LB/DON/34/2015 DCE 23/91

HEIGHT LIMITS FOR REINFORCED CONCRETE WALL-SLAB RESIDENTIAL BUILDINGS

Andawatta Kankanamge Thishani Viranga De Silva (118606L)

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA

Dissertation submitted in partial fulfillment of the requirements for the Master of Engineering Degree in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

November 2014

624 "14" 624.01 (0+3)

108913 + CD- ROM

108913

DECLARATION OF THE CANDIDATE AND THE SUPERVISOR

Declaration of the Candidate

I declare that this is my own work and that this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

27/91/2014Date:

Declaration of the Supervisor

The above candidate has carried out research for the Masters Dissertation under my supervision.

i

Signature of the supervisor:

27/11/2014 Date

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Prof. Priyan Dias, Senior Professor of the University of Moratuwa, for his support and guidance throughout this study. His experience and knowledge of the subject were of great importance to carry out and evaluate results achieved in this research.

I would also like to express my gratitude to Eng. (Ms) T.J. Jayasundara, Deputy General Manager of Structural Design-1 Unit of the Central Engineering Consultancy Bureau and Dr.(Mrs) P. Hettiarachchi, Senior Lecturer of University of Moratuwa, for their guidance and comments in selecting this research area.

At the same time I would like to express my deepest thanks to my working colleague Eng. Pragash for sharing me with his knowledge and understanding of relevant parts of this research area. I would like to thank Eng. (Ms) Roshanthi Konara as well for her comments and great support throughout this study and providing me with valuable resources. I am also grateful to Eng.(Ms) Chathuri Nissanka for providing me with resources for analyzing computer models.

Last but not least I would like to express my thanks to my husband Eng. J.P.S.M.B Jayasooriya for his consistent encouragement and support to complete this research successfully.

ABSTRACT

It is common in urban areas for medium rise residential buildings to be constructed with a scarcity of land. With rapid urban growth in developing countries like Sri Lanka, it is crucial that low income families are provided with better living conditions. Construction of residential buildings with higher number of stories for low income families in Colombo has already started and further plans for constructing more buildings are likely. In order to eliminate the space taken by columns and beams in vertical and horizontal spaces in each floor and to reduce the time spent for partition wall construction, reinforced concrete wallslab structures are arguably the best structural form for residential buildings.

In this research, the wall thickness requirements in several codes of practices were analyzed to select the minimum possible wall thickness with respect to durability and fire requirements as well as practical feasibility. Three building layouts were generated with approximately similar floor areas, wall densities and number of stories but with different aspect ratios and modeled using computer software. By using the maximum stress figures obtained from the analysis, calculations were made to predict the maximum number of stories achievable with selected wall thicknesses in each building. Further a seismic analysis was done for all three buildings to compare their behavior under an earthquake.

Comparing several codes of practices and considering practical feasibility, the minimum wall thickness for double layered reinforced concrete walls was obtained as 180mm and for single layered reinforced concrete walls as 130mm. The maximum stories achievable in buildings with aspect ratios of 2, 1.15 and 6.7 ranged from 16 to 8, 16 to 8 and 14 to 8 respectively, depending on its grid spacing (i.e. whether 3m or 6m) and wall thickness (i.e. whether 180mm or 130mm). Buildings having aspect ratios of 2 and 1.15 with 12 stories showed sufficient capacity under seismic action too.

Key words: Reinforced Concrete, Wall-slab structures, Wall Thickness, Aspect Ratio, Seismic Analysis

TABLE OF CONTENTS

De	claration of the Candidate & Supervisor	i
Ac	knowledgements	ii
Ab	ostract	iii
Tal	ble of content	iv
Lis	st of Figures	vi
Lis	st of Tables	viii
Lis	st of Appendices	x
1.	Introduction	1
	1.1. Problem	1
	1.2. Objective	2
	1.3. Scope	2
	1.4. Methodology	3
	1.5. Outline of the Dissertation	4
2.	Comparison of Codes of Practices to Evaluate Wall Thickness	5
	2.1. Introduction	5
	2.2. Cover to Reinforcement	5
	2.2.1. Introduction	5
	2.2.2. Cover for Durability	6
	2.2.3. Cover for Fire Requirement	16
	2.2.4. Minimum Wall Thickness for Fire Requirement	21
	2.3. Practical Issues in Construction	24
	2.4. Walls with Single Layer of Reinforcement	26
3.	Computer Simulated Analysis	29
	3.1. Selection of Building Layouts	29
	3.2. Method of Analysis	30
	3.3. Generating Computer Models	33
	3.4. Means of Load Transfer	35
4.	Stress Evaluation and Design	37
	4.1. Critical Stresses	37
	4.2. Allowable Stresses	41

4.3. Level of Failure Prediction	42
4.3.1. Buildings with 180mm wall thickness and 20mm	
eccentricity	42
4.3.2. Buildings with 130mm wall thickness and 20mm	
eccentricity	46
5. Seismic Analysis	51
5.1. Introduction	51
5.2. Design Seismic Action	52
5.2.1. Importance Class	52
5.2.2. Design Peak Ground Acceleration	52
5.3. Horizontal Elastic Response Spectra	53
5.4. Horizontal Design Response Spectra	53
5.5. Seismic Analysis	57
5.5.1. Seismic Mass of the building	57
5.5.2. Seismic Load Combination	58
5.5.3. Structural Regularity	59
5.5.4. Structural Analysis	59
5.6. Output Results Evaluation	60
5.6.1. Displacement	60
5.6.2. Inter Storey Drift	63
5.6.3. Storey Shears and Base Shear	65
5.6.4. Maximum stresses on walls	67
6. Summary and Conclusions	68
6.1. Minimum Wall Thicknesses	68
6.2. Maximum Number of Stories	68
6.3. Behavior under Seismic Action	69
Reference List	71
Appendix A: Wind Load Calculation	73
Appendix B: Manual Stress Calculation	77
Appendix C: Level of Failure Prediction Calculations	91

LIST OF FIGURES

Fig. 2.1	Classification of exposure conditions in British Code	06
Fig. 2.2	Nominal cover to all reinforcement to meet durability	07
0	requirements in British Code	
Fig. 2.3	Exposure classes related to environmental conditions in Euro Code	08
Fig. 2.4	minimum cover requirements with regard to bond in EN 1992-1	08
Fig. 2.5	Indicative strength classes in Annex E in EN 1992-1	09
Fig. 2.6	Recommended structural classification in EN 1992-1	09
Fig. 2.7	Values of minimum cover with regard to durability in EN 1992-1	09
Fig 2.8	Exposure Classification in Australian Code	11
Fig 2.9	Required cover in Australian Code	12
Fig.2.10	Minimum cover in American Code	13
Fig.2.11	Bar diameters used in American Code	14
Fig.2.12	Environmental Exposure conditions in Indian Code	15
Fig.2.13	Mix and material requirements for durability in	15
	Indian Code	
Fig.2.14	Nominal cover to meet durability requirements in Indian Code	16
Fig.2.15	Nominal cover to meet fire requirements in British Code	17
Fig.2.16	Axis distance for load bearing walls in EN 1992-1	17
Fig.2.17	Minimum cover for fire requirements in Australian code	18
Fig.2.18	Nominal cover to meet fire requirements in Indian code	19
Fig.2.19	Typical wall section	20
Fig.2.20	Minimum dimensions for fire resistance in British code	22
Fig.2.21	Minimum effective thickness for fire resistance in Australian Code	22
Fig.2.22	Minimum thickness for fire resistance in American Code	23

Fig.2.23	Minimum thickness for fire resistance in Indian Code	23
Fig.3.1	Building Layout 1	29
Fig 3.2	Building layout 2	29
Fig 3.3	Building layout 3	30
Fig 3.4	Three Building layouts with grid spacing 6m by removing	31
	every other wall	
Fig. 3.5	Summary of total number of analysis cases	32
Fig. 3.6	3d view and plan view of building layout 1	34
Fig. 3.7	3D view and plan view of building layout 2	34
Fig. 3.8	3D view and plan view of building layout 3	34
Fig 3.9	Stresses due to 1.4DL+1.6LL combination	35
Fig 3.10	Stresses due to wind load	36
Fig. 4.1	Stress Distribution along the length of the wall	38
Fig. 4.2	Stress distribution across section of the wall	39
Fig. 4.3	Summary of distribution of stresses	40
Fig. 4.4	3D view and Stresses from 1.4DL+1.6LL combination for	46
	16 storied building	
Fig. 4.5	Summary of maximum number of stories	50
Fig. 5.1	Elastic and Design Horizontal Response Spectrum	56
Fig. 5.2	Response Spectrum Function in ETABS	56
Fig. 5.3	Mass of the building in ETABS	57
Fig. 5.4	Definition of Earthquake load case and Load combination	58
Fig. 5.5	Displacements along short direction under	62
	earthquake loading	
Fig. 5.6	Displacements along long direction under	63
	earthquake loading	

LIST OF TABLES

		Page
Table.2.1	Cover for durability requirements	16
Table.2.2	Cover for fire resistance	19
Table.2.3	Minimum Cover for durability and fire resistance	20
Table.2.4	Minimum Gap between bars	20
Table.2.5	Minimum thickness considering cover to reinforcement	21
Table.2.6	Minimum member thickness for 2 hr. fire resistance	24
Table.2.7	Minimum member thicknesses according to code provisions	24
Table.2.8	Minimum member thicknesses considering practical issues	25
Table.2.9	Minimum member thicknesses considering practical and	26
	theoretical aspects	
Table 2.10	Minimum thickness with single layer of reinforcement	27
Table 2.11	Summary of minimum wall thicknesses	28
Table 3.1	Summary of building details	30
Table 4.1	Prediction Calculation for Combination 1.4DL+1.6LL in	42
	Building Layout 1, 3m Grid spacing, 20mm eccentricity and	
	180mm wall thickness	
Table 4.2	Prediction Calculation for Combination 1.2DL+1.2LL+1.2WL	43
	in Building Layout 1, 3m Grid spacing, 20mm eccentricity and	
	180mm wall thickness	
Table 4.3	Prediction Calculation for Combination 1.0DL+1.4WL in	44
	Building Layout 1, 3m Grid spacing, 20mm eccentricity and	
	180mm wall thickness	
Table 4.4	Prediction Calculation for Combination 1.4DL+1.4WL in	45
	Building Layout 1, 3m Grid spacing, 20mm eccentricity and	
	180mm wall thickness	
Table 4.9	Prediction Calculation for Combination 1.4DL+1.6LL in	47
	Building Layout 1, 3m Grid spacing, 20mm eccentricity	
	and 130mm wall thickness	

Table 4.10	Prediction Calculation for Combination 1.2DL+1.2LL+1.2WL	47
	in Building Layout 1, 3m Grid spacing, 20mm eccentricity	
	and 130mm wall thickness	
Table 4.11	Prediction Calculation for Combination 1.0DL+1.4WL in	48
	Building Layout 1, 3m Grid spacing, 20mm eccentricity and	
	130mm wall thickness	
Table 4.12	Prediction Calculation for Combination 1.4DL+1.4WL in	49
	Building Layout 1, 3m Grid spacing, 20mm eccentricity	
	and 130mm wall thickness	
Table 4.13	Maximum number of stories for all plan forms	50
Table 5.1	Elastic and Design Horizontal Response Spectra	55
Table 5.2	Effective modal mass participation for modal response	59
	spectrum analysis for Building 1 with 12 stories	
Table 5.3	Design Displacements for building 1	61
Table 5.4	Design Displacements for building 2	61
Table 5.5	Design Displacements for building 3	62
Table 5.6	Inter-storey drift check for damage limitation requirement	64
	for building 1	
Table 5.7	Inter-storey drift check for damage limitation requirement	64
	for building 2	
Table 5.8	Inter-storey drift check for damage limitation requirement	65
	for building 3	
Table 5.9	Storey Shears and Base Shear for Building 1	65
Table 5.10	Storey Shears and Base Shear for Building 2	66
Table 5.11	Storey Shears and Base Shear for Building 3	66
Table 5.12	Base shear along two directions	66
Table 5.13	Maximum compressive stresses due to seismic load	67
	combination	

LIST OF APPENDICES

		Fage
Appendix A	Wind load Calculation	69
Appendix B	Manual Stress Calculation	73
Appendix C	Level of Failure Prediction Calculation	87