THE CEMENT STABILIZED SOIL AS A ROAD BASE MATERIAL FOR SRI LANKAN ROADS

W.W. BANDARA

(2010/2011)

Master of Engineering in Highway and Traffic Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

February 2014

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any University to the best of my knowledge and belief and it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.

Signature of the Candidate Date To the best of my knowledge, the above particulars are correct. Electronic Theses & Dissertations www.lib.mrt.ac.lk Signature of the Supervisor Date

ACKNOWLEDGMENT

I wish to pay my sincere gratitude to Dr. W. K. Mampearachchi who supervised and guided me to complete a successful research. Also I would like to thank him for supporting and expending his valuable time throughout the study.

All material tests were conducted in A32 and A35 project laboratories and immeasurable support given by Mr. Athula (MAGA Engineering Pvt Ltd), Mr. Nimal (China Harbour Engineering Company Ltd) and their staff is gratefully acknowledged.

I would like to thank all engineers who contributed their valuable time for sharing knowledge and experience with me.

I thank the organizer of Transport Research Forum, University of Moratuwa, 2011, for giving me a great opportunity to present my research.

I am also grateful to all staff members and post graduate students in the University of Moratuwa who supported and taught meduring nav post graduate study.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Soils that can be stabilized are Granular, Sandy, Salty and Clayey materials. In Sri Lanka, lower quality coarse–grained and sandy materials are available which give higher elastic modulus than fine–grained material (Salty and Clayed materials).

In order to control shrinkage cracks, Unconfined Compressive Strength (UCS) at seven days should be limited. According to the findings, it was revealed that the most practical thickness of the cement stabilized base is 200mm and the most practical UCS at seven days is 3-4MPa to achieve compaction and the decided life with economical pavement thickness.

When the strength is measured in terms of CBR (California Bearing Ratio) and UCS, different cement contents arise from these two measuring methods. Therefore this study was performed to identify correct strength measure. The correct strength measure is UCS only and no relationship was found between UCS and CBR.

For road pavements with stabilized base, critical tensile stress or strain is located at the bottom of the stabilized layer. To control the fatigue cracking for required number of axial load repetitions, this tensile stress should be limited.

Above mentioned limitations cannot be analyzed using the conventional pavement design based on Structural Number principle. Hence a Mechanistic–Empirical Method is used to analyze pavements with a stabilized base which is difficult to carryout in general placticersity of Moratuwa, Sri Lanka.

Therefore, through this study, pavement design charts for pavements having 200mm thickness of a Cement Stabilized soil Base (CSB) were developed by a Mechanistic– Empirical Method for various sub grade and traffic classes. According to the developed pavement design chart, it was revealed that CSB can be used for roads with traffic less than 1.5×10^6 standard axial load repetitions.

Key words: Cement Stabilized soil Base, Unconfined Compressive Strength (CUS), California Bearing Ratio (CBR), Mechanistic Empirical Method

TABLE OF CONTENTS

Declaration of the Candidate		
Acknowledgment		
Abstract		
Table of contents		
List of figures	v	
List of tables	vi	
1. Introduction	01	
1.1 General	01	
1.2 Problem Statement	01	
1.2.1 General observations	03	
1.2.2 Engineers' concern	05	
1.3 Objectives	06	
2. Literature Review		
2.1 General	07	
2.2 Soil - Cement Stabilization Of Moratuwa, Sri Lanka.	07	
2.3 Engineering Properties and Behaviour of Soil and Stabilized Soil Layer	07	
2.4 Danage Analysis 2.5 Mechanistic-Empirical Pavement Design	09 10	
2.5 Mechanistic-Empirical Pavement Design 2.6 KENLAYER Computer Program for Flexible Pavement Modeling	10	
2.7 Traffic and Loading	10	
2.8 Construction Requirements	13	
2.9 Control of Shrinkage and Reflection Cracks	18	
3. Data Collection and Testing	20	
3.1 Properties of Available Soil Used for CSB	20	
3.2 Properties of CSB Made from Available Soil	20	
3.3 Most Practical Thickness and UCS of CSB made from Available Soil	22	
4. Data Analysis	23	
4.1 Comparison of Properties of Available Soil with Specification Limits	23	
4.2 Relationships of CBR and UCS with Cement Content	25	
4.3 Traffic demand for CSB pavements made with available soil	27	
5. Conclusion	32	
Reference List	33	

LIST OF FIGURES

Figure 1.1	Proposed A32 Road Project with CSB	02
Figure 1.2	Construction of CSB in B424 road	02
Figure 1.3	B424 and B60 roads after rehabilitation	03
Figure 1.4	Severe distresses in the Pulmoddai end of B424 road	03
Figure 1.5	Distresses in the Pulmoddai end of B424 road	04
Figure 1.6	Distresses in B424 road	04
Figure 1.7	Distresses in B60 road	04
Figure 2.1	Wheel configuration for a typical semitrailer unit	11
Figure 2.2	Configuration of tire contact area	13
Figure 3.1	Natural soil	20
Figure 3.2	Testing of UCS and CBR Samples	21
Figure 4.1	on one orbity of thoritorities, our summer.	23
Figure 4.2	ement content vs. theses & Dissertations www.lib.mrt.ac.lk	26
Figure 4.3	Cement Content vs. CBR	26
Figure 4.4	UCS vs. CBR	27
Figure 4.5	Developed chart for CSB Pavement	31

Page

LIST OF TABLES

Table 1.1	Proposed Rehabilitation Road Projects with CSB	02
Table 2.1	Guide to the type of stabilization likely to be effective	17
Table 2.2	The desirable properties of material before stabilization	18
Table 3.1	Properties of natural soil	20
Table 3.2	UCS and CBR Test Results	22
Table 4.1	Properties of natural Soils with Specification Limits	24
Table 4.2	Specified Properties of Soil before Stabilization	25
Table 4.3	Properties of Materials Used for Pavement Modeling	27
Table 4.4	Fatigue and Rutting Analysis of 200mm Thickness CSB	28
Table 4.5	Fatigue and Rutting Analysis of 175mm Thickness CSB	28
Table 4.5	Fatigue and Rutting Analysis of 175mm Thickness CSB	28
Table 4.5	Fatiguerine Ruitting Analysistof CSBSri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	30

Page