CONTINUOUS TURBIDITY MONITORING SYSTEM

K.A.K.G Kuruppu

(09/8710)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

CONTINUOUS TURBIDITY MONITORING SYSTEM

K.A.K.G Kuruppu

(09/8710)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

DECLARATION

"I declare that is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:

Dr.D.P Chandima

Date:

ABSTRACT

It is very important to measure the turbidity of raw water because the turbidity of treated water should be less than 5 NTU. In water treatment plants, three water samples per day are taken for turbidity testing. The main objective of this research is to propose on alternative continuous turbidity monitoring system instead of manual test.

Several experiments were alone to fine out a relationshipbetween colour difference and turbidity. Colour difference was measured and calculated by MATLAB program. Turbidity was measured by "HACH" turbidity meter. Thereafter best fitted curve was development by using E - views software.

After few verification experiments the project was implemented at the laboratory of the treatment plant at Kandana. Final implementations was done at Ingiriya Water Supply Scheme and according to the results arrange error percentage is below 4.14%

Accuracy of the proposed System can be further improved by fitting a better models and by increasing the population of sample data set.

DEDICATION

I dedicate my dissertation work to both my parents. My Father late Mr.Lionel Kuruppu did not only raise and nurture me but also taxed himself dearly over the years for my education and intellectual development. Also motherly care and support of my mother Mrs.Nanda Kuruppu, have been shown in incredible ways recently.

ACKNOWLEDGEMENT

I wish to acknowledgment and express my sincere thanks to my Supervisor Dr.ChandimaPathirana Senior Lecture, University Moratuwa for the technical support and advice he gave me. I am also grateful to Professor Lanka Udawatta former senior Lecturer of University of Moratuwa and all other members of Department of Electrical Engineering, University of Moratuwa for the support given to me from the beginning of Industrial Automation MSc class.

I would also like to all reviewers who attended in the progress review presentation for giving me their valuable comments and guidance.

Without the help and support given by Mr.Shehan Fernando, Lecturer, KDA, I would not have been to able to complete this research project in time and I am very thankful to him for his support.

I would also like to thank Mr.C.P Malalanayaka, staff Technical officer, Dept. of Textile & Clothing Technology, University of Moratuwa, M/s Nanda Ranaweera Chemist and M/s Sasadara Udahawadugedara, Office Assistant of National Water Supply and Drainage Board who gave me full support to complete this project.

Love and affection to my mother Nanda Kuruppu, my wife Manjula Kurppu and my daughter Thisari & Senali for their patience and understanding.

Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your support.

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Dedication	iii
Acknowledgment	iv
Table of Contents	V
List of Figures	viii
List of Tables	х
List of Abbreviations	xi
List of Appendices	xii
1.Introduction	1
1.1 Water Treatment	1
1.2 Turbidity of Water	2
1.3 Measurement	2
1.4 Problem Background	3
1.5 Research Objective	3
1.6 Organization of Dissertation	4
2. Literature Review	5
2.1 Continuous turbidity monitoring in streams	5
Of North Western clarification	
2.2 Continuous turbidity monitoring and Regression Analysis	5
2.3 Turbidity Measurement:	6
2.4 Continuous Monitoring of Suspended sediment in	9
Rivers by use of optical sensor	

5. 105		
3.1	Selection of a Suitable place	11
3.2	Water treatment operation	11
3.3	Design of the measuring system	12
	3.3.1 selecting a light source	12
	3.3.2 Selecting a Camera	13
	3.3.3 Glass tank	13
3.4	Digital Turbidity Meter	14
3.5	Methodology of the proposed System	14
4. Col	our Space and Image Processing	16
4.1	Colour	16
4.2	Matching colours	16
4.3	Colur Spaces	17
	4.3.1 RGB colour space	17
	4.3.2 CIE based colour spaces	18
	4.3.3 HSL Type colour spaces	19
	4.3.4 CIE x YZ colour space	19
	4.3.5 CIE Lab colour space	20
4.4	Transformation between colour spaces	20
	4.4.1 Transformation between XYZ plane and LMS plane	21
	4.4.2 Transformation between RGB colour space to XYZ space	21
	4.4.3 Transformation between XYZ colour space to CIE lab colour space	22
4.5	Colour Difference	23
5. Res	earch Findings	24
5.1	Introduction	24
5.2	First experiment	24
5.3	Second experiment	26

3. Research and Methodology11

5.4 Analysis of results	31
5.4.1 Polynomials	31
5.4.2 Curve fitting	33
5.5 Skewness	33
5.6 Kurtosis	34
5.7 R^2 Valve	34
5.8 Experimented Models	34
5.9 Conclusion of analysis	37
5.10 Measuring Turbidity of actual water sample	39
6 Implementation and Results	41
6.1 Introduction	41
6.2 Flushing System	41
6.3 Implementation	42
6.4 Results	44
6.5 Analysis of results	45
6.6 Better model	45
6.7Implementation at Ingiriya water supply scheme	47
6.8Analysis of final results	48
7 Conclusion and recommendation	49
7.1 Conclusion, Recommendation and Discussion	49
8 Reference	50

LIST OF FIGURES

Figure Page

Figure 2.1: The 90 ^o detection angle	7
Figure 2.2: The attenuated detection angle	8
Figure 2.3: The backscatter detector	9
Figure 3.1: Background of the image	13
Figure 3.2: "HACH" brand digital turbidity meter	14
Figure 4.1: RGB colour space	17
Figure 4.2: CIE Lab colour space	20
Figure 4.3: Colour Distance of CIE Lab colour space	22
Figure 5.1: Glass tank and the cover box	24
Figure 5.2: Image of the sample No.1	25
Figure 5.3: Image of the sample No.2	25
Figure 5.4: Image of the sample No.3	26
Figure 5.5: Apparatus Arrangement	27
Figure 5.6: Reference image	28
Figure 5.7: The 2 nd image	28
Figure 5.8: First fifteen images	30
Figure 5.9: Observed data points	31
Figure 5.10: Common 2nd degree polynomial graph	32
Figure 5.11: Common 3rd degree graph	33

Figure 5.12: Residual plot of model 1	35
Figure 5.13: Residual plot of model 2	36
Figure 5.14: Residual plot of 3	36
Figure 5.15 Graph: comparing different models on observed data points	37
Figure 5.16: Best fitted Model	38
Figure 5.17: Best fit model with five new points	39
Figure 6.1: Turbidity measuring with flushing	41
Figure 6.2: Measuring arrangement	42
Figure 6.3: Digital Turbidimeter	42
Figure 6.4: Results given by the computer	43
Figure 6.5: Results given by the computer	43
Figure 6.6: Reading given by the Turbidimeter	44
Figure 6.7: Best fit curve (upper part)	45
Figure 6.8: Best fit curve (lower part)	46
Figure 6.9: Best fit curve (with 50 samples)	46

LIST OF TABLES

Table	Page
Table 5.1: Test Result of the 2 nd Experiment	29
Table 5.2: Measured data of water samples taken from the river	40
Table 6.1: Results	44
Table 6.2: Results of the final practical test	47
Table 6.3: Results obtained from Ingiriya test	47

LIST OF ABBREVIATIONS

- NTU Nephelometric Turbidity Units.
- TSS Total Suspended Solids.
- MSE Mean Square Error
- LED Light Emitting Diode
- MGD Million Gallons per Day
- SSC Suspended Sediment Concentration
- HD High Density
- CRT Cathode Ray Tube

LIST OF APPENDICES

Appendix A- MATLAB Code for processing image

Appendix B -Result sheet