# SYNCHRONIZATION IN PACKET SWITCHING NETWORKS

LIERARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Jayasinghe Mudiyanselage Rasika Chanaka Jayasinghe

(08/8371)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Telecommunications

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

February 2014



108982

621.38 "14" 621.39 (043)

EN 03/18

LB/DON/50/2015 DEN 06/17

108982

TH2883

I declare that this is my own work and this dissertation does not incorporate, without acknowledgement, any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa, Sri Lanka, the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature

Date: 2015/03/13

The above candidate has carried out research for the Masters Dissertation under my supervision.

i

**UOM Verified Signature** 

Signature of the supervisor:

27/3/2.15

Date:



#### ABSTRACT

Network providers are faced with significant challenges in delivering backhaul solutions. Given that solutions based on Time Division Multiplexing (TDM), is not providing improved efficiency at a reasonable cost. Thus the need for new backhaul solutions is becoming significant. With the full-IP evolution, all the mobile networks are migrated to full-IP, thus capabilities inherent to traditional TDM needs to be developed in these IP networks. Real-time applications have relatively tight timing requirements concerning delay and delay variations. Therefore, need efficient timing solution for those real-time applications.

Synchronization is important aspect in networks and it is more critical in mobile networks. Loss of synchronization in mobile networks leads to call drops, mobile broadband data speed degrades and packet losses. Network equipment should be synchronized in frequency, time and time of day. To achieve the packet network based synchronization new strategies should be adopted. Else, traditional synchronization techniques is to be continued to synchronize networks.

Specialized synchronization networks can deliver better and accurate performances, but that is with a higher cost. There are new technologies introduced to the industry for synchronization. Before migrating in to new technologies, analyzing these techniques against the service delivery requirement is a prerequisite. There is information available and accessible for the operators, in the areas related to developments of technical standardization proceedings, but there is clear lack of resources and information for practical implementations.

There are gaps to be addressed while migration mobile networks into packet switching networks. Migration from circuit switching network to packet switching networks will break the synchronization chain. Most importantly, delivering the synchronization across the borders is required to interwork communication systems. Packet networks are asynchronous in nature therefore integrating time aware applications with packet network require correct timing at the interfaces to provide acceptable performance. Hence, special consideration and design is required in All-IP networks.

Cost plays a major role in the adaptation of modern technologies to existing telecommunication networks. Hence backhauling need to be a highly cost effective. At present, the IP networks have proven to be the most cost effective and thus migrating mobile network to a full-IP based network with synchronization capability provides additional cost benefit for the network operators.

In this research, technical standards and available synchronization methods are extensively evaluated. Moreover, network requirements, possibilities and limitations are also extensively analyzed. Logical behaviors are compared and analyzed for standardized synchronization techniques. Based on these analyses, implementation guidelines have been developed.

The guidelines have been prepared within the overall technical framework published by ITU-T standards and it is hoped that they will be helpful for the mobile operators who wish to migrate from existing network to future proof capacity agile packet switching network.

Keywords: Packet Networks, Synchronization, Synchronous Ethernet, IEEE 1588v2.

#### DEDICATION

I would like to dedicate this dissertation to my wife Priya, our parents, to my brothers and to my sisters. Without their continued support I could not have completed this.

#### ACKNOWLEDGEMENTS

I would like to acknowledge the inspirational support given from the lecturers and staff of Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka.

I wish to acknowledge with sincere gratitude, my supervisor Dr. Ajith Pasqual for his advice and guidance during this study and writing of this report.

I would not hesitate to acknowledge the enormous support given by industry personal, to gather statistics related to telecommunication industry not limited to Sri Lanka but also in other countries.

Also I would like to thank my friends, batch mates and co-workers at my office for their support and encouragement.

I thank my wife Priya for her support and encouragement. I could not have completed this without her assistance, tolerance and enthusiasm.

## **TABLE OF CONTENTS**

| Declar   | ation of the candidate & Supervisor                       | i    |
|----------|-----------------------------------------------------------|------|
| Abstra   | ct                                                        | ii   |
| Dedica   | tion                                                      | iii  |
| Ackno    | wledgements                                               | iv   |
| Table of | of Contents                                               | v    |
| List of  | Figures                                                   | viii |
| List of  | Tables                                                    | ix   |
| List of  | abbreviations                                             | x    |
| l Int    | troduction                                                | 1    |
| 1.1      | Motives for the Project Work                              | 1    |
| 1.2      | Synchronization of Digital Telecommunications Networks    | 2    |
| 1.2      | 2.1 Frequency Synchronization                             | 4    |
| 1.2      | 2.2 Clock Synchronization                                 | 4    |
| 1.2      | 2.3 Synchronization Errors                                | 4    |
| 1.3      | Problem Statement                                         | 6    |
| 1.4      | Technical Approach                                        | 6    |
| 1.5      | Main Contributions of the Dissertation                    | 6    |
| 1.6      | Outline                                                   | e    |
| 2 Sy     | nchronization of networks                                 | 7    |
| 2.1      | Network Synchronization Strategies                        | 7    |
| 2.1      | .1 Clocking Strategies                                    | 1    |
| 2.2      | Synchronization Network Standard Architectures for Clocks | 9    |
| 2.3      | Methods of Synchronization                                | 9    |



|   | 2.4   | Synchronization Network Protection                          | 10 |
|---|-------|-------------------------------------------------------------|----|
| 3 | Syr   | chronization in Packet Switching Networks                   | 11 |
|   | 3.1   | Packet Backhaul Domains                                     | 12 |
|   | 3.1   | 1 Packet Network Timing (PNT) Domain                        | 12 |
|   | 3.1   | 2 Circuit Emulation Services (CES) Domain                   | 12 |
|   | 3.2   | Differential Clock Recovery (DCR)                           | 13 |
|   | 3.2.  | Advantages of Differential Clock Recovery (DCR)             | 14 |
|   | 3.3   | Adaptive Clock Recovery (ACR)                               | 14 |
|   | 3.3.  | Advantages of Adaptive Clock Recovery (ACR)                 | 14 |
|   | 3.4   | Combination Clock Recovery (CCR)                            | 14 |
|   | 3.5   | In-Band and Out-of-Band Synchronization over Packet Network | 15 |
|   | 3.5.  | 1 In-Band Synchronization over Packet                       | 15 |
|   | 3.5.  | 2 Out-of-Band Synchronization over Packet                   | 15 |
|   | 3.6   | Review on Synchronous Ethernet (SyncE)                      | 15 |
|   | 3.6.  | 1 Clock and Data Path in SyncE                              | 16 |
|   | 3.6.  | 2 Network Clock and Service Clock                           | 17 |
|   | 3.7   | Review on IEEE 1588v2                                       | 17 |
|   | 3.7.  | 1 PTP Slave Clock Acquisition and Locking Process           | 19 |
| 1 | Tim   | ing over Packet Network                                     | 21 |
|   | 4.1   | ITU-T Recommendations in Synchronization                    | 21 |
|   | 4.2   | Implementation Considerations                               | 22 |
|   | 4.3   | Implementing Functionalities                                | 23 |
|   | 4.3.  | 1 Implementing SyncE Functionalities                        | 24 |
|   | 4.3.2 | 2 Implementing PTP Functionalities                          | 24 |
|   | 4.4   | Suitability of Packet Networks                              | 25 |
|   | 4.4.  | I Suitability of Packet Networks for SyncE                  | 25 |

|                                                     | 4.4    | .2    | Suitability of Packet Networks for PTP         | 26 |
|-----------------------------------------------------|--------|-------|------------------------------------------------|----|
| 5                                                   | Gu     | ide f | or Technology Selection                        | 28 |
|                                                     | 5.1    | Bac   | ckhaul Scenarios                               | 29 |
|                                                     | 5.1    | .1    | TDM Backhaul                                   | 29 |
|                                                     | 5.1    | .2    | IP Overlay on TDM Backhaul                     | 30 |
|                                                     | 5.1    | .3    | Hybrid Backhaul                                | 31 |
|                                                     | 5.1    | .4    | Packet Backhaul                                | 31 |
|                                                     | 5.2    | Nu    | mber of Hops for the Backhaul                  | 32 |
|                                                     | 5.3    | IP I  | RAN Deployment                                 | 32 |
|                                                     | 5.4    | Dec   | cision Matrix                                  | 36 |
| 6                                                   | Cor    | nclus | ions and Recommendations                       | 38 |
|                                                     | 6.1    | Cor   | nclusions                                      | 38 |
|                                                     | 6.2    | Rec   | commendations                                  | 39 |
|                                                     | 6.2.   | 1     | Grandmaster Clock                              | 40 |
|                                                     | 6.2.   | 2     | Recommendations for SyncE Quality and Priority | 42 |
| <ul><li>6.2.3</li><li>6.2.4</li><li>6.2.5</li></ul> |        | 3     | Recommendations for IEEE 1588v2                | 43 |
|                                                     |        | 4     | Network Requirement                            | 44 |
|                                                     |        | 5     | Microwave Network Requirement                  | 44 |
|                                                     | 6.2.   | 6     | Performance Management                         | 46 |
|                                                     | 6.3    | Res   | earch Contribution and Future Work             | 46 |
| R                                                   | eferen | ce L  | ist                                            | 48 |

### LIST OF FIGURES

| Figure 1.1: Timing signals a) Sinusoidal signal b) Step signal                 | 3      |
|--------------------------------------------------------------------------------|--------|
| Figure 1.2: Jitter affecting to a digital signal                               | 5      |
| Figure 2.1: Clock distribution strategies a) Distributed clock b) Master-slave | clock8 |
| Figure 3.1: Clock and data path in SyncE                                       | 16     |
| Figure 3.2: SyncE network element and clock distribution                       | 17     |
| Figure 3.3: IEEE 1588v2 deployment                                             |        |
| Figure 3.4: General principle of packet-based timing methods                   |        |
| Figure 3.5: Illustration of PTP slave clock acquisition and locking process    | 19     |
| Figure 4.1: Technology Status                                                  | 21     |
| Figure 5.1: Synchronization from E1                                            | 29     |
| Figure 5.2: Synchronization over TDM Backhaul                                  | 30     |
| Figure 5.3: IP Overlay on TDM Backhaul                                         | 30     |
| Figure 5.4: Packet transport network with E1 Sync out                          |        |
| Figure 5.5: Hybrid Backhaul                                                    | 31     |
| Figure 5.6: Packet transport network with Ethernet Sync out                    |        |
| Figure 5.7: Packet Backhaul                                                    | 32     |
| Figure 5.8: Example of IEEE 1588v2 GM locations                                | 33     |
| Figure 5.9: Boundary Clock in Network for TDD applications                     | 36     |
| Figure 6.1: High level Clocking Architecture                                   | 39     |
| Figure 6.2: Primary Reference Clock                                            | 40     |
| Figure 6.3: Leased Bandwidth to Complete Ring                                  | 41     |
| Figure 6.4: SyncE Priority in Interfaces                                       | 43     |
| Figure 6.5: Priority and Queuing in Core Network                               | 44     |
| Figure 6.6: Microwave Network Priority for Clock                               | 45     |
| Figure 6.7: Priority and Queuing in Microwave Network                          | 45     |

### LIST OF TABLES

| Table 3.1: Air interface synchronization requirement                 | 11 |
|----------------------------------------------------------------------|----|
| Table 3.2: PTP slave clock acquisition and locking process           | 19 |
| Table 5.1: IEEE 1588v2 / SyncE Comparison                            | 28 |
| Table 5.2: Traffic Class and Classification                          | 35 |
| Table 5.3: Synchronization selection matrix with TDM existence       | 36 |
| Table 5.4: Synchronization selection matrix after full-IP conversion |    |

### LIST OF ABBREVIATIONS

| Abbreviation | Description                                     |
|--------------|-------------------------------------------------|
| ACR          | Adaptive Clock Recovery                         |
| ANSI         | American National Standards Institute           |
| BC           | Boundary Clock                                  |
| BSC          | Base Station Controller                         |
| BTS          | Base Transceiver Station                        |
| CBR          | Constant Bit Rate                               |
| CCR          | Combination Clock Recovery                      |
| CES          | Circuit Emulation Services                      |
| CESoP        | Circuit Emulation Services over Packet          |
| CoS          | Class of Service                                |
| CSR          | Cell Site Router                                |
| DCR          | Differential Clock Recovery                     |
| DNS          | Domain Name Service                             |
| DSCP         | DiffServ Code Point                             |
| EEC          | Ethernet Equipment Clock                        |
| EM           | Edge Masters                                    |
| ETSI         | European Telecommunications Standards Institute |
| EVC          | Ethernet Virtual Circuit                        |
| FLL          | Frequency Locked Loop                           |
| FTP          | File Transfer Protocol                          |
| GM           | Grand Master                                    |
| GMGW         | GSM Media Gateways                              |
| GNSS         | Global Navigation Satellite System              |
| GPS          | Global Positioning System                       |
| HTTP         | Hyper Text Transfer Protocol                    |
| IETF         | Internet Engineering Task Force                 |
| IMAP         | Internet Message Access Protocol                |
| IP           | Internet Protocol                               |
| IPTV         | Internet Protocol Television                    |

| ITU-T   | International Telecommunication Union |
|---------|---------------------------------------|
| IWF     | Inter Work Function                   |
| LSP     | Label Switch Path                     |
| ME      | Metro Ethernet                        |
| MEF     | Metro Ethernet Forum                  |
| MPLS    | Multi Protocol Label Switching        |
| MTIE    | Mean Time Interval Error              |
| NTP     | Network Timing Protocol               |
| OC      | Ordinary Clock                        |
| PDV     | Packet Delay Variation                |
| PHB     | Per Hop Behavior                      |
| PLL     | Phase Locked Loop                     |
| PNT     | Packet Network Timing                 |
| PRC     | Primary Reference Clocks              |
| PSN     | Packet Switching Network              |
| QL      | Quality Level                         |
| QoS     | Quality of Service                    |
| RNC     | Radio Network Controller              |
| SDH     | Synchronous Digital Hierarchy         |
| SIGTRAN | Signaling Transport                   |
| SIP     | Session Initiation Protocol           |
| SMTP    | Simple Mail Transfer Protocol         |
| SONET   | Synchronous Optical Network           |
| SSM     | Synchronization Status Messages       |
| SSU     | Synchronization Supply Units          |
| SyncE   | Synchronous Ethernet                  |
| TDM     | Time Division Multiplexing            |
| ToS     | Type of Service                       |
| UDP     | User Datagram Protocol                |
| UI      | Unit Interval                         |
| VLAN    | Virtual Local Area Network            |
|         |                                       |

| VLL | Virtual Leased Line |
|-----|---------------------|
| VOD | Video on Demand     |