INVESTIGATION OF A REALATIONSHIP BETWEEN SOAKED CBR AND DCP CBR VALUE FOR DIFFERENT TYPES OF SOILS

Wijekoon Mudiyanselage Indrajith Sisira KumaraWijekoon

(108624F)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Degree of Master of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2014

INVESTIGATION OF A REALATIONSHIP BETWEEN SOAKED CBR AND DCP CBR VALUE FOR DIFFERENT TYPES OF SOILS

Wijekoon Mudiyanselage Indrajith Sisira KumaraWijekoon

(108624F)

University of Moratuwa, Sri Lanka. Thesis submitted in partial fulfillment of the requirements for the degree of Master www.lib.mrt.ac.lk of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2014

DECLARATION OF THE CANDIDATE AND SUPERVISOR

"I certify that this thesis does not incorporate without acknowledgement any material previously submitted for degree or diploma in any university to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation. If accepted, to be make available for photocopying and for interlibrary loans and for the title and summary to be made available to outside organization "

Signature of Candidate

Date

To the best of my knowledge, the above particulars are correct.

ACKNOLEDGEMENTS

I would like to express my deepest gratitude to the advisor Dr. W.K.Mampearachchi, for all his guidance and encouragement given throughout the course of this research. I would also like to thank Prof J.M.S Bandara & Prof Mangekar Gunarathne for the valuable comments and advice. I also would like to thank the members of evaluation panel for their comments and suggestions. I further wish to thank all the staff of the transportation Engineering Division for their support to prepare these theses. I also thank Provincial Road Development Authority (Central Province) for sponsoring me to follow this course and continue support to carry out research work. Finally, I would like to thank my family and staff of Executive Engineers Office, Kandy for helping me to carry out the research in many ways.

ABSTRACT

When planning and design a highway. Assessment of subgrade shear strength is very important. General practice is to measure the subgrade strength in terms of California Bearing Ratio (CBR). However CBR is an empirical method to assess the strength of compacted layers and it is possible to obtain the CBR through either laboratory or field test. But there are several limitations to the current method such as compromising the location itself and danger to the personnel performing the evaluation in hostile environments. In addition, both laboratory and field CBR methods are time consuming methods. Standard laboratory testing process requires sampling and transport of soil to laboratory and takes at least four day period for the testing procedures. Due to these reasons Dynamic Cone Penetrometer (DCP) is used in the field to minimize the CBR testing frequency and assess CBR of soil to a reasonable accuracy.

The significant advantages of the DCP test that it is a low cost, robust, quick and simple to use. Very little damage is made to the pavement being tested (effectively nondestructive) and very useful information can be obtained. One of the major advantages of the test is that the pavement is tested in the condition at which it performs under actual compaction level. The simplicity of the test allows repeated testing to minimize errors and also to account for temporal effects but it should never be used as an absolute indicator of the insite CBR of a material in a pavement. The results should be assessed in terms of the insite condition of material, it must always be remembered that the DCP CBR is determined at the insite moisture contents and density of the pavement layers at the time of testing.

It was found that effect of following factor are mainly affect to change both D.C.P, field CBR, Field moisture content, Field Density, Plasticity Index and Instrumental and manmade errors. From this research it is reveal that when PI of soil is less than ten reliable linear relationship can be formulate between Lab CBR vs. DCP CBR.

TABLE OF CONTENTS

Declaration of the candidate & Supervisor		
Acknowledgements	ii	
Abstract	iii	
Table of Content	iv	
List of Figures	viii	
List of Tables	ix	
List of Abbreviation University of Moratuwa, Sri Lanka.	X	
Annex Electronic Theses & Dissertations www.lib.mrt.ac.lk	xii	
1.0: Introduction 1		
1.1 Background		
1.1 Background	1	
1.1 Background1.2 C.B.R and D.C.P Testing for Pavement Design	1 1	
	-	
1.2 C.B.R and D.C.P Testing for Pavement Design	1	
1.2 C.B.R and D.C.P Testing for Pavement Design1.3 C.B.R test	1 1	
 1.2 C.B.R and D.C.P Testing for Pavement Design 1.3 C.B.R test 1.3.1 Advantage and Disadvantage of CBR test 	1 1 1	
 1.2 C.B.R and D.C.P Testing for Pavement Design 1.3 C.B.R test 1.3.1 Advantage and Disadvantage of CBR test 1.4 Application of D.C.P testing 	1 1 1 3	
 1.2 C.B.R and D.C.P Testing for Pavement Design 1.3 C.B.R test 1.3.1 Advantage and Disadvantage of CBR test 1.4 Application of D.C.P testing 1.4.1 Preliminary Investigation 	1 1 1 3 3	
 1.2 C.B.R and D.C.P Testing for Pavement Design 1.3 C.B.R test 1.3.1 Advantage and Disadvantage of CBR test 1.4 Application of D.C.P testing 1.4.1 Preliminary Investigation 1.4.2 Re-gravelling and upgrading of unsealed road 	1 1 1 3 3 3	
 1.2 C.B.R and D.C.P Testing for Pavement Design 1.3 C.B.R test 1.3.1 Advantage and Disadvantage of CBR test 1.4 Application of D.C.P testing 1.4.1 Preliminary Investigation 1.4.2 Re-gravelling and upgrading of unsealed road 1.4.3 Pavement Design 	1 1 1 3 3 3 3	

	1.4.7 Foundation	5
	1.4.8 Research	5
	1.4.9 Advantage and Disadvantage of DCP test	6
1.5	Limitation of the Usage of the D.C.P	7
1.6	Type of Dynamic Cone Penetrometers	7
1.7	U.K DCP Software	10
1.8	Problem Statement	12
1.9	Objectives	12
	1.91 Research Scope	13
2.0 Lite	erature Review	14
2.1	Introduction	14
2.2	Correlation between Soak CBR value and DCP CBR value	14
	University of Moratuwa, Sri Lanka, 2.2.1 Sample Preparation for soaked CBR Test Electronic Theses & Dissertations	14
Address and	2.2.2 Solak CBR vs: Shak DCP CBR Correlation	16
	2.2.3 Results	16
	2.2.4 Findings of the Studies	19
	2.2.5 Review	19
2.3	Prevailing correlation between DCP and CBR	19
	2.3.1 Research Carried Out Internationally	19
	2.3.2 Research Carried Out Locally	22
2.4	DCP Layer Strength Analysis Report	26
	2.4.1 Layer Properties	27
	2.4.2 Most vulnerable site condition	30
3.0 Des	ign Parameters and Laboratory Test	31
3.1	Design Parameters	31
3.2	Standard Specifications for the test	31

	3.3	Estimation of the Soil Properties	31	
	3.4	Establishment of Mathematical Model	32	
	3.5	Selection for Different soil type	32	
	3.6	Soil Testing	32	
	3.7	DCP Testing	33	
4.0	Me	thodology	34	
	4.1	Introduction		
		4.1.1 New approach to Determination of CBR of the		
		Subgrade	34	
	4.2	Selection of Roads	35	
	4.3	Road Investigation for the Pavement Design	36	
5.0	Ana	lysis and discussion of result	37	
5.1 Observation Previous Analysis			37	
(2	5.2)	University of Moratuwa, Sri Lanka. Probable combinations & Dissertations	37	
A A	5.3	Analysis using Minitab Software	37	
		5.3.1 LAB CBR Vs. OMC, MDD, PI	38	
		5.3.2 DCP (CBR) VS MC (%), FD, PI (%)	39	
		5.3.3 DCP (FCBR) VS MC	40	
		5.3.4 DCP (FCBR) VS FD	41	
		5.3.5 DCP (FCBR) VS PI (%)	42	
		5.3.6 DCP (FCBR) VS DCP CBR, MC (%), FD	43	
		When pi >10		
		5.3.7 DCP (FCBR) VS DCP CBR, MC (%), FD	46	
		When pi <10		
		5.3.8 DCP (FCBR) VS DCP CBR, MC (%)	47	
6.0	Cor	nclusions and Recommendation	50	
	6.1	Calculations	50	

6.2 Recommendations	50
Reference	51
Annexes	53

LIST OF FIGURES

Figure 1.1	Layer Strength	4
Figure 1.2	Manual DCP Equipment	8
Figure 1.3	Automated DCP Equipment	8
Figure 1.4	UK-DCP 3.1 Software	11
Figure 2.1	Dry Density for Different No of Blows	15
Figure 2.2	Soak CBR as code vs. Soak CBR Value as DCP	18
Figure 2.3	Relationship between CBR vs. Penetration Index	20
Figure 2.4	Correlation of DCP CBR vs. DCP Index	21
Figure 2.5	Lg UCBRFC vs. Lg DCP PR	25
Figure 2.6	MMD vs. Silt/Clay fraction (%)	26
Figure 2.7	Water Content (%) vs. Silt/Clay Fraction (%) University of Moratuwa, Sri Lanka.	26
Figure 2.8	ERR Charic Theses & Dissertations	28
Figure 2.9	Layer Boundary Chart	28
Figure 3.1	DCP Test	33
Figure 4.1	Selected Roads	35
Figure 5.1	CBR VS DCP When PI >10	43
Figure 5.2	Model Information	44
Figure 5.3	Residual Plot Lab CBR MC (%), DCP (CBR), FD	48
Figure 5.4	Lab CBR vs. DCP CBR When PI< 10	49
Figure 5.5	Model Information	49

LIST OF TABLES

Table 1.1	Recommended Test Spacing	9
Table 1.2	DCP Test Data Form	10
Table 2.1	Dry Densities for Different No of Blows	15
Table 2.2	Test Results	16
Table 2.3	Comparison of CBR values based on Soaked DCP Test	17
	With conventional soaked CBR values	
Table 2.4	DCP- CBR Correlation	22
Table 2.5	Equations derived from Karunaprema and Edirisinghe	23
	in 2001	
Table 2.6	Equations derived from Karunaprema and Edirisinghe	24
	University of Moratuwa, Sri Lanka. In 2003 Electronic Theses & Dissertations	
Table 2.7	www.lib.mrt.ac.lk Site Details (DCP Layer Strength Analysis Report)	27
Table 2.8	CBR with Penetration Rate	29

LIST OF ABBRIVIATIONS

	Abbreviation		Description
	ASTM		American Society for Testing
			and Material
	CBR		California Bearing Ratio
	DCP		Dynamic Cone Penetration Test
	DN		DCP Number
	DS-CBR		Disturbed Soak CBR
	DU-CBR		Disturbed Unsoaked CBR
	E		Elastic Modulus
	FD		Field Density
	FMC	University of Mensterro	Field Moisture Content
	GW	University of Moratuwa, Electronic Theses & Diss	Well Graded Gravel
	MC 🦉	www.lib.mrt.ac.lk	Moisture Content
	LHS		Left Hand Side
	MDD		Maximum Dry Density
	M.S		Mean Square
	OMC		Optimum Moisture Content
	PR		Penetration Rate
	PI		Plasticity Index
	R-Sq		Coefficient of Determination
	RHS		Right Hand Side
~~	SCBR		Soaked CBR
	S-W		Well Graded Sand
	SS		Sum of Squares
	TRL		Transport Research Laboratory

UCBR	Unsoaked CBR
UK	United Kingdom
UU	Undisturbed Unsoaked

LIST OF ANNEXES

Annex 1	Soil Properties Based on PI	53
Annex 2	DCP Data collection	56
Annex 3	Soil properties	61
Annex 4	Summary of Soil Test carried out	62

