LB/DON/33/02

5

DEVELOPMENT OF GUIDELINES FOR ANALYSIS, DESIGN, CONSTRUCTION AND REPAIR OF MASONRY ARCHES

by

H. Yasomali Fernando, B.Sc.Eng. (Hons.)

Degree of Master of Engineering in Structural Engineering Design

පත්කක්ෂාව ක්ෂාවේ වී. ක්ෂාවේ ප්රේශී ප්රීමාවේ ප්රේශී ප්රීමාවේ

624 °011" 624 •6

Department of Civil Engineering University of Moratuwa Sri Lanka.

August 2001

74442

TH

SUMMARY

Masonry arch has a long history of usage since it was first used by Egyptians 5000 years ago. The 12th & 13th centuries saw the greatest developments in stone masonry arch in U.K. and Europe. It possessed great advantage in structural applications, but its usage has been retarded with the advent of tension carrying material. Nowadays it is only viable for small span bridges where aesthetic considerations govern the choice. However in Sri Lanka too, a large number of old masonry arches, some of medium to long span, are still in use as road bridges or rail bridges. Therefore, Bridge Engineers still have to deal with them and their task is extremely difficult due to lack of design or other guidance through Codes of Practice. Hence, a comprehensive study of masonry arch bridges covering analysis, design, construction, maintenance and repair was considered opportune to provide the much needed guidance.

In the analytical study, previous theoretical studies available in literature were reviewed and fundamental theories, which have been derived, were used for the computation of influence lines for moving loads on masonry arch bridges. Elastic method was found to be the most satisfactory method and guidance was developed for the conduct of vertical and lateral load analysis. For the engineers who favour the use of the finite element technique, studies were conducted to determine a suitable element and mesh capable of providing an economical solution, which does not deviate by no more than 5% from the exact solution. The MEXE method was found to be the best approach for routine strength checking of existing masonry arch bridges, and its details were presented for local usage. Study of secondary effects led to the development of methods to consider secondary effects in masonry circular arch analysis from basic principles and also using finite element techniques.

Bridges in use where structural construction drawings are available were studied in detail. The available type drawings were checked for viability for suitable modifications if necessary, and all available empirical rules for proportioning arches and various design approaches were reviewed. The study led to the recommendation of an empirical formula for proportioning the arch, as well as a detailed design procedure for the maximum utilization of the BS 5628, which gives little specific guidance on design of masonry arch bridges.

ii

Y.

Previous construction methods available in literature for arch construction now long forgotten were studied. This review led to the recommendation of methods suitable for Sri Lankan conditions.

Finally, various defects and repair methods recommended in the available literature were studied in detail, and repair methods suitable for Sri Lankan conditions were recommended.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENTS

The Author expresses her sincere gratitude to the following.

Prof. N.A.D.R. de Alwis, Head, Department of Civil Engineering University of Moratuwa for giving an opportunity to follow the M.Eng. Degreee Course,

Supervisor of this project Professor S.R. de S. Chandrakeerthi for his excellent guidance, inspiration and advice throughout the project, and for the critical assessment and refinement of the dissertation,

Dr. (Mrs.) M.T.P. Hettiarachchi, the Course Coordinator for her encouragement and guidance throughout the study; Mrs. D. Nasnayakkara of the staff for her valuable assistance in computing the project work; Computer Staff of University of Moratuwa Civil Engineering Department for their assistance provided from the Computer laboratory, University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Road Development Authority for sponsoring this work and providing relevant technical information,

Road Development Authority officials who helped in numerous ways in the preparation of my thesis.

CONTENTS

Page

TITLE		
SUMMAR	Υ	
ACKNOW	LEDGEMENTS	i
CONTENT		
LIST OF F	IGURES	
LIST OF T	ABLES	>
NOTATIO	NS	x
TERMINC	DLOGY	>
CHAPTE 1.1	R 1 - INTRODUCTIONGeneral	
1.2	Need for Research	
1.3	Objectives of the Investigation	
1.4	Methodology	
1.5	Main Findings	
1.6	The Presentation of Chapters. WWW.IID.INIT.ac.Ik	
CHAPTE	R 2 - THE INVESTIGATION OF METHODS OF ANALYSIS	

	Α	ND THEIR USAGE	1
2.1	Introduction		
2.2	Survey	of previous research into analytical methods of	
	arch structures		
	2.2.1	Introduction	1
	2.2.2	Classical Arch Theory	1
	2.2.3	Plastic Hinge Method	1
	2.2.4	Finite Element Method	
	2.2.5	MEXE (Military Engineering Experimental	
		Establishment) Method	,
	2.2.6	Line of Thrust Method	
	2.2.7	Correlation between Theoretical Results and	
		Model Testing	2

	2.2.8	Conclusion from Literature Review	31
2.3	Bridge Engin	neering Requirements for Analysis of Arch Bridges	35

CHAPTER 3 - VERTICAL AND LATERAL LOAD ANALYSIS

APPLIED TO ARCH BRIDGES	43
-------------------------	----

	3.1.1	General	44
	3.1.2	Application of Elastic Method based on	
		Classical Arch Theory	44
	3.1.3	Application of Finite Element Method	48
	3.1.4	Comparison & Conclusion	50
3.2	Wind I	Load Analysis of Masonry Arch Bridges	51
3.3	Main (Conclusions of Structural Analysis of Arch Bridges	53

CHAPTER 4 - LAYOUT AND PROPORTIONING OF

	Μ	ASONRY ARCHES
4.1	S (1997)	ction University of Moratuwa, Sri Lanka
	4.2 R	view of Previous Literatures & Dissertations
	4.2.1	Type of Structure
	4.2.2	Layout
	4.2.3	Proportioning
4.3	Results	of the Study
4.4	Conclu	sions

CHAPTER	R5- DE	SIGN	166
5.1	Introduc	ction	167
5.2	History		168
5.3	General		171
5.4	Modes	of Failure	183
	5.4.1	Sliding	185
	5.4.2	Overturing	186
	5.4.3	Crushing	186
	5.4.4	Snap Through	187
	5.4.5	Shear	188

5.5	Recommended Method of Design	
	5.5.1 General 18	
	5.5.2 Design Process	
	5.5.3 Design Checks	
5.6	Conclusion 19	
СНАРТЕ	R 6 - CONSTRUCTION OF MASONRY ARCH BRIDGES 19	
6.1	Introduction 19	
6.2	Review of Previous Literature on Construction of	
	Masonry Arch Bridges 19	
6.3	Selection and use of Voussoir Units and mortar	
6.4	Centering 21	
	6.4.1 General 21	
	6.4.2 Design	
6.5	Construction Method	
6.6	Detailing	
6.7	BAR BERGER BERGER BERGER BERGER BERGER	
	Electronic Theses & Dissertations	
	CR 7 - REPAIR OF MASONRY ARCHES 23	
7.1 Introduction		
7.2		
7.3		
	of a Bridge Needing Repair	
	7.3.1 General 24	
	7.3.2 Aims of Repair 24	
	7.3.3 Facts for Consideration 24	
	7.3.4 Preliminary Clearing 24	
7.4		
	7.4.1 Saddling	
	7.4.2 Pointing and Grouting	
	7.4.3 Guniting of Soffit 24	
	7.4.4 Overslabbing 24	
	7.4.5 Replacement of Edge Voussoirs	
	7.4.6 Stitching Longitudinal Cracks 2-	

9

	7.4.7 Part Reconstruction	247
7.5	Conclusion	247
CHAPTE	R 8 - CONSIDERATION OF SECONDARY EFFECTS IN	
	ANALYSIS	255
8.1	Introduction	256
8.2	Review of Previous Literature on Consideration of	
	Secondary Effects	257
8.3	Recommended Methods for Consideration of	
	Secondary Effects	261
8.4	Suitable Values for Key Variables	262
8.5	Determination of Secondary Effects	
	using a Computer Package	265
8.6	Conclusion	265
СЦАРТЕ	R 9 - MAIN CONCLUSIONS AND RECOMMENDATION	
	KOR FUTURE RESEARCHESIWA Sri Lanka	276
9.1	Main Conclusions of the Study ses & Dissertations	277
9.2	Recommendation for Further Research	280
9.2	Recommendation for Further Research	200
APPEND	IX A - Structural Effects due to Temperature fall, Horizontal	
	Movement of Support (Outwards) and Shrinkage	282
APPEND	IX B - Structural Effects due to Vertical Movement of Support .	286
APPEND	IX C - Structural Effects due to Rib Shortening	290
REFERE	NCES	297

ų

LIST OF FIGURES

J

Figure		Page
2.1	Arch Layout	37
2.2	MEXE method Nomogram for Provisional Axial Load	38
2.3	MEXE method - profile factor	37
2.4	MEXE method - span/rise factor	37
2.5	Influence of material strength on the zone of thrust.	39
2.6	Effect of arch strength on wingwalls, spandrels and fill thrust	40
3.1	Idealisation of a Circular Masonry Arch	55
3.2	Forces and Moments applied and the illustration of the notations used.	56
3.3	Known solution - Influence line for Horizontal thrust	57
3.4	Known solution - Influence line for fixed end bending moment	58
3.5	Influence lines for vertical reaction	59
3.6	Influence lines for fixed end bending moment	60
3.7	Influence lines for Horizontal Thrust	61
3.8	Shear force influence times at yorown/loratuwa, Sri Lanka	62
3.9	Shear force influence fines at quarter point Dissertations	63
3.10	Axial force influence lines at quarter point.	64
3.11	Axial force influence lines at crown	65
3.12	Axial force envelope for rise = span/8	66
3.13	Axial force envelope for rise = span/4	67
3.14	Axial force envelope for rise = $3/8$ span	68
3.15	Axial force envelope for rise = span/2	69
3.16	Shear force envelope for rise = span/8	70
3.17	Shear force envelope for rise = span/4	71
3.18	Shear force envelope for rise = $3/8$ span	72
3.19	Shear force envelope for rise = span/2	73
3.20	Bending moment influence lines at quarter point	74
3.21	Bending moment influence lines at quarter point	75
3.22	Bending moment envelope for rise = span/8	76
3.23	Bending moment envelope for rise = span/4	77
3.24	Bending moment envelope for rise = 3/8 span	78
3.25	Bending moment envelope for rise = span/2	79

3.26	Finite element mesh arrangement, load application,	
	stress & deformation variations - 8 element mesh	80
3.27	Finite element mesh arrangement, load application,	
	stress & deformation variations - 32 element mesh	82
3.28	Finite element mesh arrangement, load application,	
	stress & deformation variations - 128 element mesh	84
3.29	Maximum fixed end hogging moment for selected spans	86
3.30	Maximum fixed end sagging moment for selected spans	87
3.31	Maximum sagging moment in the arch ring for selected spans	88
3.32	Maximum hogging moment in the arch ring for selected spans	89
3.33	Behavior of arches on application of concentrated horizontal loads	90
3.34	Torsional & Bending moments due to wind moment	
	and the Illustration of the Notations used	91
4.1	Typical Examples of Brick Arches	161
6.1	Some Typical Bond Arrangements Moratuwa, Sri Lanka.	221
6.2	Details of centering for spans 25 h 95 fts & Dissertations	221
6.3	Details of centering for spans 30 - 40ft.	221
6.4	Details of centering for an elliptical arch of 60ft. span	222
6.5	N-truss type centering for spans 70 - 100ft	222
6.6	Sequence of pouring arch voussoirs	222
6.7	Components of Masonry arch	223
6.8	Typical drawing for Arch Bridges	224
6.9	Drg. of Bridge over Railway - 2 nd mile Gampola Road	225
6.10	Photographs of Brige over Railway - 2 nd mile Gampola Road	226
6.11	Available drawing for centering for 25ft. span	228
6.12	Available drawing for centering for 10-20ft. span and 5-10ft. spans	229
7.1	Stockport viaduct on Birmingham - Manchester Railway	249
7.2	Sectional elevation showing strengthening of cracked arch	250
7.3	Typical details of widening of narrow arch bridges to	
	two lane width - type 1	251 05
7.4	Typical details of widening of narrow arch bridges to	

ť

-13D

	two lane width - type 2	252
7.5	Proposed retro-reinforcement for a typical single span	
	masonry arch bridge	253
7.6	Repair method - saddling	254
7.7	Repair method - application of a slab	255
7.8	Repair method - overslabbing	256
7.9	Repair method - stitching longitudinal cracks	257
7.10	Repair method - part reconstruction	257
7.11	Repair method	258
7.12	Lime house viaduct strengthening	258
8.1	Arch layout for horizontal thrust due to change of span length	267
8.2	Arch layout for horizontal thrust due to thermal moment	267
8.3	Arch layout for horizontal thrust due to rib shortening	267
8.4	Arch layout for horizontal trust due to increase or decrease in temperature	267
A1	University of Moratuwa, Sri Lanka.	286
A2	Electronic Theses & Dissertations	286

AZ	www.lib.met.oo.llr	280
B1	www.iid.iiit.ac.ik	290
C1		297

6

List of Tables

1

<u>Table</u>				Page
2.1	MEXE Method	-	Barrel factor	41
2.2	MEXE Method	-	Fill factor	41
2.3	MEXE Method	-	Width factor	42
2.4	MEXE Method	-	Mortar factor	42
2.5	MEXE Method	-	Depth factor	42
3.1	Horizontal thrust and	l fixed e	end moments known solution	92
3.2	comparison of the kn	nown so	lution and the results of the study	93
3.3	Fixed end Bending n	noment	of the arch	94
3.4	Vertical reaction at a	rch sup	port	95
3.5	Horizontal Thrust at	arch su	pport	96
3.6	Shear force influence	e lines a	at crown	97
3.7	Shear force influence	e lines a	at quarter point	98
3.8	Axial force influence	e lines a	it crown	99
3.9	Axial force influence	e lines a	ty of Moratuwa, Sri Lanka.	100
3.10	Axial force envelope	for ris	ic Theses & Dissertations e = span/8 .mrt.ac.lk	101
3.11	Axial force envelope	e for ris	e = span/4	102
3.12	Axial force envelope	e for ris	e = 3/8 span	103
3.13	Axial force envelope	e for ris	es = span/2	104
3.14	Shear force envelope	e for ris	e = span/8	105
3.15	Shear force envelope	e for ris	e = span/4	106
3.16	Shear force envelope	e for ris	e = 3/8 span	107
3.17	Shear force envelope	e for ris	e = span/2	108
3.18	Bending moment inf	luence	lines at crown	109
3.19	Bending moment inf	luence	lines at quarter point	110
3.20	Bending moment en	velope	for rise = span/8	111
3.21	Bending moment en	velope	for rise = span/4	112
3.22	Bending moment en	velope	for rise = 3/8 span	113
3.23	Bending moment en	velope	for rise = span/2	114
3.24	Finite Element Anal	ysis Re	sults for application of unit	
	vertical load			1.15

3.25	Comparison of the finite element solution with exact	
	solution for 6.0 m span for rise/span = $1/2$	143
3.26	Comparison of the finite element solution with exact	
	solution for 1.5m span for rise/span = 1/2	144
3.27	Comparison of the finite element solution with exact	
	solution for 18.0 m span for rise/span = $1/2$	145
3.28	Comparison of the finite element solution with exact	
	solution for 6.0 m span for rise/span = $1/8$	146
3.29	Comparison of the finite element solution with exact	
	solution for 6.0 m span for rise/span = 1/4	147
3.30	Comparison of the finite element solution with exact	
	solution for 6.0 m span for rise/span = 3/8	148
3.31	Maximum structural effects for various rise/span ratios	149
3.32	Maximum fixed end bending movement due to unit load	150
3.33	Maximum bending moments in the arch ring due to unit load	151
3.34	Result of lateral load analysis	152
	University of Moratuwa, Sri Lanka.	
8.1	Methods of computation of secondary effects issertations	268
8.2	Structural effects due to unit horizontal deflection at support	171
8.3	Structural effects due to unit vertical deflection at support	272
8.4	Comparison of results of the finite element solution with	
	different idealisations and the exact solution.	273
8.5	Finite element analysis results for application of unit	
	displacements at support	274

TERMINOLOGY

1

Y

4

Some of the more commonly used technical terms used in relation to masonry arches are as follows:

Skewback	-	This is the surface (generally inclined) upon which the arch ring or rib rests. This surface is the assumed dividing line between arch and abutment and is a purely imaginary plane.
Crown	-	The highest point on the centre line of the arch ring.
Spring line	-	The intersection of skewback and soffit.
Soffit	-	The under surface of arch ring.
Intrados	-	The curve of intersection of the soffit plane and a vertical plane parallel to the centre line of the roadway.
Extrados	-	The intersection of the curved back or upper surface of the arch with a vertical plane parallel to the centerline of the roadway.
Span		The clear distance between spring lines measured horizontally and parallel to the centre line of the roadway.
Rise	8	www.lib.mrt.ac.lk The vertical distance between the spring line and the intrados at the crown.
Spandrel	-	That portion of the structure lying above the arch ring.

NOTATIONS

R	-	Radius of the arch
U	-	Strain energy
Е	-	Modulus of elasticity
I	-	Moment of Inertia
М	-	Bending moment
Н	-	Horizontal thrust
v	-	Vertical reaction
L	-	Span of the arch
Т	-	Torsional moment
h	-	Rise of the arch
a	-	Horizontal distance from end of arch to load point

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

