L&/$>oN/33/0,2 1 Title Page Vibration Diagnostic of Rotor Mechanisms in Ships G.G. Jayarathne This Thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa en- the- in partial fulfillment of the requirements for the Degree of Master of Philosophy. 074441 University of Moratuwa Department of Mechanical Engineering, University of Moratuwa, / L4-. u / - . / . Sri Lanka. November, 2001. T H 7 4 4 4 1 Declaration Here with, I certify that the work included in the Thesis in part or whole, has not been submitted for any other academic qualification at any institution. (Candidate) (Supervisor) ABSTRACT In ships, there are so many sources of noise and Vibration such as propulsion engines and electric generators in restricted spaces and structures of ships, which are made of steel, transmit vibration well. By the reasons, noise and vibration of ships are very big by nature and reduction of noise and vibration is important subject for ships. Regarding noise reduction, reduction of noise cause by vibration has difficulty and the major part of such noise is structure born noise. "Vibration" is not a problem. It is a physical manifestation of machinery imperfection. It is used to help find obvious and subtle deviations in machines. No machine runs perfect. "Diagnosis" is the Method of Detection. If, a fault develops and goes undetected, then, at best, the problem will not be too serious and can be remedied quickly and cheaply; at T worst, it may result in expensive damage and down-time, injury, or even loss of life. There is no reason or excuse to have machinery operate unprotected. The areas of interest in vibration measuring in plant maintenance are general measurement, analysis, and corrective. All rotor mechanisms in ships consist of shafts, bearings, couplings, gears etc. These machinery operate under various load conditions from light to heavy. Ship propulsion system comparatively works under very heavy load conditions with rolling and pitching of the ship which may tend to cause overstressing of shafts. Objective of the Research: The aim of the project is to identify the vibration analysis of a ship transmission system. A ship transmission system is the link between the crank shaft (or thrust block) end and the propeller of the vessel. As it contains number of shafts, couplings and bearings it tends to cause severe vibrations due to various running and incipient defects. These defects can be diagnosed by measuring the level of vibration to the extent they excited. Methodology Adopted: A Test Rig: The test rig is a model of the transmission system of the ship "M/V Lanka Mahapola" made in to a scale of 1:10. Level and condition of lubrication maintained. Accelerometers are mounted over the bearing casings to trace the excitement of individual bearings. Diagnosis of the misaligned and unbalanced shafts and defected sleeve (fluid film) bearings are done by using the "AUTOVIB" software package which is a vibration * monitoring method introduce by this project. Final Outcome of this research : Although spectrum analysis method is not in use, similar demodulation techniques, will be practical, for the diagnostics of Sleeve (Fluid Film) bearings. Measurement of the vibrations excited by bearing friction forces present all the necessary information for Diagnostics of bearing condition including installation problems and the quality of lubrication. iii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne ACKNOWLEDGEMENT I'd like to give special thanks to Dr. T.A. Piyasiri , Director/ITUM, who encouraged me for a M.Phil. Big tip of the hat to Dr. Piyasiri, for his help and valuable suggestions given. A special thanks goes to Prof. P.A.de Silva, Ex. Head/Mechanical Engineering, for his grateful effort and valuable advices to make this success. This project wouldn't have been possible without the concerted effort (on importing Vibration measuring equipment) of Former Dean/ Engineering Prof. L.L.Rathnayake. I owe a debt of a gratitude to Head/ Mechanical Engineering, Dr. S.R. Tittagala who has provided feedback on early attempts, which has been incorporated to this successful one. Thanks to all the current and former Supervisors of the project. In particular following individuals gave me their valuable advices and ideas in addition to proper guiding. An extra special thanks goes to Dr. P.A.B.A. Ranjan Perera, a Supervisor of the Project, who after reading these chapters for several times an unerring eye for detail and manuscript editing support, must now know more than any other else. Very special thanks go out to Dr. W.K.Wimalsiri, a Supervisor of the Project. His support continues to be invaluable. I appreciate the dedicated support of Dr. Wimalsiri, who provided ideas and advices through out the project. Of course, Chairman/ Progress Review Committee Dr. Thusitha Sugathapala deserves special thanks for always keeping everything running smoothly and inspiring me when I didn't feel very inspired. Thanks go to Mr. S.Ganesupiragash deciphering program properties and events in programming languages, providing useful suggestions. I am specially appreciative the efforts of the Mr. Darshana Liyanage imparted to the hardware application. Of course without the support of the staff in Maritime Division Mr. M.D.D. Gunathilake and Mr. Sunil Wickramasinghe, the Test Bed made for the project would be nothing more than a dream. iv Vibration Diagnostic of Rotor Mechanism in Ships By G.GJayarathne C O N T E N T S C O N T E N T S LIST OF F IGURES A N D TABLES P A G E XIV - XX LIST OF ABBREVIATIONS XXI - XXVIII PREFACE XXIX - XXXVIII CHAPTER I I LITERATURE SURVEYS CONDITION MONITORING AND FAULT DIAGNOSIS INTRODUCTION . . . . . PREVIOUS L ITERATURE REVIEWS AND SURVEYS 2 . I MASS UNBALANCE 2 . 2 BENT SHAFTS 2 . 3 CRACKED SHAFTS 2 . U CAN ONE AFFORD PLANT DOWNTIME ? . 2 . 5 WHAT IS 'CONDITION MONITORING'? . 2 . 6 WHERE CAN I T BE APPLIED L ITERATURE SURVEY . . . . 3 . I APPLICATION OF SHOCK PULSE METHOD . (SPM) FOR ROLLING BEARING AND I T S DRAWBACKS AS A MONITORING METHOD 3 . 2 DIFFERENCE BETWEEN SHOCK PULSE AND IBRATION PROCESSING SHOCK PULSE SIGNALS . SHOCK PULSE PATTERNS MEASURING OPERATION CONDITION 3 U 5 I - 13 2 3 6 8 9 9 10 10 10 10 II 12 13 CHAPTER II CODE ON NOISE LEVELS ON BOARD SHIPS \U - 18 II . I SCOPE . . . . . 15 II . 2 PURPOSE . . . . . . 15 II . 3 NOISE LEVEL L IMITS . . . . 15 V. Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne CONTENTS C h a p t e r III ROTOR MECHANISMS IN SHIPS; . 1 9 - 2 0 CLASSIFICATION; ELEMENTS; SOURCES OF VIBRATION III . I CLASSIFICATION OF SHIPS ROTOR ZO MECHANISMS III . 2 ELEMENTS OF ROTOR MECHANISMS IN SHIPS 20 C h a p t e r IV MODES OF VIBRATION 2 1 - 2 5 IV . I TORSIONAL VIBRATION . . . . 22 IV . I . I HOLZER ANALYSIS OF TORSIONAL SYSTEM 23 IV . I . 2 DRIVE TRAIN ANALYSIS 23 IV . I . 3 VIBRATION AMPLITUDES ZU IV . 2 RANDOM VIBRATION 2U IV . 2 . I WHY DO WE CARE ABOUT RANDOM 25 VIBRATION? IV . 2 . 2 WHAT IS FREQUENCY RESPONSE 25 ANALYSIS ? CHAPTER V MAIN CAUSE OF SHIP VIBRATION 2 6 - 3 1 V . I INTRODUCTION . . . . . 27 V . I . I THE ACTION OF THE SEA 27 V . I . 2 VIBRATION IN SHIPS . . . 27 V . I . 3 OUT OF BALANCE FORCES IN 31 RECIPROCATING MACHINARY CHAPTER VI VIBRATION ANALYSIS 3 2 - 3 5 VI . I INTRODUCTION . . . . . 33 VI . 2 ANALYSIS FREQUENCY IU VI . 3 ADVANTAGES / LIMITATIONS . . . 35 Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne CONTENTS CHAPTER VII FOURIER ANALYSIS VII . I CLASSIFICATION OF DATA VII . I . I DIFFERENCES BETWEEN DETERMINISTIC AND RANDOM DATA VII . I . 2 STATIONARY AND ERGODIC RANDOM . DATA VII . I . 3 NON-STATIONARY DATA VII . I . U NATURE OF TRANSIENT DATA VII . I . 5 FREQUENCY SPACING AND LENGTH CONSIDERATIONS VII . I . 6 PADDING WITH ZEROS . VII . I . 7 EFFECT OF RECORD LENGTH . VII . I . 8 COMPUTATIONAL VERSUS RESOLUTION BANDWIDTH VII . I . 9 RESOLUTION L IMITS VII . I . 10 NONZERO MEAN VALUES VII . I . II TIME WEIGHTING FUNCTIONS AND SPECTRAL LEAKAGE VII . I . 12 ANALYZING SHORT DURATION TRANSIENTS VII . I . 13 E F F E C T S OF ZERO PADDING VII . I . \U E F F E C T S OF RECORD LENGTH . VII . I . 15 E F F E C T S OF TIME WEIGHTING FUNCTIONS . (WINDOWING) VII . I . 16 HANDLING NON-ZERO MEAN VALUES . VII . I . 17 PRACTICAL EXAMPLES USING DETERMINISTIC AND RANDOM TRANSIENT WAVE FORM VII . I . 18 CONTINUOUS SINE WAVE VII VII THE COMPLEX FOURIER TRANSFORMS . 2 . 1 THE COMPLEX FOURIER TRANSFORMS (IN DETAIL) VII . 2 . 2 TIME AND FREQUENCY REPRESENTATION VII . 2 . 3 TIME AND FREQUENCY DOMAINS 36 - 75 37 37 38 38 38 U\ U2 U2 UU UU U5 U5 Ub Ub Ub Ul Ul 50 bU 5U 55 55 Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne CONTENTS VII . 3 DISCRETE FOURIER TRANSFORM AND THE F F T 59 * VII . 3 . I INTRODUCTION . . . 59 VII . 3 . 2 THE DISCRETE FOURIER TRANSFORMS. 59 VII . 3 . 3 FAST FOURIER TRANSFORMS . 61 VII . 3 . U F I L T E R S . . . . 62 VII. 3 . U . I FILTERING . . . 62 VII . 3 . U . 2 ANTI-ALIASING F I L T E R S 62 VII . 3 . 5 FOURIER TRANSFORM PROPERTIES 65 VII . 3 . 5 . I SCALING PROPERTY 65 * VII . 3 . 5 . 2 SHIFTING PROPERTY . 66 VII . 3 . 6 APPROXIMATION OF CONTINUOUS 66 TRANSFORMS WITH THE DFT VII . U SAMPLING THEOREM . . . . 67 VII . 5 REAL TIME ANALYSIS . . . . 69 VII . 6 C-PROGRAM FOR FAST FOURIER TRANSFORMATION 70 CHAPTER VIII TYPES OF BEARINGS 7 6 - 7 9 VIII . I ROLLING BEARINGS . . . . 77 VIII . 1 . 1 DEEP GROVE BALL BEARINGS . 78 VIII . 1 . 2 SELF-ALIGNING BALL BEARINGS 78 VIII . 1 . 3 ANGULAR CONTACT BALL BEARINGS . 78 VIII . I . U NEEDLE ROLLER BEARINGS 78 VIII . 1 . 5 SPHERICAL ROLLER BEARINGS 78 VIII . 1 . 6 TAPER ROLLER BEARINGS 78 VIII . 1 . 7 THRUST BALL BEARINGS 79 * VIII . I . 8 CYLINDRICAL ROLLER T H R U S T BEARINGS 79 VIII . 1 . 9 NEEDLE ROLLER T H R U S T BEARINGS . 79 VIII . 2 HYDRO-DYNAMIC BEARINGS . . . 79 VIII . 3 SLEEVE BEARINGS . . . . 79 ix Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne CONTENTS CHAPTER IX LIFE OF BEARINGS 8 0 - 8 7 IX . I INTRODUCTION . . . . . 81 IX . 2 IRREGULARITIES OF BALL BEARINGS 82 IX . 3 BEARING WEAR AND I T S CAUSES . . . 83 IX . 3 . I WEAR CAUSED BY ABRASIVE PARTICLES 83 IX . 3 . 2 WEAR CAUSED BY INADEQUATE 83 LUBRICATION IX . 3 . 3 WEAR CAUSED BY VIBRATION . 8*. IX . 3 . U SURFACE D I S T R E S S AND I T S CAUSES . 85 IX . 3 . 5 IONS AND T H E I R CAUSES 85 IX . 3 . 6 INDENTATIONS CAUSED BY FAULTY . 85 MOUNTING OR OVERLOADING IX . 3 . 7 DAMAGE CAUSED BY THE PASSAGE OF . 85 ELECTRIC CURRENT IX . U BEARING CRACKS . . . . 86 IX . U . I CRACKS CAUSED BY ROUGH TREATMENT 86 IX . U . 2 CRACKS CAUSED BY SMEARING 86 IX . U . 3 CRACKS CAUSED BY FRETTING CORROSION 86 IX . 5 BEARING CORROSSION . . . . 87 IX . 5 . I CORROSION . . . . 87 IX . 5 . 2 FRETTING CORROSION 87 CHAPTER X VIBRATION MONITORING . 8 8 - 9 1 X . I INTRODUCTION . . . . . 89 X . 2 CORRECTIVE MEASURES . . . . 89 CHAPTER XI CONDITION MONITORING AND 92 - 100 FAULT DIAGNOSTICS XI . I MACHINE MONITORING SYSTEMS . . . 93 - MAINTANANCE PROCEDURE XI . I . I PREDICTIVE MAINTANANCE 93 XI . I . 2 CONDITION MONITORING 9^. XI , 2 FORMS OF TECHNICAL MAINTANANCE 98 XI . 2 . I METHODS FOR CONTROLLING THE 98 CONDITION F MACHINES AND MECHANISMS x Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne CONTENTS CHAPTER XII VIBRATION MEASURING EQUIPMENT 101 - IU, * ' XII . I INTRODUCTION . . . . . 102 XII . 2 ACCELEROMETERS \QU XII . 2 . I THE PIEZOELECRIC EFFECT, THEORY, I0Z. DESIGN AND USAGE XII . 3 CHARGE AMPLIFIERS . . . . 109 XII . 3 . I TIME CONSTANT AND DRIFT 110 XII . 3 . 2 FREQUENCY AND TIME DOMAIN 110 CONSIDERATION XII . U LOW IMPEDANCE PIEZOELECTRIC . . . I l l TRANSDUCERS XII . U . I TIME CONSTANT . . . 112 XII . 5 LOW IMPEDANCE POWER SUPPLY (COUPLER) 113 XII . 5 . I TIME CONSTANT . . . 113 XII . 5 . 2 SELECTION METRIX . . . 113 XII . 5 . 3 DUAL MODE CHARGE AMPLIFIERS 113 XII . 6 HIGH AND LOW IMPEDANCE SYSTEM \\U COMPARISON XII . 6 . I SIMILARITIES \\U XII . 6 . 2 HIGH IMPEDANCE SYSTEMS HIGH \\U XII . 6 . 3 LOW IMPEDANCE SYSTEMS \\U XII . 7 EXTERNAL IMPEDANCE CONVERTERS \\U CHAPTER XIII VIBRATION MEASURING EQUIPMENT USED 115 - 119 XIII . I PIEZOELECTRIC ACCELEROMETER, DESIGN a U S E . 116 XIII . 1 . 1 MEASURING ACCELERATION 116 * XIII . 1 . 2 ACCELEROMETER MOUNTING . 118 XIII . 1 . 2 . 1 STUD MOUNTING 118 XIII . 1 . 2 . 2 ADHESIVE MOUNTING . 118 XIII . 1 . 2 . 3 TRIAXIAL MOUNTING 119 XIII . \ . Z . U STRAIN RELIEVING CABLE 119 XIII . 1 . 3 CALIBRATION TECHNIQUES 119 XIII . 1 . 3 . 1 ACCELEROMETERS 119 xi Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne CONTENTS CHAPTER XIV VIBRATION MONITORING SYSTEM 120 - \ZU XIV . I INTRODUCTION . . . . . 121 XIV . 2 WHY SEELVE BEARINGS ARE SELECTED ? 123 XIV . 2 . I COMMENT . . . . 123 XIV . 2 . 2 OBSERVATIONS: . . . \ZU CHAPTER XV DATA ACQUISITION CARD : ACL - 8I2PG 125 - 130 XV . I INTRODUCTION . . . . . 126 XV . 2 A SELECTION OF MEASUREMENT LOCATION 127 XV . 3 SELECTION OF THE INTERVALS BETWEEN 127 MEASURMENTS XV . U C-PROGRAME FOR CONVERSION OF ANALOG 127 SIGNAL INTO DIGITAL VALUES XV . 5 PROJECT DATA . . . . . 127 XV . 6 CONVERSION OF DIGITAL VALUE TO 129 ACCELERATION UNITS XV . 7 R E S U L T S OBTAINED FROM FAST FOURIER 130 TRANSFORMATION - ACCELARATION IN MM/S2 CHAPTER XVI 'AUTOVIB' - VIBRATION ANALYSING 131 - 137 PROGRAMME XVI . I INTRODUCTION . . . . . 132 XVI . 2 'AUTOVIB' - VIBRATION ANALYSING PROGRAMME . 135 XVI . 3 EXAMPLES OF GRAPHS OBTAINED FROM . 135 'AUTOVIB' PROGRAM XVII . U FAULT DETECTION IN ROTATING MACHINERY 136 XVII . 5 OVERALL MEASUREMENT AND SPECTRUM 136 COMPARISON XVII . 6 HOW SPECTRUM CHANGES ARE RELATED 136 TO THE CONDITION OF A MACHINE Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne ' < • \.-^ CONTENTS CHAPTER XVII DATA ANALYSIS 138 - 168 XVII . I ENVELOPE SPECTRA OBTAINED FROM 139 ELECTRIC MOTOR (EM02, EMRI AND ECUP) XVII . 2 COMPARISON OF GRAPHS Al B l l , AL.B2I . 144 AND AL-B3I XVII . 3 THE MAIN FAULTS CAUSING VIBRATIONS AT 146 MACHINE ROTATING FREQUENCY XVII . 4 FINDINGS . . . . . 165 CHAPTER XVIII CONCLUSION 169 - 173 CONCLUSION . . . . . . 170 A P P E N D I X - A C-PROGRAM FOR FAST FOURIER . 174 - 177 TRANSFORM APPENDIX - B C-PROGRAME FOR CONVERSION OF 178 - 183 ANALOG SIGNAL INTO DIGITAL VALUES APPENDIX - C 'AUTOVIB' - VIBRATION ANALYSING 184 - 194 PROGRAMME APPENDIX - D AUTO SPECTRA AND ENVELOPE SPECTRA. 195 - 239 AT DIFFERENT CONDITIONS OF A MACHINE APPENDIX - E ENVELOPE SPECTRA AT DIFFERENT . 240 - 285 CONDITIONS OF A MACHINE APPENDIX - F VIBRATION MONITORING TEST BED 286 - 303 REFERENCES 304 - 311 G L O S S A R Y 312 320 GLOSSARY . . . . . . . 313 Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST O F FIGURES A N D T A B L E S LIST O F FIGURES A N D T A B L E S LIST OF FIGURES F I G N O . F I G U R E P A G E N O . FIG. FIG. FIG. FIG. FIG. . 3 . 3 . 1 Shock Pu lse Transducer and i ts Vibration Signal II . 3 . U . I Filtered Transducer S igna ls 12 . 3 . 5 . 1 Measurements using Shock Pu lse Meter 13 I . I Allowable Daily and Occasional No ise 16 Exposure Z o n e s I . 2 Resonance Curve 17 FIG. VII . I . 10 . I S ine Shock Pu lse 44 FIG. VII . I . 17 . I Half Cycle S ine Pu lse , I ts Four ier T r a n s f o r m 48 Magnitude, and Imaginary Component (scale shifted). FIG. VII . I . 17 . 2 One Cycle S ine Pu lse , and Its Four ier T r a n s f o r m 49 Magnitude. FIG. VII . I . 17 . 3 S ine Wave and I ts Four ier Transformat ion 51 Curves FIG. VII . I . 17 . U Four ier T r a n s f o r m of 1 H z 53 FIG. VII . 2 . 3 . I T i m e Domain Signal 56 FIG. VII . 2 . 3 . 2 Frequency Domain 56 FIG. VII . 2 . 3 . 3 Example of a Non - Harmonic Periodic Motion 57 (Piston Acceleration of a Combustion Engine) FIG. VII . 2 . 3 . U Il lustration of How the Waveform can be 57 "Broken Up" into a S u m of Harmonically Related S ine -Waves Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF FIGURES AND TABLES 4 FIG. VII . 2 . 3 . 5 Il lustration of How the Signal can be Described in T e r m s of a Frequency Spectrum 58 FIG. VII . u . 1 Undersampled, Oversampled, and Critically -Sampled Unit Area Gaussian Curves. 68 FIG. VII . 6 . 1 Recording an Array (Here of Length 8) by Bi t Reversal , (A) between T w o Arrays, v e r s u s (B) In Place. 73 FIG. VII . 6 . 2 Input and Output Ar rays for F F T 75 FIG. XI . 2 . 1 . 1 Measured Vibration f rom T e s t s of Periodic Conditions 99 FIG. XI . 2 . 1 . 2 A Typical Model of a Mechanism, in Absence of Prophylactic Maintenance 99 FIG. XII . 2 . 1 . 1 T h i n Slab Representation of Crysta ls 106 FIG. XII . 2 . 1 . 2 Var ious Effects on Crysta ls 106 FIG. XII . 2 . 1. 3 Typical Frequency Response Curve 108 FIG. XII . 3 . 1 Simpli f ied Charge Amplif ier Model 109 FIG. XII . U . 1 P I E Z O T R O N Circuit & Coupler III FIG. XIII . 1 . 1 1 Typical Compress ion Mode Accelerometer 116 FIG. XIII . 1 . 1 2 K - S H E A R Accelerometer 117 FIG. XIII . 1 . 2 . A . I Cable Strain Relief 119 FIG. XIV . 1 . 1 Vibration Monitoring S y s t e m 122 FIG. XIV . 2 . 1 . 1 Sleeve Bearing Assemb ly 123 FIG. XIV . 2 . 1 . 2 Ball Bearing Assemb ly 123 FIG. XVI . 1 . 1 Illustrating of View Por ts 13/. FIG. XVI . 3 . 1 Example of Graph Obtained f rom A U T O V I B ' Program 135 FIG. XVI . 3 . 2 Example of Graph Obtained from ' A U T O V I B ' Program 135 FIG. XVII . 1 . I Characteristics of Electric Motor with No Speed 1^ 0 FIG. XVII . 1 . 2 Characteristics of Electric Motor in Running \UZ xvi Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF FIGURES AND TABLES FIG. XVII . 1 . 3 Characteristics of Electric Motor with Coupling 143 attached FIG. XVII . 2 . 1 Characteristics of Aligned Shaft - Vibration 145 Measured on F i r s t Bearing FIG. XVII . 2 . 2 Characteristics of Aligned Shaft - Vibration 145 Measured on Second Bearing FIG. XVII . 2 . 3 Characteristics of Aligned Shaft - Vibration 146 Measured on Th i rd Bearing FIG. XVII . 3 . 1 Characteristics of Bearing No. 1 with Loosen I47 Coupling No. 1 FIG. XVII . 3 . 2 Characteristics of Electric Motor with Loosen I48 Coupling No. 2 FIG. XVII . 3 . 3 Characteristics of Bearing No. 2 with Loosen I49 Coupling No. 1 FIG. XVII . 3 . U Characteristics of Bearing No. 3 with Loosen I50 Coupling No. 2 FIG. XVII . 3 . 5 Typical Spectrum - S u m m a r y of 150 Graphs XVII . 3 . 2 , 3 and 4 FIG. XVII . 3 . 6 Characteristics of Bearing No. 1 without I5I Lubrication FIG. XVII . 3 . 7 Characteristics of Bearing No. 2 without I52 Lubrication FIG. XVII . 3 . 8 Characteristics of Bearing No. 3 without I53 Lubrication FIG. XVII . 3 . 9 Typical Spectrum - S u m m a r y of the Graphs I53 made Out of FIG. XVII . 3 . 6, 7 and 8 FIG. XVII . 3 . 10 Characteristics of Bearing No. 1 with Loosen I54 Coupling No. 1 Vibration Diagnostic of Rotor Mechanism in Ships By G. G. Jayarathne . / . " >• y^f' LIST OF FIGURES AND TABLES FIG. XVII . 3 . II Characteristics of Bearing No. 2 with Loosen \5U Coupling No. 2 FIG. XVII . 3 . 12 Characteristics of Electric Motor with Loosen 155 Coupling No. 2 FIG. XVII . 3 . 13 Characteristics of Bearing No. 1 with Loosen I56 Bearing No. 1 FIG. XVII . 3 . 14 Characteristics of Bearing No. 1 with Loosen I57 Bearing No. 2 FIG. XVII . 3 . 15 Characteristics of Bearing No. 1 with Loosen I58 Bearing No. 3 FIG. XVII . 3 . 16 Effects of Soft Foot I58 FIG. XVII . 3 . 17 Characteristics of Bearing No. 1 with Loosen I59 Cap No. 1 FIG. XVII . 3 . 18 Characteristics of Bearing No. 3 with Loosen I60 Cap No. 1 FIG. XVII . 3 . 19 Characteristics of Electric Motor with Loosen I60 Cap No. 1 FIG. XVII . 3 . 20 Characteristics of Electric Motor with Loosen I6I Cap No. 2 FIG. XVII . 3 . 21 Characteristics of Bearing No. 1 with Loosen I6I Cap No. 2 FIG. XVII . 3 . 22 Characteristics of Bearing No. 2 with Loosen I62 Cap No. 2 FIG. XVII . 3 . 2 3 Characteristics of Bearing No. 1 with Loosen I62 Cap No. 3 FIG. XVII . 3 . ZU Characteristics of Bearing No. 2 with Loosen I63 Cap No. 3 xviii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF FIGURES AND TABLES F I G . X V I I . 3 . 25 Characteristics of Bearing No. 3 with Loosen Cap No. 3 F I G . X V I I . 3 . 26 Characteristics of Electric Motor with Loosen Cap No. 3 F I G . X V I I . 3 . 27 Typical Spectrum - S u m m a r y of the Graphs made Out of FIG. XVII . 3 . 1 8 , 1 9 , 2 0 , 2 1 , 2 2 and 23 xix Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF FIGURES AND TABLES LIST OF TABLES T A B L E N O . T A B L E P A G E N O . TABLE VII . I . U . I B A S I C F O R M S OF F O U R I E R UO T R A N S F O M E TABLE VII . 3 . U . 2 . I S Y M M E T R Y P R O P E R T I E S O F 6U T H E F O U R I E R T R A N S F O R M TABLE XI . I . 2 . I MONITORING P A R A M E T E R S 97 TABLE XV . 5 . I D A T A O B T A I N E D A F T E R ANALOG 128 / D IG ITAL C O N V E R S I O N TABLE XV . 7 . I R E S U L T S O B T A I N E D F R O M F A S T 130 F O U R I E R T R A N S F O R M A T I O N XX Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST O F ABBREVIAT IONS LIST O F ABBREVIAT IONS CHAPTER I dBsv Decibel shock value dBi Initial shock value dBN Normalized shock value CHAPTER II v impact velocity dB(A) Vibration energy measurement L Length of the structure M Function of the mass at the structure and its distribution I Second moment of area of the material of the structure about its neutral axis. f Frequency of applied force In Frequency of Natural Structure CHAPTER IV m Mass or inertia (in Spring-mass system) ( kg ) i Mass or inertia (in Torsional system) ( kg m ) K m Spring (in Spring-mass system) ( Nm ) Kt Spring (in Torsional system) (Nm/rad ) c m Damping (in Spring-mass system) (Ns/m ) c r Damping (in Torsional system) ( Nms/rad ) a Acceleration (in Spring-mass system) ( m /s ) 6 Acceleration (in Torsional system) ( rad/s 2 ) v Velocity (in Spring-mass system) ( m /s ) 6 Velocity (in Torsional system) (rad/s ) y Displacement (in Spring-mass system) (m ) 0 Displacement (in Torsional system) ( rad ) xxii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF ABBREVIATIONS CHAPTER VII F(l) Fourier Transform - Time response function T Periodic time CO/ Angular velocity / Time an, a„, b„ Fourier transform coefficients n Integral multiplier / o Fundamental frequency (first harmonic) Af Frequency interval /(/) Fourier time response N Number of discrete values At Sampling interval / v Sampling rate / v , Nyquist frequency F(f) Fourier Transform - Frequency response function Boxcar time response function Boxcar frequency response function Number of padded zeros Number of data values in time series Af Frequency Increment Be Resolution bandwidth fmax Highest frequency X(f) Fourier transform x(i) Inverse fourier transform k Integral coefficient cik, bk Fourier transform coefficients f(X). g(X) Original functions F ( s ) . G(S) Function after convolution X(mF) Discrete frequency transform function xxlii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF ABBREVIATIONS x(nT) Time response function realOut Array of coefficients of cosine waves in the Fourier formula. imagOut Array of coefficients of sine waves in the Fourier formula. h(l) Impulse response x(t) Input time domain y(l) Output time domain X(f) Input frequency domain Y(f) Output frequency domain H(f) Impulse frequency domain f(w) Fourier transform function f(x) Continuous time function E(x) Even part of function f(x) O(x) Odd part of function f(x) j*(-x) Imaginary Function F*(-s) Complex Conjugate of Function f(x) F(s) Fourier Transform function of f(x) p c Cosine Transform p s Sine Transform /' Numerous xo A Real constant P = ( x - x 0 ) B A frequency in Hz H„ Discrete Fourier transform of N-points W A Complex Number hk A Vector Fk k l h component of fourier transform F'/i k"' Component of Fourier transform of length n/2 dataf 1 ] Real part of/o data[2] Imaginary part of fo xxiv Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF ABBREVIATIONS CHAPTER IX Basic rating life of bearing Undamped natural (resonant) frequency (Hz) Frequency at any given point of the curve (Hz) Output acceleration Mounting base or reference acceleration Factor of amplitude increase at resonance Transducer capacitance Cable capacitance Range (or feedback) capacitor Time constant resistor (or insulation of range capacitor) Insulation resistance of input circuit (cable and transducer) Charge generated by the transducer Output voltage Open loop Gain Time Constant Charge generated by piezoelectric element Input signal at gate Transducer capacitance MOSFET GATE capacitance Force Mass Acceleration XXV Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne Li„ CHAPTER XII f a„ 0 c, c, R, Ri q v 0 A TC q Vi Cc, CHAPTER XIII F m a LIST OF ABBREVIATIONS CHAPTER XIV xxvi T l , T2, T3 Accelerometers EM Electric motor B1,B2, B3 Bearings I S Tail shaft IS Intermediate shaft C1,C2 Couplings CHAPTER XVII N Motor speed (rps) n Number of balls d Ball diameter D Pitch diameter B Contact angle of ball Z Number of polls F L Line frequency N s Synchronous speed F r o t Rotational frequency F S Slip frequency F,, Pole frequency F Z Slot frequency F Z ± F R O , Side bands F z - 2 F L ± F R 0 | Side bands F M Main supply frequency EMO Characteristics of electric motor at 0 rpm ECUP Characteristics of electric motor running with attached coupling only EMR Characteristics of electric motor running with shafting and propeller Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne LIST OF ABBREVIATIONS CAP1_B11 Characteristics of bearing no. 1 with loosen cap no. 1 CAP1B21 Characteristics of bearing no. 2 with loosen cap no.l CAP1B31 Characteristics of bearing no. 3 with loosen cap no.l CAP 1 EMI Characteristics of electric motor with loosen cap no.l CAP2B11 Characteristics of bearing no. 1 with loosen cap no.2 CAP2_B21 Characteristics of bearing no. 2 with loosen cap no.2 C A P 2 B 3 1 Characteristics of bearing no. 3 with loosen cap no.2 CAP2_EM1 Characteristics of electric motor with loosen cap no.2 CAP3B11 Characteristics of bearing no. 1 with loosen cap no.3 CAP3_B21 Characteristics of bearing no. 2 with loosen cap no.3 CAP3B31 Characteristics of bearing no. 3 with loosen cap no.3 CAP3_EM1 Characteristics of electric motor with loosen cap no.3 LB1_B11 Characteristics of bearing no. 1 with loosen bearing no.l LB1_B21 Characteristics of bearing no. 2 with loosen bearing no.l LB1_B31 Characteristics of bearing no. 3 with loosen bearing no.l L B 1 E M 1 Characteristics of electric motor with loosen bearing no. 1 L B 2 B 1 1 Characteristics of bearing no. 1 with loosen bearing no.2 L B 2 B 2 1 Characteristics of bearing no. 2 with loosen bearing no.2 LB2_B31 Characteristics of bearing no. 3 with loosen bearing no.2 L B 2 E M 1 Characteristics of electric motor with loosen bearing no.2 LB3B11 Characteristics of bearing no. 1 with loosen bearing no.3 LB3_B21 Characteristics of bearing no. 2 with loosen bearing no.3 L B 3 B 3 1 Characteristics of bearing no. 3 with loosen bearing no.3 LB3_EM1 Characteristics of electric motor with loosen bearing no.3 LC1_B11 Characteristics of bearing no. 1 with loosen coupling no. 1 LC1_B21 Characteristics of bearing no. 2 with loosen coupling no.l LC1_B31 Characteristics of bearing no. 3 with loosen coupling no.l LC1_EM1 Characteristics of electric motor with loosen coupling no. LC2B11 Characteristics of bearing no. 1 with loosen coupling no.2 LC2B21 Characteristics of bearing no. 2 with loosen coupling no.2 Jr xxvii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne L I S T O F A B B R E V I A T I O N S L C 2 B 3 1 Characteristics of bearing no. 3 with loosen coupling no.2 LC2_EM 1 Characteristics of electric motor with loosen coupling no.2 UM_B11 Characteristics of bearing no. 1 with unbalance mass U M B 2 1 Characteristics of bearing no. 2 with unbalance mass UM_B31 Characteristics of bearing no. 3 with unbalance mass UM_EM1 Characteristics of electric motor with unbalance mass N0L1_B11 Characteristics of bearing no. 1 without lubrication NOL2_B21 Characteristics of bearing no. 2 without lubrication NOL3_B31 Characteristics of bearing no. 3 without lubrication ECUP Characteristics of electric motor with coupling attached A L B 11 Characteristics of bearing no. 1 with shaft aligned AL_B21 Characteristics of bearing no. 2 with shaft aligned AL_B31 Characteristics of bearing no. 3 with shaft aligned •A X X V I I I Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne t P R E F A C E P R E F A C E A ship is the home of the crew for months at a time and of her passengers perhaps for weeks. The influence of vibration upon comfort is therefore extremely important and wil l be a factor in the reputation of any passenger ship. Vibration P r o b l e m s on s h i p s s u c h a s m a s t , founda t ion , a n d p rope l l e r shaf t vibrat ion exc i ted by propuls ion s y s t e m f r e q u e n c i e s c a n lead to s t ruc tura l fa t igue , d a m a g e to mach ine r y , a n d c a n b e a n n o y i n g , uncomfo r t ab l e , a n d d a n g e r o u s for p e r s o n s on t h e sh ip . Vibrat ion h a s b e e n a m a t t e r of c o n c e r n to sh ip d e s i g n e r s s i n c e t h e e n d of t h e 19th c e n t u r y a l t h o u g h its p r e s e n c e in sh ip cha rac t e r i s t i c s w a s k n o w n long be fo re t ha t t ime a n d its i m p o r t a n c e h a s b e c o m e m u c h e m p h a s i z e d o v e r t h e las t half cen tu ry . S o m e sailing w a r s h i p s , particularly t h e lightly-built f r igates , suf fered from s e r i o u s vibration aft w h e n driven hard , p r o b a b l y a s a resul t of flow interact ion while t h e r e a r e a c c o u n t s of mas t / sa i l c o m b i n a t i o n s c a u s i n g s u c h s e v e r e vibration tha t c r e w m e n w e r e th rown from their fee t or, w o r s e , from their m a s t - t o p pos i t ions . T o d a y , a n inc reas ing n u m b e r of n e w or a l te rna t ive s h i p s is l a u n c h e d - very l a rge a n d very fast c o n t a i n e r sh ip s , c ru i se s h i p s , t a n k e r s with m o d e r n p ropu l s ion s y s t e m s . D u e to little e x p e r i e n c e with s u c h s h i p s , living cond i t i ons c a n b e a d v e r s e l y affected by vibration if t h e f r e q u e n c i e s of major exc i t a t i ons a r e c l o s e to a na tura l f r equency of t h e s u p e r s t r u c t u r e or a par t of it. In s h i p s , t h e r e a r e s o m a n y s o u r c e s of n o i s e a n d Vibration s u c h a s p ropu l s ion e n g i n e s a n d e lect r ic g e n e r a t o r s in res t r ic ted s p a c e s a n d s t r u c t u r e s of s h i p s , which a r e m a d e of s t ee l , t r ansmi t vibration well. By t h e r e a s o n s , n o i s e a n d vibrat ion of s h i p s a r e very big by n a t u r e a n d reduc t ion of n o i s e a n d vibration is impor tan t s u b j e c t for s h i p s . M X X X Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E Effect of Vibration : O n e c a n d is t inguish two a r e a s , w h e r e s t a n d a r d s h a v e b e e n d e v e l o p e d to a s s e s s t h e effect of vibration, appl ied to t h e h u m a n body: vibration p a s s i n g to h a n d a n d w h o l e body . T h e vibration p a s s e s to h a n d , c a n c a u s e t h e d i s e a s e , ca l led a s "white finger d i s e a s e , " t h e latter c a n lead to var ie ty of hea l th p r o b l e m s , r ang ing from mot ion s i c k n e s s to t i s s u e d a m a g e s . It shou ld b e n o t e d , t ha t t h e re la t ionship b e t w e e n e x p o s u r e a n d t h e d i s e a s e is c o m p l e x a n d m a n y q u e s t i o n s in this a r e a , r ema in u n a n s w e r e d . A n u m b e r of s t a n d a r d s incorpora t ing t h e la tes t s t a t e of k n o w l e d g e h a v e b e e n in t roduced o v e r t h e last few y e a r s with t h e objec t of giving g u i d a n c e to t h o s e , w h o requ i red to a s s e s s t h e i m p o r t a n c e of h u m a n vibration e x p o s u r e . It is n o w gene ra l l y be l i eved tha t vibration c a u s e s d a m a g e to b lood v e s s e l s , which a r e t h u s m a d e i n c a p a b l e of circulating blood to t h e ex t remi t i e s . T h e r e is n o known c u r e a n d s y m p t o m s , which a r e i r reversible . S o it is c lear ly impor tan t to e s t a b l i s h t h e levels of vibration a n d t h e dura t ion of e x p o s u r e , which a r e stat ical ly likely to c a u s e t h e d i s e a s e a n d to t a k e p r e c a u t i o n s . Noise: N o i s e h a s b e e n r e c o g n i z e d a s a n u i s a n c e (in t h e legal s e n s e ) for m a n y y e a r s . N u i s a n c e c a n b e e i the r public or pr ivate . A pr ivate n u i s a n c e is c o m m o n l y def ined a s a n unlawful in te r fe rence with a p e r s o n ' s u s e or e n j o y m e n t of land or of s o m e right ove r it or in c o n n e c t i o n with it. A public n o i s e is a n unlawful ac t or o m i s s i o n c a u s i n g in te r fe rence with t h e hea l th a n d sa fe ty of t h e publ ic a t l a rge . A noisy ope ra t i on c a n b e both a public a n d a pr ivate n u i s a n c e . It is not a l w a y s e a s y to a n s w e r t h e q u e s t i o n of w h e t h e r t h e n u i s a n c e c o m p l a i n e d of is a public or a pr iva te o n e . If t h e n o i s e n u i s a n c e affects jus t o n e p e r s o n or a h o u s e h o l d , it is clearly a pr ivate n u i s a n c e . If it affects a c l a s s of t h e public, s u c h a s t h e r e s i d e n t s of a c o m m u n i t y or of t h e p a s s e r s - b y of a no isy factory, it is likely to b e a public n u i s a n c e . xxxi Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E A pr iva te ac t ion c a n only b e b rough t by t h e o c c u p i e r of t h e land or by s o m e o n e w h o h a s a legal in te res t in t h e land, a n d h e c a n only t a k e ac t ion a g a i n s t t h e p e r s o n w h o c a u s e t h e n u i s a n c e . A public n u i s a n c e is a c r ime , a n d p r o c e e d i n g s c a n b e t a k e n by public b o d i e s s u c h a s t h e local author i ty or A t t o r n e y - G e n e r a l or both . All t h e criminal s a n c t i o n s a r e ava i l ab le to t h e court , a n in addi t ion it h a s p o w e r to i s s u e a n a b a t e m e n t o rder , which m a y t a k e t h e form of restr ict ing t h e n o i s e to cer ta in hou r s , or levels , or to c e a s e entirely. It is well known tha t m u c h of m o d e r n t e c h n o l o g y is de r ived from pro jec t s o r d e r e d by t h e military industry of t h e d e v e l o p e d c o u n t r i e s . T h e d e e p e s t r e s e a r c h of m a c h i n e s a n d e q u i p m e n t vibration is d o n e initially in c o u n t r i e s with s t r o n g nava l fo rces , which h a v e impor tan t n e e d s to minimize n o i s e a n d vibrat ion. A n u m b e r of nava l r e s e a r c h c e n t e r s tha t d e a l with us ing a n d d e v e l o p i n g analyt ical too ls for vibration m e a s u r e m e n t a n d reduc t ion exis t in D e v e l o p e d C o u n t r i e s . T h e s e c e n t e r s a r e e q u i p p e d with m o d e r n i n s t rumen ta t i on for m e a s u r e m e n t a n d a n a l y s i s of s i g n a l s .most ly us ing i n s t r u m e n t s p r o d u c e d by Bruel & Kjaer ( D e n m a r k ) a n d Kistler (Norway) . A n u m b e r of highly qualified e x p e r t s work in t h e s e c e n t e r s a n d p r e p a r e s p e c i a l i s t s for navy a n d shipbui lding industry. T h e g r e a t e s t a d v a n c e s c a n m a k e in t h e condi t ion d i a g n o s t i c s of m a c h i n e s us ing vibrat ion. , T h e AUTOVIB monitor ing m e t h o d for condi t ion d i a g n o s t i c s of m a c h i n e s us ing vibration c a n b e success fu l ly u s e d in a n u m b e r of civil i ndus t r i e s including e n e r g y , n u c l e a r p o w e r p lan t s , p a p e r a n d pulp , meta l lu rgy , t r a n s p o r t including s h i p s , aviat ion a n d ra i lways . O n e of t h e main p r o b l e m s in Sri l anka is a g r e a t s h o r t a g e of s p e c i a l i s t s w h o c a n efficiently u s e condi t ion monitor ing a n d d i a g n o s t i c s s y s t e m s , including t h o s e with e x p e r t s y s t e m s tha t a r e supp l ied by t h e lead ing W e s t e r n c o m p a n i e s . T o p r e p a r e t h e s e spec i a l i s t s would t a k e t oo m u c h t ime . Th i s fact h a s def ined t h e main pecul iar i t ies of t h e vibration d i a g n o s t i c s in Sri l anka . T h e s t r a t e g y of AUTOVIB, is to d e v e l o p a s y s t e m for condi t ion d i a g n o s t i c s of s l e e v e b e a r i n g s (fluid film b e a r i n g s ) tha t c a n b e app l ied equa l ly for ball b e a r i n g s a s well. xxxii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E The main problems peculiar to the Sri lankan market T h e c h a n g e s a s s o c i a t e d with t h e introduction of m a r k e t re la t ions in t h e n u m b e r of i ndus t r i e s in Sri lanka w e r e s t a r t ed a t t h e e n d of t h e 1 9 5 6 a n d after 1 9 8 0 s with t h e introduction of O p e n e c o n o m y . P l a n s for res t ruc tur ing t h e e c o n o m y inc luded p l a n s to d e c r e a s e produc t ion c o s t s a n d e x c e s s l abour e n e r g y . T h e d r a w b a c k s prevail in improving of t h e efficiency of p roduc t ion p r o c e s s e s is b a s e d on t h r e e main a s s u m p t i o n s : • T h e a b s e n c e of financial r e s o u r c e s in t h e coun t ry to r e n e w t h e m a c h i n e r y a n d e q u i p m e n t in t h e majority of indus t r i es for a t l e a s t five to t en y e a r s . T h e na tu ra l w e a r of t h e e q u i p m e n t shou ld significantly i n c r e a s e its m a i n t e n a n c e c o s t s a n d t h e introduction of t h e condi t ion d i a g n o s t i c s s y s t e m s is likely to b e t h e m o s t pract ical w a y to d e c r e a s e t h e s e c o s t s . • Rela t ively high i n v e s t m e n t s ove r high level d i a g n o s t i c s y s t e m s (Automat i c Condi t ion moni tor ing S y s t e m s ) p r e v e n t o w n e r s by utilizing s u c h a s y s t e m . • Signif icant l imitations of exis t ing condi t ion d i a g n o s t i c t e c h n o l o g i e s from l ead ing W e s t e r n c o m p a n i e s . T h e following r e a s o n s tha t limit t h e u s e of m o d e r n condi t ion moni tor ing a n d d i a g n o s t i c s s y s t e m s of A m e r i c a n a n d W e s t - E u r o p e a n p roduc t ion in Sri l anka • T h e a b s e n c e in m o s t r e g i o n s of qualified p e r s o n n e l w h o c a n u s e t h e s e s y s t e m s , d e s p i t e t h e e x i s t e n c e of a n u m b e r of scientific c e n t e r s with e x p e r t s of h ighe r qualification. T h e p rob lem is t ha t to p r e p a r e a p e r s o n to b e a qualified e x p e r t t a k e s s e v e r a l y e a r s a n d would requ i re significant f inancial r e s o u r c e s . • T h e high relat ive pr ice of t h e c o m m o n moni tor ing a n d d i a g n o s t i c s y s t e m s in Import ing. For e x a m p l e , in t h e W e s t t h e pr ice of t h e d i a g n o s t i c i n s t rumen ta t i on n e e d e d for a n e x p e r t to work on t h e e n t e r p r i s e is l e s s t h a n or e q u a l to c o m p a r e d to t h e labor c o s t s of a n e x p e r t for t h e e n t e r p r i s e dur ing a y e a r . In Sri lanka , taking into a c c o u n t t h e t ax policy, t h e pr ice for t h e d i a g n o s t i c e q u i p m e n t e q u a l s t h e i n c o m e of a n e x p e r t for a b o u t t en y e a r s . This m a k e s t h e survival of smal l c o m p a n i e s s p e c i a l i z e d in d i a g n o s t i c s e r v i c e s imposs ib le . xxxiii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E • O n e m o r e r e a s o n , which is a l s o e c o n o m i c is t h e high c o s t s of m o u n t i n g p e r m a n e n t t r a n s d u c e r s on exis t ing e q u i p m e n t . Typically, t h e cons t ruc t ion of uni ts shou ld b e r e d e s i g n e d to a s s u r e a p p r o p r i a t e m o u n t i n g a n d pro tec t ion of t h e t r a n s d u c e r s s o a s not to d e s t r o y t h e m in t h e p r o c e s s of s t a n d a r d m a i n t e n a n c e of t h e e q u i p m e n t . • T h e last r e a s o n is c o n n e c t e d to t h e e x i s t e n c e of v a r i o u s s t a n d a r d s a n d r egu l a t i ons tha t differ in e a c h industry t ha t def ine t h e r e q u i r e m e n t s for different p a r a m e t e r s of t h e main e q u i p m e n t a n d m e t h o d s for their control . T h e s e r egu la t i ons d o not allow mak ing a dec i s ion for m a i n t e n a n c e a n d repa i r of t h e e q u i p m e n t without conduc t ing s t a n d a r d m e a s u r e m e n t s tha t usua l ly requ i re t h e s h u t d o w n of t h e e q u i p m e n t a n d partial d i s a s s e m b l y of t h e uni ts . T h a t ' s why t h e s e r egu la t ions m a k e it imposs ib l e to u s e m o d e r n condi t ion moni tor ing s y s t e m s a n d u s e condit ion b a s e d m a i n t e n a n c e . Th i s a n a l y s i s of t h e cur ren t s i tuat ion led to a r e c o m m e n d a t i o n to s p e e d up t h e d e v e l o p m e n t of t h e m e t h o d s for m a s s condit ion d i a g n o s t i c s t ha t c a n b e car r ied out by a u s e r with no spec ia l training in condi t ion d i a g n o s t i c s . T h e s e m e t h o d s w e r e d e v e l o p e d ove r a per iod of s e v e r a l y e a r s b a s e d on t h e a n a l y s i s of m a c h i n e v ibra t ions in t h e shipbui lding industry a n d t h e r e su l t an t ex t rac t ion of d i a g n o s t i c information s igna l s . T h e m e t h o d s d e v e l o p e d w e r e i n t e n d e d to b e u s e d for condi t ion d i a g n o s t i c s of s u p p l e m e n t a r y m a c h i n e s a n d e q u i p m e n t t h e m a i n t e n a n c e of which w a s not g o v e r n e d by t h e exis t ing s t a n d a r d s a n d r egu l a t i ons . Th i s a n a l y s i s w a s t h e b a s e of this project . At t h e s a m e t ime, a n u m b e r of p r o b l e m s b e c a m e ev iden t during t h e de ta i l ed m a r k e t r e s e a r c h s t a g e : • T h e first p rob l em w a s t h e n e e d for appl ica t ion so f tware b a s e d on t h e d e v e l o p e d m e t h o d s tha t would efficiently r e p l a c e a qualified expe r t . T h e s y s t e m shou ld a s k t h e c u s t o m e r to d e s c r i b e t h e e q u i p m e n t for d i a g n o s t i c s , def ine w h a t d a t a shou ld b e m e a s u r e d , p r o c e s s t h e m e a s u r e d d a t a , m a k e condi t ion d i a g n o s t i c a n d predict ion for t h e m a c h i n e s a n d e q u i p m e n t u n d e r control . xxxiv Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E • T h e s e c o n d p rob l em o c c u r r e d after t h e s tar t of t h e exploi ta t ion by t h e c u s t o m e r s of t h e a u t o m a t i c d i agnos t i c s y s t e m s cons i s t ing of t h e m e a s u r e m e n t d e v i c e , p e r s o n a l c o m p u t e r a n d t h e appl ica t ion so f twa re . Th i s w a s t h e p rob l em of t h e c u s t o m e r s s u p p o r t in t h o s e ra re s i t ua t ions w h e n t h e a u t o m a t i c d i a g n o s t i c s did not a n s w e r e d t h e q u e s t i o n of w h a t is t h e de fec t in t h e m a c h i n e a n d how d a n g e r o u s it is. Noise Generated From Machine Vibrations If you w a n t to r e d u c e m a i n t e n a n c e c o s t s you m u s t improve e q u i p m e n t mainta inabi l i ty a n d reliability. T h e p r e m i s e be ing , if t h e e q u i p m e n t d o e s not fail a s often, it c o s t s l e s s to repair . W h e n e q u i p m e n t d o e s fail, l onger life c a n b e a c h i e v e d if p r o p e r r epa i r s a r e m a d e . P r o p e r r epa i r s m e a n s t h e c a u s e of failure m u s t b e identified a n d e l imina ted . If this is not d o n e t h e e q u i p m e n t will fail a g a i n . T h e s e ob jec t ives c a n b e a c c o m p l i s h e d dur ing t h e acquis i t ion p h a s e of n e w e q u i p m e n t , t h e p u r c h a s e of s p a r e pa r t s , a n d a c c u r a t e d i a g n o s i s of all rota t ing m a c h i n e r y p r o b l e m s . If e i ther of t h e s e i t ems a r e not proper ly m a n a g e d t h e ob jec t ives m a y not b e a c h i e v e d . Execu t i ve e v a l u a t i o n s , p a y m e n t of b o n u s e s , p roduct ion ob jec t ives a n d o t h e r b rownie point s y s t e m s t e n d to f o c u s m a n a g e m e n t ' s a t ten t ion on t h e shor t t e rm i n s t e a d of t h e long t e r m . Th i s c a n a l s o affect maintainabil i ty a n d reliability. In field b a l a n c i n g m a c h i n e s with high vibra t ions , t h e u s e of c o m m o n m e t h o d s of d e t e r m i n i n g b a l a n c e w e i g h t s often d o e s not yield sa t i s fac tory r e su l t s . An a n a l y s i s of t h e r e a s o n s for this s h o w s tha t t h e r e a r e two ma in g r o u p s of c o n s t r a i n t s on t h e ba l anc ing efficiency: T h e fo rces of different n a t u r e from s imp le u n b a l a n c e t ha t exc i t e vibration a t t h e rotat ing f r e q u e n c y a n d t h e e x i s t e n c e of cer ta in d e f e c t s in t h e m a c h i n e tha t c a n c h a n g e t h e m e c h a n i c a l p r o p e r t i e s of t h e m a c h i n e . T h e t e c h n o l o g y on how to d i a g n o s e p r o b l e m s in rotat ing m a c h i n e r y is equa l ly unpa ra l l e l ed . T h e t e c h n o l o g y h a s p r o g r e s s e d from a m p l i t u d e m e a s u r i n g a n d t r end ing to us ing t h e t ime d o m a i n s ignal , p h a s e , a n d f r e q u e n c y d o m a i n s p e c t r a for a c c u r a t e d i a g n o s i s of specif ic p r o b l e m s . In fact, it m a y b e t ime to X X X V Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E p r o g r e s s to t h e next s t e p b e y o n d predict ive m a i n t e n a n c e to e q u i p m e n t maintainabi l i ty a n d reliability. C o n s i d e r a t i o n of t h e reliability a n d s e r v i c e life of a m a c h i n e s u g g e s t s t ha t low f r e q u e n c y v ibra t ions p r e s e n t t h e g r e a t e s t s o u r c e of d a n g e r to a m a c h i n e . For m a c h i n e s with rotat ing p a r t s (rotors) , this is typically a vibrat ion a t t h e rotat ion f r e q u e n c y . Th i s vibration m a y significantly i n c r e a s e dur ing t h e m a c h i n e o p e r a t i o n . Usually, w h e n t h e vibration level e x c e e d s cer ta in limits, t h e u s e r s c o n d u c t m a i n t e n a n c e of t h e m a c h i n e . T h e inertial f o r ce s d u e to t h e u n b a l a n c e of t h e rotat ing p a r t s relat ive to t h e rotation ax is a r e typically c o n s i d e r e d to b e t h e r e a s o n s for t h e vibration i n c r e a s e . T h a t ' s why t h e u s e r s try field b a l a n c i n g t h e m a c h i n e w h e n pos s ib l e . Unfortunately, a t t empt ing to b a l a n c e t h e m a c h i n e m a y not a l w a y s p r o d u c e a c c e p t a b l e resu l t s . T h e main r e a s o n s for this a r e o t h e r p r o b l e m s of t h e m a c h i n e or of its s u p p o r t s . T o e l imina te addi t ional e x p e n s e s a n d d e l a y s , t h e c u s t o m e r shou ld h a v e t h e information a b o u t t h e v a r i o u s p o s s i b l e d e f e c t s of t h e m a c h i n e tha t c a n b e r e s p o n s i b l e for t h e m a c h i n e vibration a t t h e rotating f r equency a n d th is information s h o u l d b e ava i l ab l e be fo re or a t l eas t during t h e ba l anc ing . T h e factor, t h e vibration still r e m a i n s a s a n ac tua l p r o b l e m with i n c r e a s e in s p e e d a n d load of m a c h i n e s in s h i p s . T h e t echn ica l d i a g n o s t i c is t h e p r o c e s s of t e s t ing t h e m a c h i n e , in o rde r to t e s t t h e condi t ion of it. T h e r e f o r e t h e t echn ica l d i a g n o s t i c h e l p s to d e t e c t t h e faults of m a c h i n e s while t h e y o p e r a t e . T h e c h a n g e in condit ion of vibration of m a c h i n e s m a y c a u s e t h e c h a n g e in t e chn i ca l condi t ion of sh ip m a c h i n e r y t h e n t h e condi t ion of t h e sh ip . T h e t e r m Diagnostic is a G r e e k word , a n d m e a n s t h e ability to d i s c e r n . It is u s e d in Medical S c i e n c e . T h a t is t h e sec t ion , which ind ica t e s t h e s y m p t o m s of d i s e a s e s a n d m e t h o d s us ing to identify t h e d i s e a s e s . Accurate Diagnosis A c c u r a t e d i a g n o s i s of m a c h i n e r y p r o b l e m s p r o v i d e s t h e in te l l igence for n e w e q u i p m e n t acqu i s i t ions , s p a r e p a r t s p u r c h a s i n g , a n d n e c e s s a r y r epa i r s . Th i s is why this very impor tan t function m u s t b e par t of t h e E q u i p m e n t Maintainabil i ty a n d Reliability g r o u p . xxxvi Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E O n c e a p r o b l e m h a s b e e n identified t h e n e c e s s a r y m a i n t e n a n c e a n d e n g i n e e r i n g ta len t m u s t b e ava i l ab le to d e t e r m i n e t h e p r o p e r fix. A c c u r a t e d i a g n o s i s of m a c h i n e r y p r o b l e m s r e q u i r e s a lot m o r e t h a n condi t ion moni tor ing a n d t r end ing . A c c u r a t e d i a g n o s i s r e q u i r e s t h e p r o p e r h a r d w a r e , so f tware , t e c h n o l o g y , a n d skilled p e o p l e . This i nc ludes t h e u s e of f r e q u e n c y d o m a i n s p e c t r a , t ime d o m a i n s igna l s , a n d p h a s e r e l a t ionsh ips of f r e q u e n c i e s . T h e first r e s p o n s e is "we can ' t afford that ." T h e fact is t ha t you can ' t afford not to d o a c c u r a t e d i a g n o s i s . If t h e right h a r d w a r e , sof tware , a n d t e c h n o l o g y a r e p l a c e d in t h e h a n d s of skilled p e o p l e , t h e p a y b a c k per iod is t h e s h o r t e s t , a n d t h e re turn on i n v e s t m e n t (ROI) is m o r e t h a n for a n y o t h e r i n v e s t m e n t t o d a y . T h e s e s a v i n g s a r e rea l ized by a reduc t ion in m a i n t e n a n c e c o s t a n d i n c r e a s e d p roduc t ion . M a n a g e r s s h o u l d rea l ize t h e y m a y h a v e to p u r c h a s e n e w e q u i p m e n t a n a l y z e r s a n d t r a n s d u c e r s . High quali ty p e r s o n n e l s h o u l d b e a s s i g n e d to t h e p r o g r a m . T h e s e p e o p l e m u s t b e t ra ined in t h e b e s t t e c h n o l o g y . P e o p l e ' s a t t i tude s h o u l d b e c h a n g e d from condit ion monitor ing a n d t r end ing to a c c u r a t e d i a g n o s i s with vibration a n a l y s i s . If t h e s e ob jec t ives a r e a c h i e v e d , t h e i n c r e a s e in profits for a m e d i u m plant shou ld b e a t l eas t o n e million do l la r s p e r y e a r . I m b a l a n c e is a l inear p rob l em. Linear p r o b l e m s b e h a v e in a l inear m a n n e r . If a m a c h i n e is ou t of b a l a n c e , you shou ld b e a b l e to b a l a n c e it in t h r e e or four r u n s . If b a l a n c i n g is s o s imple , w h a t is t h e p r o b l e m ? T h e p r o b l e m is i n a c c u r a t e d i a g n o s i s . T h e r e a r e a lot of vibration "expe r t s " t ha t c a n n o t tell t h e d i f ference b e t w e e n i m b a l a n c e , l o o s e n e s s , b e n t shaft , m i sa l i gnmen t , softfoot, b r o k e n rotor b a r s , a n d loading. All of t h e s e p r o b l e m s c a n c a u s e a high a m p l i t u d e a t rotor s p e e d , h o w e v e r t h e s e p r o b l e m s c a n n o t b e so lved by b a l a n c i n g . T h e p r o g r a m "AUTOVIB" g i v e s a b road r a n g e of o p t i o n s to d i a g n o s e a b o v e m e n t i o n e d d i s o r d e r s a n d irregulari t ies of t h e m a c h i n e r y . xxxvii Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne P R E F A C E X X X V I I I Vibration Diagnostic of Rotor Mechanism in Ships By G.G.Jayarathne