COMPUTER VISION BASED FIRE ALARMING SYSTEM

Asoka Erandathie Gunawardena

(09/8707)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

April 2014

COMPUTER VISION BASED FIRE ALARMING SYSTEM

Asoka Erandathie Gunawardena

(09/8707)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or books)"

Signature:	Date:
The above candidate has carried out research for	or the Masters Dissertation under my
supervision.	
Signature of the supervisor:	Date:

Dedicated To

My Parents

ACKNOWLEDGEMENT

I take this opportunity to express my gratitude and deep regards to my former supervisor Prof. Lanka Udawatta and present supervisor Dr. A.G.B.P Jayasekera for their Exemplary guidance, monitoring and constant encouragement throughout these dissertation.

I also express my special gratitude to Dr. C.D.Pathirana, for giving me, the opportunity for this study and facilitate in invaluable manner.

I am grateful and thankful to Eng. S.Fernando and Eng. K.Ranasinghe for their assistance and support given throughout the study.

I also thankful to the National Water Supply and Drainage Board for providing me the opportunity for studying.

Lastly, I thank my husband and children for their encouragement without which this project would not have been possible.

ABSTRACT

Fire detection system is the most important component in the surveillance systems. It monitors the indoor environment and issues alarm as part of the early warning mechanism. The ultimate goal of Fire alarming system is to provide an alarm at early stage before the fire become uncontrolled.

Conventional fire detection systems are generally limited to indoor environment and have following drawbacks. They suffer from the transparent delay from the fire to the sensor. Further sensors are looking at a point and the fire may not affect that point. The reliability of the fire detection systems mainly depend on the positional distribution of the sensors. A video based fire detection system is able to detect fire by processing image sequence acquired from a video would overcome the above shortcomings. It also can be used in accordance with surveillance cameras for better performance. This type of detection system can provide high detection rate and low false alarm rate since they detect the combustion itself instead of its byproducts.

In this project, proposed a video based fire-alarming system to detect fire in a record room by processing the video data captured by an ordinary camera monitoring the scene. The proposed video based fire detection system uses adaptive background subtraction to detect foreground moving object and then verified by the rule based fire color model to determine whether the detected foreground object is a fire or not., YCbCr color space is used to model the fire pixel classification. In addition to the motion and colour the detected fire candidate regions are analyzed in temporal domain to detect the fire flicker. Some Morphological operations are used to enhance the features of detected fire candidate region. All of the above clues are combining to form the fire detection system. The performance of the proposed algorithm is tested on two sets of videos comprising the fire/fire colored object and, non-fire. The experimental results show that the proposed system is very successful in detecting fire and /or flames. This system detects fire within 3 to 30 sec. Use of a high-speed camera and compatible software would increase the detection time.

TABLE OF CONTENTS

De	eclaration	i
De	edication	ii
A	eknowledgement	iii
Ał	ostract	iv
Та	ble of Contents	V
Li	st of Figures	vii
Li	st of Tables	X
1.	Introduction 1.1 Background 1.2 Problem Statement 1.3 Literature Survey on Fire Detection system 1.3.1Conventional Fire/Smoke Detection systems 1.3.2 Computer Vision Based Fire Detection Systems	1 1 2 3 3 5
	1.4 Aim and Objectives1.5 Organization of this thesis	6 7
2.	Video base fire alarming system 2.1 System Overview	9 9
3.	4.1 Introduction	11 11 12 13 14 14 14 15 15
	4.2 Fire Detection4.2.1 Moving Object segmentation4.2.2 Fire Pixel Classification	17 18 28
	4.3 Morphplogical Operations	45
	4.4 Temporal Analysis on Fire Region	47

5.	Fire Alarming system	54
	5.1 Alarming System-Hardware	54
	5.2 Alarming System-Software	57
	5.3 Alarming System-Electronic Circuit	60
6.	Implementation	61
	6.1 System configuration	61
	6.1.1 Hardware and software	61
	6.2 Graphical User Interface - fire Alarming System	63
	6.3 Tests on proposed Video Based Fire Alarming System	64
	6.3.1 Movie No 3 – Fire & Lady with fire color blouse	66
	6.3.2 Movie No 1 – Wooden Fire	68
	6.3.3 Movie No 7 – Yellow color moving object	69
	6.3.4 Movie No 4 – Match stick fire	70
	6.4 Results	70
7.	Conclusion	72
	7.1 Conclusions, and Discussion	72
	7.2 Limitations of the proposed method	73
	7.3 Recommendations for Future Research	73
Re	ferences	74
Ap	ppendix A: Source Codes	76

LIST OF FIGURES

Figure 2.1	System Overview of the Video Base Fire Alarming System	9
Figure 3.1	Graphical user interference used for image acquisition parameters	11
Figure 3.2	Basic steps of image acquisition	15
Figure 4.1	Overview of the Fire Detection Process	17
Figure 4.2	Flow Chart of Proposed algorithm for moving pixel detection	22
Figure 4.3	(A) Background Image	25
	 (B) Intensity image of the background (C) Intensity image of the 2nd frame 	25 25
	(D) Moving Pixels	25
Figure 4.4	(A) Background Image	26
	(B) Intensity image of the background	26
	(C) Intensity image of the 2 nd frame	26
	(D) Moving Pixels	26
Figure 4.5	After applying Linear filters to the figure 4.4 (B) & 4.4(C)	27
Figure4.6	Flow chart for the Color Pixel Detection	28
Figure 4.7	RGB color image in (A) and its Y,Cb, and Cr channels	30
	in (B), (C),(D)	
Figure.4.8	RGB color image in (A) and its Y,Cb, and Cr channels	31
	in (B), (C),(D)	
Figure.4.9	Manually Segmented fire images	33
Figure.4.10	Segmented Fire Regions of Fire and Non-Fire Images	34
Figure 4.11	Scatter plot of fire images in Y-Cr & Cr – Cb color	35
	channels for fire and non fire images	
Figure.4.12	Sample fire images and non fire images	36
Figure 4.13	Scatter plot of fire images in Y- Cr & Cr – Cb color	37

	channels for fire and non-fire images	
Figure 4.14	Sample fire like non fire images	38
Figure 4.15	Scatter plot of images in Y- Cr & Cr – Cb color	39
	channels for non-fire images	
Figure.4.16	True Positive Vs Threshold and False Positive Vs Threshold	40
Figure 4.17	RGB image in (A), Y-Cr Image in (B), Cr-Cb Image in (C)	42
	& fire segment-using rule 6 only in (D)	
Figure 4.18	The segmented Fire Candidate region	42
Figure 4.19	RGB image in (A), Y-Cr Image in (B), Cr-Cb Image	43
	in (C) & result of color model for moving man	
Figure 4.20	The resultant Image after the process of moving pixles	44
	and the color verification.	
Figure 4.21	(a) the fire region before closing function (b) fire region	46
	after applying the closing function.	
Figure 4.22	After overlaying the fire candidate region to original image	47
Figure 4.23	Sixteen frames used for temporal analysis	48-49
Figure 4.24	. Extracted fire candidate region after the first three process	50
Figure 4.25	(a) before and (b) after the bwareaopen function	51
Figure.4.26	The Final resultant image of the proposed algorithm	52
	used to detect fire	
Figure 5.1	Overview of the alarming system	54
Figure:5.2	MAX 233 pin configuration and Interface with	55
	Microcontroller and RS 232 port	
Figure 5.3	: Pin Configuration of UM 3561	57
Figure 5.4	Electronic Circuit diagram	60
Figure 6.1(a)	System before running the algorithm	62
Figure 6.1(b)	System after running the algorithm	62

Figure 6.2	Interface of Fire Detection System	63
Figure 6.3	Original Image and Processed Image	63
Figure 6.4	Image from video	65
Figure 6.5	(A) Original image (B)Motion image	66
	(C) Color ,Motion combine Image (D) Final Image	
Figure 6.6	Binarymap of the image C	67
Figure 6.7	(A) Original image (B)Motion image	68
	(C) Color ,Motion combine Image (D) Final Image	
Figure :6.8	(A) Original image (B)Motion image	69
	(C) Color ,Motion combine Image (D) Final Image	
Figure :6.9	(A) Original image (B)Motion image	70
	(C) Color ,Motion combine Image (D) Final Image	

LIST OF TABLES

Table		Page
3.1	Object properties of the video input object and its set object property parameters	12
4.1	Pixel value ranges for sample manually segmented Fire Regions	32
4.2	Data to find the Threshold value	41
6.1	List of video sequences	64
6.2	Performance of the System	71