LB/DON/07/02

WIND LOADS FOR TALL BUILDINGS

IN SRI LANKA

A THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF

Master of Engineering (Structural Engineering Design)

BY

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

M.D.Wijerathne

SUPERVISED BY

Dr. M.T.R.Jayasinghe

පතිතකාලය පතිතකාලය. හි ලංකාව ලටුදාගලන පරිදුරාලන

DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF MORATUWA, SRI LANKA

074333

JUNE 2001

14333

80835

624 "01" 624.042.41

74333

ABSTRACT

In the recent past the demand for construction of tall buildings in Sri Lanka has remarkably increased. With the development of technology, the knowledge on the material properties used in the construction work has been improved and the design engineers are compelled to get the maximum use of the engineering properties of materials by optimising the geometrical properties of the structural elements. Therefore the use of correct assessment of the magnitudes of all types of loading applicable to buildings and correct approach to identify the behaviour of the structure for these loads have become compulsory to produce safe and efficient buildings.

It is shown with a detailed study that for zone 3 of Sri Lanka, it is not prudent to use 33 m/s wind speed for the design of tall buildings. It is shown that it would be more appropriate to use a higher velocity since most of the countries with similar risk use at least 38 m/s for the structural design purposes of tall buildings. Since the dynamic behaviour and the associated acceleration will depend on the structural systems, the use of higher wind sped will automatically force the structural design engineer to adopt a better structural form. It will also ensure that the tall buildings constructed in Sri Lanka will be comparable with similar buildings in other parts of the world. It is shown with a case study carried out for a thirty storey building that it is possible to improve the dynamic behaviour of the building with some minor alterations to the structure such as introduction of coupling beam between shear walls. It was also shown that the use of the better computer modelling techniques such as modelling the core with 3-D plane stress elements could give better representation for the lateral load behaviour of the structure so that the structural engineer will be able to assess the dynamic behaviour more accurately. The effects of the outriggers are also investigated.

The study clearly indicated that the use of a higher wind speed would not have considerable cost penalty. On the contrary, the conventional structural system could be further improved either by addition of members or improving the structural modelling techniques.

ACKNOWLEDGEMENT

I am grateful to the Vice Chancellor, Dean of the Faculty of Engineering and Head of the Department of Civil Engineering of University of Moratuwa for the permission granted for this research work. The co-ordinator of the post graduate research, Dr (Mrs) M.T.P.Hettiarchchi always encouraged the completion of this research work. I also wish to thank all the lecturers of the postgraduate course on Structural Engineering Design, who helped me in many ways to make this study successful. Also the knowledge gained during the lecture series was an immense help for the research work presented.

The supervisor of the project, Dr.M.T.R.Jayasinghe supported right through the research in all instances with much dedication.

I thank the librarian and the staff of the library for the co-operation extended to me for this research work.

University of Moratuwa, Sri Lanka,

There are many who helped this work in various ways. I regret the inability to thank them all individually. So a big thank for all those who helped to make this research project success.

Finally, I wish to thank my family members for their wholehearted support extended during this research project

M.D.Wijerathne June 2001

Abst	<u>tents</u> ract		I
	iowledge	ement	IJ
	oter 1		. 1
Intro	duction		1
1.1	Genera	al	1
1.2	Main (Objectives	3
1.3	Metho	odology	3
1.4	Main I	Findings	3
1.5	Arrang	gement of Report	4
Chap	oter 2		5
Liter	ature R	eview	5
2.1	Genera	al	5
2.2	Multi-storey buildings		5
	2.2.1	Low to medium rise buildings	5
	2.2.2	Tall buildings	6
2.3	Nature	e of Wind Forcesersity of Moratuwa, Sri Lanka.	7
	2.3.1	Behaviour of wind and ac lk	7
	2.3.2	Effect of wind forces on buildings	7
	2.3.3	Tropical wind climate	8
	2.3.4	Wind climate of Sri Lanka	9
2.4	Behaviour of Tall Buildings Against Lateral Loads		
	2.4.1	Static behaviour	10
	2.4.2	Dynamic behaviour	10
	2.4.3	Properties of building structures dominating design for wind	
		loads	11
		2.4.3.1 Strength	11
		2.4.3.2 Ductility	11
		2.4.3.3 Basic load transfer system	11
	2.4.4	Dynamic response of tall buildings	12
		2.4.4.1 Serviceability criteria	13
		2.4.4.2 Human comfort criteria	13
		2.4.4.3 Limits on acceleration of building	15

		2.4.4.4 Limits on drift of building	15
2.5	Wind	Speed for Design of Tall Buildings	16
	2.5.1	Basic wind speed	16
	2.5.2	Basic wind speed used in India	16
	2.5.3	Basic wind speed used in Australia	16
	2.5.4	Basic wind speed used in America	17
	2.5.5	Basic wind speed used in Sri Lanka	17
2.6	Desig	n Method for Wind Loads on Tall Buildings	18
	2.6.1	Static methods	18
	2.6.2	Gust factor methods	18
	2.6.3	Methods used in Australia	19
	2.6.4	Method used in America & Canada	19
		2.6.4.1 Uniform building code method	19
		2.6.4.2 National building code of Canada method	20
	2.6.5	Method used in India	21
2.7	Struct	tural Forms	21
	2.7.1	Shear walls Electronic Theses & Dissertations	22
	2.7.2	Couple shear walls lib mr ac lk	22
	2.7.3	Wall frame interaction	22
	2.7.4	Out-riggers	23
2.8	Computer Modelling of Tall Buildings		23
	2.8.1	2D modelling for symmetrical building	24
	2.8.2	3D modelling for non-symmetrical building	25
	2.8.3	Computer software used.	25
2.9	Summ	hary	26
Chap	ter 3		38
Basic	wind s	peed for Tall Buildings in Sri Lanka	38
3.1	Introd	luction	38
3.2	Basic	Wind Speed Suitable for Tall Buildings in Sri Lanka	38
3.3 Effects of Basic Wind Speed on Tall		s of Basic Wind Speed on Tall Buildings	39
	3.3.1	The design method	39
	3.3.2	The AS 1170 Part II, 1989 method	40
	3.3.3	Effects of wind speeds.	41

IV

	3.3.4 Effects on dynamic behaviour at lower wind speeds.	42	
3.4	Discussion on Wind Speed and Dynamic Behaviour	44	
3.5	Observation and Recommendation	45	
Chaj	pter 4	48	
Case	e Study on Structural Form & Behaviour	48	
4.1	Introduction	48	
4.2	The Case Study	48	
	4.2.1 Details of the 30 storey building	49	
4.3	The Structural Forms Used	50	
	4.3.1 Shear wall system – Case 1	50	
`	4.3.2 Coupled shear wall system - Case 2	50	
	4.3.3 The shear walls forming a core – Case 3	51	
	4.3.4 The core structure consisting of outrigger – Case 4	51	
4.4	The Wind Loads Considered	51	
4.5	The Computer Model Used 52		
	4.5.1 Computer model for shear wall structure - Case 1	52	
	4.5.2 Computer model for coupled shear wall structure - Case 2	52	
	4.5.3 Computer model for core structure – Case 3	53	
	4.5.4 Computer Model for Outrigger Structure – Case 4	53	
4.6	The Results of Computer Analysis	53	
	4.6.1 Results for shear wall structure – Case 1	53	
	4.6.2 Results for coupled shear wall structure – Case 2	54	
	4.6.3 Results for core structure – Case 3	54	
`	4.6.4 Results for outrigger structure – Case 4	55	
4.7	Analysis of Results	56	
4.8	Summary	57	
Chap	oter 5	68	
Conc	lusion	68	
5.1	General	68	
5.2	Future Works	69	

References

.

- À

¥

List of Table

20

٠,

Table 2.1	Details of certain high-rise buildings constructed in the world	14
Table 2.2	Human perception levels	15
Table 2.3	Three second gust velocities used for different areas of Sri	
	Lanka.	17
Table 3.1	Description of buildings and the corresponding gust factors,	
	allowable maximum deflections and drift indices at 33 m/s and	
	38 m/s basic wind speeds	43
Table 3.2	Wind induced accelerations in m/s^2 at wind speeds less than the	
	design wind of 33 m/s	44
Table 3.3	Wind induced accelerations in m/s^2 at wind speeds less than the	·
	design wind of 38 m/s	45
Table 4.1	Trial Sizes of the Principal Members of the Structure	49
Table 4.2	Summary of Results for Case 1-a and Case 1-b	54
Table 4.3	Summary of Results for Case 2-a and Case 2-b	54
Table 4.4	Summary of Results for Case 3-a and Case 3-b	55
Table 4.5	Summary of Results for Case 4	55
Table D. I	Wind loads evaluated for 30 storey building	118

List of Figures

10

Figure 2.1	Incidence of Tropical Cyclone	28
Figure 2.2	Wind Loading Zones in Sri Lanka	28
Figure 2.3	Fastest Mile Wind Speed Adopted in America	29
Figure 2.4	Boundaries of Wind Regions Adopted in Australia	29
Figure 2.5	Basic Structural Systems to Resist Lateral Loads	30
Figure 2.6	Three Second Gust Wind Speeds Used in India and Sri Lanka	31
Figure 2.7	Symmetrical Shear Wall Structure	31
Figure 2.8	Representation of Coupled Shear Walls by Continuum Model	32
Figure 2.9	Wall Frame Structure	32
Figure 2.10	Wall-Frame Structure	33
	(a) Walls and frames in parallel bents.	33
	(b) Wall and frames in same bents.	33
`	(c) Plan Symmetric wall-frame structure.	33
Figure 2.11	Out Rigger Structure with Centre Core	33
Figure 2.12	Coupled walls with:	34
	(a) Repetitive beams.	34
	(b) Equivalent lumped beam model.	34
	(c) Equivalent membrane element reduced model.	34
Figure 2.13	Rigid frame with:	34
	(a) Repetitive beams.	34
	(b) Equivalent lumped beam model.	34
Figure 2.14	Rigid frames	34
	(a) Prototype rigid frame.	34
	(b) Equivalent lumped girder frame.	34
Figure 2.15	Partial Model of a Structure	35
	(a) Symmetric Structure with Parallel Bent	35
	(b) Equivalent Two Dimensional Model	35
Figure 2.16	Shear walls:	36
	(a) Coupled walls.	36
	(b) Equivalent wide column model.	36
	(c) Equivalent uniform beam model.	36

VII

Figure 2.17	(a) Columns Joined by deep beam.	
	(b) Equivalent deep beam model.	36
	(c) Equivalent uniform column member model.	36
Figure 2.18	(a) Wide columns, deep beam frame.	36
	(b) Wide column, deep beam model.	36
	(c) Equivalent uniform member model.	36
Figure 2.19	Replacement of rigid ended connecting beam by equivalent	
	uniform beam.	36
Figure 2.20	Representation of Coupled Shear Wall by Equivalent Wide	37
	Column Frame	
Figure 2.21	(a) Symmetric Structure with Repetitive Beams.	37
	(b) Equivalent Lumped Model.	37
Figure 3.1	Dimension of building in plan and elevation used for Gust	
	factor evaluation.	47
Figure 4.1	The grid arrangement selected	58
Figure 4.2a	Arrangement of storey elements from level 1 to level 12.	59
Figure 4.2b	Arrangement of storey elements from level 12 to level 22.	60
Figure 4.2c	Arrangement of storey elements from level 22 to level 30.	61
Figure 4.3a	Arrangement of service core from level 1 to level 22.	62
Figure 4.3b	Arrangement of service core from level 22 to level 30.	62
Figure 4.4a	Individual shear walls from level 1 to level 22.	63
Figure 4.4b	Individual shear walls from level 22 to level 30.	63
Figure 4.5a	Shear walls with coupling beams from level 1 to level 22.	64
Figure 4.5b	Shear walls with coupling beams from level 22 to level 30.	64
Figure 4.6a	Core walls system from level 1 to level 22.	65
Figure 4.6b	Core walls system from level 22 to level 30.	65
Figure 4.7	Core walls structure consists of outrigger beams.	66
Figure 4.8	Arrangement of frames and typical frames for XETABS 95	
	data.	67

÷

Appendices:

Appendix A -	Conversion of fastest mile wind speed to other averaging			
	time		71	
Appendix B -	- Samp	le Calculation of Gust Factor, deflection and along		
	wind	acceleration.	72	
	B-1	Case 03 and Case 01 of Table 3.1	74	
	B-2	Case 04 and Case 02 of Table 3.1	76	
	B-3	Case 07 and Case 05 of Table 3.1	78	
	B-4	Case 08 and Case 06 of Table 3.1	80	
x	B-5	Case 08 and Case 06 of Table 3.1	82	
	B-6	Case 08 and Case 06 of Table 3.1	84	
	B-7	Case 08 and Case 06 of Table 3.1	86	
	B-8	Case 08 and Case 06 of Table 3.1	88	
	B-9	Case 08 and Case 06 of Table 3.1	90	
	B-1 0	Case 08 and Case 06 of Table 3 1	92	
	B-11	Case 08 and Case 06 of Table 3 1	94	
	B-12	Case 08 and Case 06 of Table 3.1	96	
Appendix C -	- Analy	sis of 30-storey building	. 98	
	C-1	Functional Organization	98	
	C-2	Initial Design	106	
	C-3	Wind Loads	114	
Appendix D -	- Data f	for analysis of 30-storey building using X-ETABS 95	117	
,	D.1	Evaluation of Wind Loads	117	
	D.2	Evaluation of Equivalent Member Sizes	119	
	D.3	Data for XETAB 95 computer analysis of the		
		building	120	
Appendix E -	Result	s of the analysis	179	
	E.1	Lateral displacements of building	179	
Appendix F -	Analy	sis of Results	191	
	F.1	Determination of natural frequency of the building	191	
	F.2	Calculation of Gust Factor & Acceleration	204	