PHYSICO-MECHANICAL PROPER^TIES OF MODIFIED KAOLIN CLAY FILLED RUBBER COMPOUNDS

M.Sc (Polymer Technology)

A.R.M.W.W.K.Ranasinghe

University of Moratuwa October, 2001

17 LB/DON/36/02

Physico-mechanical properties of modified kaolin clay filled rubber compounds

By

A.R.M.W.W.K.Ranasinghe

This thesis was submitted to the Department of Chemical and Process Engineering of the University of Moratuwa in partial fulfillment of the Degree of Master of Science

in Polymer Technology Joratuwa, Sri Lanka & Dies www.lib.mrt.ac.lk

74446

ŗ

ප්ස්තකාලය ତ୍ରୁ ଅନୁସାର ଅନ୍ୟୁ ଅନୁସାହିତ୍ୟ ଅନୁସାର ଅନୁସାର ଅନୁସାହିତ୍ୟ ଅନୁସାର ଅନୁସାର ଅନୁସାହିତ୍ୟ

Department of Chemical and Process Engineering, University of Moratuwa, Sri Lanka.

October, 2001 074446 University of Moratuwa

66 «OI" 678.47

74446 TH

" I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any University and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except where due reference is made in the text"

UOM Verified Signature

Signature of the candidate (Miss ARMWWK Ranasinghe)

"To the best of my knowledge, the above particulars are correct"

Supervisors

UOM Verified Signature

Dr (Mrs)Olga Gunapala

Department of Chemical and Process Engineering

UOM Verified Signature

Dr P.Y. Gunapala

Department of Materials Engineering

ABSTRACT

An attempt has made to activate the inert structure of Rubber grade kaolin clays through ion--exchange process. Counter ions absorbed by unsatisfied silicon, oxygen and hydroxyl ions at the edges of planar surfaces of kaolinite mineral to preserve electrical neutrality were replaced with complex organic ions containing active functional groups (amine, hydroxyl, carboxyl) in their organic radicals. Strongly attached to the clay surface these complex ions project their organic aryl or alkyl radicals outwards to suspending medium rubber matrix making inorganic kaolin surface effectively organic and therefore hydrophobic one. Such change in kaolin surface facilitated rubber-filler interaction owing to better wetting of the filler surface with organic rubber polymer and formation of sufficient density grafted polymer layer bonding the rubber matrix to filler.

Carried out physico-mechanical testing of filled rubber compounds showed that modification of kaolin with chosen basic electrolytes ionized in aqueous medium was effective.

Increase in strength characteristics has made possible in commercial practicability of rubber formulation technology the substitution of expensive reinforcing fillers with lowest in cost appropriately modified kaolin Clay.

Acknowledgements

I am very much grateful to my supervisors Dr (Mrs) Olga Gunapala and Dr P.Y Gunapala for their encouragement, guidance, and their patience paid through out my research.

Also a special word of thanks to Dr (Mrs) B.M.W.P.K .Amarasinghe, the head of the department and Mr S.A. Perera former head of the department and all other academic staff of the Chemical and Process Engineering and the Materials Engineering departments.

My special thanks are due to Mr K Subramanium, head of the Polymer division, Mrs Shantha Maduwage, Mr P. Weragoda for their great support given me through out my research.

Also I would like to thank technical and technical assistant staff of the Polymer Processing laboratory, Latex and Testing laboratories, Ceramic laboratory and all laboratories of Materials Engineering department. My thanks are due to the officers of Polymer department of ITI providing me the facilities to get the rheographs.

My special thanks are due to Miss Duminda Liyanage, Mrs Samadara Jayarathne, Mr Nalin Gangodavilage and other colleagues for their great support and the encouragement given me to complete my research successfully.

My heartiest gratitude is for my family members for their great support given me through out the research.

Finally, I would like to thank the Asian Development Bank (ADB) for granting me the financial assistance to carry out my research successfully.

CONTENTS

CHAPTER 1 : Introduction	
1.0 Introduction	10
CHAPTER 2 : Literature review	
2.1 Types of fillers and their properties	13
2.2 Structural chemistry and processing	19
2.3 Chemical modification of china clay	20
2.4. Physical modification of kaolin	24

CHAPTER 3 : Materials and Experimental methods

3.1	Materials used	for the experiment	
3.2	Experimental p	rocedures	
	(())	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	

CHAPTER 4 : Results and calculatios

4.1	Results obtained from the Kjeldahl experiment	46
4.2	Results obtained from the Mooney Viscometer and	
	Monsanto Rheometer	50
4.3	Tensile properties of vulcanized samples	53
4.4	Abrasion resistance test Results	56
4.5	Flex cracking and crack growth test Results	57
4.6	Bound rubber content test Results	58
4.7	Swelling test Results	59

CHAPTER 5 : Discussion and conclusions

5.1	Discussion	•••••••	
5.2	Conclusions		68

CHAPTER 6 : Suggestions and recommendations

6.1 Suggestions
6.2 Future Recommendations

REFERENCES	71
APPENDIX I (Technical data of kaolin)	74
APPENDIX II (Characteristic Curing curve)	76
APPENDIX III (Equipments used for sample testing)	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

CHAPTER 3

4

Table 1 : Properties of RSS I Rubber
Table 2 : The standard formulation of filled natural rubber based compounds.
Table 3 : The mixing schedule for mixes on an open two roll mill
Table 4 : Required amount of 0.1 HCl for the titration.
CHAPTER 4
Table 5 : Results obtained from the Mooney Viscometer.
Table 6 : Results obtained from the Monsanto Rheometer.
Table 7.1 : Tensile properties of mixes, extended with modified and standard kaolin before aging
Table 7.II :Tensile properties of the mixes extended with Modified and standard kaolin after aging. 54
Table 8 : Abrasion resistance test results
Table 9 : Results of De-Mattia flex cracking test. 57
Table 10: Results of bound rubber content test. 58
Table 11: Results of swelling test. 59

LIST OF GRAPHS

Cl	łA	PŦ	'ER	4

Graph !	: Curing curves obtained from Mooney Viscometer	51
Graph 2	: Rheographs obtained from the Monsanto Rheometer.	52
Graph 3	: Comparison of tensile properties before aging.	55
Graph 4	: Comparison of tensile properties after aging	55
Graph 5 :	Comparison of abrasion test results.	56
Graph 6 :	Comparison of De-Mattia flex cracking and crack growth tests results	7
Graph 7 :	Comparison of bound rubber content test results	8
Graph 8 :	Comparison of swelling test results	9
Graph 9 :	Differential thermal analysis (DTA) of raw rubber filled with kaolin treated with monoethanolamine	•()
Graph10:	Differential thermal analysis of kaolin sample	
	treated with monoethanolamine	1

LIST OF FIGURES

CHAPTER 2	CH	AP	ТE	R	2
-----------	----	----	----	---	---

Figure 1.a	-	Structure of Kaolinite Layer	20
Figure 1.b	-	Microphotograph showing Book-shaped	
		arrangements of hexagonal plates in kaolin	20
Figure 2.a	-	Silane coupling agents	23
Figure 2. b	-	Diagram showing polymer strand bound to kaolin through Silane coupling agents	
Figure 3	-	Diagram illustrating the Mechanism of adsorption and modification	

APPENDIX II

Figure 4	-	Characteristic Curing cure	76
		(O) Electronic Theses & Dissertations	
		www.lib.mrt.ac.lk	

APPENDIX III

Figure III a	-	Sketch of an Oscillating Disk Rheometer used to
		monitor the cure characteristics
Figure III b	-	Sketch of a Din-Abrader used to measure abrasion
		resistance
Figure III c	-	A Pendulum/general type tensile strength tester,
		for measuring force and elongation at
		specified time or at break78
Figure.III d	-	The mechanism of the De-Mattia flexing machine
C		used to find the crack initiation and the
		rate of cracks growth

NOMENCLATURE

	Differencial thermal analysis
-	Monoethanol amine
-	Polyvinyl alcohol
-	Urea formaldehyde
-	Nuclear Magnetic Resonance
-	Mix Number
-	Newton
-	MegaPascal
-	Toluene uptake per gram of Rubber hydrocarbon
-	Microns University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
-	Ribbed Smoked Sheet rubber
-	Hydrochloric acid
-	Diphenyl guanidine.
-	2,2, Dithiobis benzothiozole
-	Zinc Oxide
-	Diethyleneglycol
-	Polyethyleneglycol
-	Boric acid
-	Ammonium acetate
-	Ammonium chloride
-	Newton meter

8