of Unit No 4 generator of the OLPS	6
Figure 4	Two-generator design for the OLPS	8
Figure 5	Arrangement of new penstocks for two-generator design	9
Figure 6	Existing penstock profile in the OLPS	10
Figure 7	Assist to the calculation of k _{bend}	17
Figure 8	k _{contraction} values with different diameters ratios	18
Figure 9	Design of the Pelton turbine	20
Figure 10	Parameters of the Pelton turbine	21
Figure 11	Turbine water-jet arrangement for the new generator	22
Figure 12	Dimensions of the generator and proposed positions of the	
	installation	24
Figure 13	Proposed project timeline for the generator-replacement	26
Figure 14	Modified penstock arrangement to the OLPS new generator design	32
Figure 15	Design of new concrete structure with steel plated inside	33
Figure 16	The arrangement of the reservoirs and ponds in the Laxapana	
	Complex	38
Figure 17	Satellite view of the Laxapana pond taken by Google Maps	40
Figure 18	Valley area in front of the Laxapana pond during water spilling	41
Figure 19	View of the proposed dam taken by Google Earth	41
Figure 20	Cross-section of a Lined section of the tunnel of Samanala PS	47
Figure 21	Cross-section of an unlined section of the tunnel of Samanala PS	48
Figure 22	Graph of NL tunnel leakage Vs. Total power of NL generators	66
Figure 23	New Laxapana Unit 2 average dispatch during May 2012	67
Figure 24	Canyon PS average dispatch during May 2012	68

LIST OF TABLES

Table 1	Parameters of the existing penstocks of the OLPS	10
Table 2	Parameters of the proposed penstocks for the OLPS	12
Table 3	Estimation of the penstock thickness	15
Table 4	Estimation of the penstock thickness and the steel volume required	15
Table 5	Head-loss calculation for the new penstock	18
Table 6	Monthly energy generation of the OLPS in 2010	27
Table 7	Monthly energy generation of the OLPS in 2011	27
Table 8	Head-loss calculation for the modified penstock arrangement	35
Table 9	Past spill data of each pond in the Laxapana Complex	39
Table 10	Average spill rates of the Laxapana pond during three years	49
Table 11	Annual spill water volume saving by installing 40.8MW-generator	51
Table 12	Annual saving of spill water by installing 13.6 MW-generator	57

Page

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

cusec	Cubic feet per second
CEB	Ceylon Electricity Board
ft	feet
kWh	Kilo Watt hour(s)
GWh	Giga Watt hour(s)
LKR	Sri Lankan rupees
MASL	Meters above sea level
MCL	Mean sea level
MCM	Million cubic feet
MIV	Main Inlet Valve
MOL	Minimum Operating Level
MW	Mega Watt(s)
MWh	Mega Watt hour(s)
NL	University of MoraNew La Sapahanka.
NLPS	Electronic Theses & Dissertations Station
OL	WWW.IID.mrt.ac.lk Old Laxapana
OLPS	Old Laxapana Power Station
ONAF	Oil natural air forced
PS	Power Station
SPP	Simple payback period
USD	United States Dollars

LIST OF APPENDICES

	Page
Appendix-I :Penstock Refurbishment Procedure	79
Appendix-II :Spill Data of the Ponds and the Calculations	83
Appendix-III: NL Tunnel Leakage Measurement	90
Appendix-IV: The Load Curve	92

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk