SIZING OF REINFORCED CONCRETE STRUCTURAL MEMBERS BASED ON SRI LANKAN DESIGN DATA

Konara Mudiyanselage Roshanthi Niluka Konara (118615M)

Department of Civil Engineering

University of Moratuwa Sri Lanka

November 2014

DECLARATION

Declaration of the candidate

"I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text".

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Signature: www.lib.mrt.ac.lk

Declaration of the supervisor

The above candidate has carried out research for the Masters thesis under my

supervision.

Signature of the supervisor: Date:

i

Sizing of Reinforced Concrete Structural Members Based on Sri Lankan Design Data

Abstract

The majority of building structures in Sri Lanka, are of reinforced concrete. Often it is required to estimate structural member sizes at the initial stage of a building construction project for load evaluation, cost estimation and reinforcement design.

For member dimension estimation, theoretical knowledge alone is inadequate as there are some practical issues also to be addressed. This study proposes reinforced concrete member sizes for future projects based on design data of past low to medium rise buildings in Sri Lanka.

Standards available for member size estimation, difficulties encountered by the designers while following available standards, gaps in existing sources, and applicability to local conditions are discussed. Structural and architectural drawings of twenty one buildings from two to thirteen storeys were used to extract design details related to slabs, staircases, beams, columns and footings elements. Data gathered for each element type are used to interpret relationships between member dimensions and design parameters.

Artificial Neural Networks (ANN) is an artificial intelligence technique for recognizing patterns among data that are difficult to represent algorithmically. This study also explores the potential of using Sri Lankan design data from past buildings in Artificial Neural Network models for predicting reinforced concrete member sizes.

Recommended structural member sizes are presented in graphs and tables, and compared with the ANN model results. Finally the member sizes recommended by the study are compared with the sizes derived according to the available literature.

Key Words: Low to medium rise Buildings, Reinforced Concrete, Structural Member sizes, Artificial Neural Networks

ACKNOWLEDGEMENT

First of all I would like to express gratitude to my supervisor Prof. W.P.S. Dias for introducing me to this topic and giving earnest support by reviewing and commenting on the work throughout the study. I would also like to thank staff of the Department of Civil Engineering at University of Moratuwa for their support and guidance.

I'm indebted to my employer, Central Engineering Consultancy Bureau (CECB), for allowing me to use the structural and architectural drawings of buildings for the research. I would like to thank Drawing Officer, (Ms) Malkanthi Rajapaksha and draughtsman staff of CECB for helping me to find drawings of buildings which were prepared several years ago. I'm also thankful to my colleagues and staff for helping me to find necessary information and encouraging me throughout.

I also would like to thank my family, who has supported and encouraged me throughout the entire process.

TABLE OF CONTENTS

Decla	nration	i
Abstr	ract	ii
Ackn	Acknowledgement	
Table	e of Content	iv
List o	List of Figures	
List o	of Tables	viii
List o	of Abbreviations	xi
List o	of Appendices	xii
1.	Introduction	01
	1.1 Background	01
	University of Moratuwa, Sri Lanka. 1.2 Dectives lectronic Theses & Dissertations	02
	1.3 Scope and Limitations of study	02
	1.4 Outline of the Thesis	03
2.	Literature Review	04
	2.1 Existing Guidelines for Initial Sizing	04
	2.2 Use of Artificial Neural Networks (ANN) for Element Sizing	14
3.	Methodology	21
	3.1 Data Collection	21
	3.2 Analysis of Data	24
	3.2.1 Graphical Interpretation	24

	3.2.2 Artificial Neural Networks (ANN) and	
	Multiple Regression (MR) Models	25
	3.3 Comparing graphically interpreted data with ANN model	
	results	29
	3.4 Comparing member sizes with values derived from literature	30
4.	Results & Discussion	31
	4.1 Slabs	31
	4.1.1 One-way slabs	31
	4.1.2 Two-way slabs	33
	4.2 Staircases	40
	4.3 Beams	44
	4.4 Columns University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations 4.5 Pat Footingsw.lib.mrt.ac.lk	49 55
	4.5.1 Footing Area	55
	4.5.2 Footing Depth	59
5.	Conclusions & Recommendations	63
Refere	ence List	
Annex	A: List of buildings, architectural and structural drawings	
Annex	B: Structural elements data	
Annex	C: Load calculations	
Annex	D: Training, testing data sets and results of ANN and MR Models	

LIST OF FIGURES

		Page
Figure 2.1	Example showing how most economic sizes were identified (Goodchild,1997)	07
Figure 2.2	Slab Depth vs. Span Chart for One-way and Two-way Solid Slab (Goodchild,1997)	s 08
Figure 2.3	Waist Thickness vs. Span Chart for Staircases (Goodchild,1997)	09
Figure 2.4	Depth vs. Span Chart for Rectangular beams of width 300mm,	
	Multi Spans (Goodchild,1997)	09
Figure 2.5	Size vs. Ultimate Axial Load Chart for Internal Columns (Goodchild,1997)	10
Figure 2.6 Figure 2.7	Graph of Column Area X Concrete Grade vs Number of Floor X University of Moratuwa, Sri Lanka. Grid Size (Dharina Wardana, 200B) issertations www.lib.mrt.ac.lk Components of a Neural Network	13 14
Figure 3.1	Variables shown on a typical floor plan	23
Figure 3.2	Structural Elements Cross Sectional Dimensions	24
Figure 4.1	Graph of concrete compressive strength X column cross sectional	l
	area vs tributary area X number of RC floors	50
Figure 4.2	Graph of column cross sectional area vs column design ultimate	
	load modified as per the Manual (Grade 25 concrete)	54
Figure 4.3	Graph of soil bearing capacity x footing area vs tributary area	
	x Number of RC floors	56

Page

Figure 4.4 Graph of footing depth² vs tributary area x Number of RC floors 60

LIST OF TABLES

		Page
Table 2.1	Span/Effective Depth Ratios for Initial Design of Slabs	
	(Manual, 1985)	04
Table 2.2	Span/Effective Depth Ratios for Initial Design of Beams	
	(Manual, 1985)	05
Table 2.3	Ultimate Loads for Stocky Columns (Manual, 1985)	06
Table 2.4	Sizes of Structural Elements (Orton, 1988)	12
Table 2.5	Results of significance testing for the column sizing problem	
	(Dias & Padukka, 2005)	16
Table 2.6 Table 2.7	Prediction results for the column sizing problem University of Moratuwa, Sri Lanka. Dias & Padukka; 2005 ses & Dissertations www.lib.mrt.ac.lk Details of Neural Networks Used for Simply Supported	17
	Beam Design (Hadi, 2002)	19
Table 3.1	Recorded data for each type of structural element	22
Table 3.2	Characteristics of ANN Models for Structural Element Sizing	28
Table 4.1	One-way Slab Thicknesses	31
Table 4.2	Comparison of overall slabs depths obtained from Reference[1]	
	with the values recommended by the study – One-way slabs	32
Table 4.3	Observed Two-way slab thicknesses	33
Table 4.4	Recommended Two-way slab thicknesses	34

		Page
Table 4.5	Two way slab thicknesses – Summary of ANN &	
	MR model analysis	36
Table 4.6	Span/effective depth ratios for two-way slabs according to	
	Reference[1]	37
Table 4.7	Effective depths for two-way slabs according to Reference[1]	37
Table 4.8	Comparison of overall slabs depths obtained from Reference[1]	
	with the values recommended by the study – Two-way slabs	38
Table 4.9	Observed staircases waist thicknesses in mm	40
Table 4.10	Staircases waist thicknesses – Summary of ANN &	
Table 4.11	MR model analysis University of Moratuwa, Sri Lanka. Comparison of Staircases waist thicknesses obtained from www.lib.mrt.ac.lk Graphical and ANN analysis	41 42
Table 4.12	Recommended staircases waist thicknesses in mm	43
Table 4.13	Comparison of staircases waist thicknesses obtained from Reference[1] with the values recommended by the study	43
Table 4.14	Observed beam depths in mm	44
Table 4.15	Recommended beam depths in mm	45
Table 4.16	Beam sizing – Summary of ANN & MR model analysis	46
Table 4.17	Comparison of beam depths obtained from Reference[1] with the values recommended by the study	48
Table 4.18	Column sizing – Summary of ANN & MR model analysis	51

		Page
Table 4.19	Comparison of column cross sectional area results -	
	ANN and Graph	52
Table 4.20	Footing area – Summary of ANN & MR model analysis	57
Table 4.21	Footing depth – Summary of ANN & MR model analysis	61

LIST OF ABBREVIATIONS

Abbreviation Description

A Tributary Area

ANN Artificial Neural Network

b Beam or column width

D Depth of footing

 f_{cu} Compressive strength of concrete

h Slab thickness / beam depth or column depth

L Length of footing

University of Moratuwa, Sri Lanka. Elspanonic Theses & Dissertations

www.lib.mrt.ac.lk Shorter Span

l_y Longer Span

1

 l_{x}

 l_x/l_y Ratio of spans

MAE Mean absolute error

MR Multiple regression

RSTD Standard deviation of ratios

|1 – RAVG | Deviation of average ratio from unity

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	List of buildings, architectural and structural drawings	65
Appendix B	Structural elements data	175
Appendix C	Load calculations	186
Appendix D	Training, testing data sets and results of ANN and	
	MR Models	241

