LB/DON/56/02 DCS 03/02

2

Design and Implementation of a Network Traffic Analyzing Utility

This thesis was submitted to the

Department of Computer Science & Engineering

of the

University of Moratuwa in partial fulfillment of the requirements for the

Degree of Masters of Science

74544

TH

681.3 "02

Priyantha Pushpa Kumara

Department of Computer Science & Engineering University of Moratuwa Sri Lanka February 2002

74544

Declaration

I, Priyantha Pushpa Kumara hereby certify that the work included in this thesis has not been submitted in part or whole for any other academic qualification at any institution.

P. rul

Priyantha Pushpa Kumara Research Student

UOM Verified Signature

......

Dr. P G V Dias Supervisor

Abstract

Developments in Information and Communication Technology (ICT) have created many new applications, which require a large amount of Internet bandwidth for proper application usage. However, Internet bandwidth is an expensive resource especially in this part of the world. Therefore, enterprises that use the Internet for business always need to efficiently use the bandwidth. Internet Service Providers may also need to manage their Internet bandwidth efficiently in order to increase the profit margin of their services.

Knowing the current (and past) usage is an important requirement in estimating the bandwidth requirement of a corporate network. The information about the composition of the use of the bandwidth by applications, user groups, etc. will help an administrator to efficiently manage it. Furthermore, knowing what is happening in the network always helps an administrator to keep the network secure, efficient and reliable all the time.

We studied the requirements of a network administrator by considering LEARN as a test bed for this study. We then assessed, whether the existing network traffic monitoring tools can provide the required information to the administrator. We examined some of the popular network monitoring tools that are widely used in the Internet community for their features and drawbacks. We found that the existing tools for network traffic monitoring are not capable of providing most of the required information by the administrator.

With these results, we identified the features available in those tools, and developed a new tool, LEARNStat, re-using some of the freeware utilities available in order to meet the requirements of a network administrator. We tested LEARNStat in LEARN which is our test-bed, and during the short period of running LEARNStat, we were able to obtain several important results.

In this thesis, we discuss the requirements of a network administrator and how we met those with LEARNStat. We present a brief description of related principles and also discuss the results we obtained with LEARNStat. The thesis also includes possible future enhancements for the LEARNStat.

Acknowledgement

I take pleasure in thanking Dr. Gihan Dias, for supervising this project and using his valuable time to contribute, guide and instruct me in not only revising and writing this thesis but also proposing, commenting and evaluating my work throughout the project. I would also like to express my sincere thanks to Dr. Nalin Wickramarachchi, head of the department of Computer Science & Engineering for his guidance and permission given to me, to use departmental resources for this work. My sincere thanks to Dr. Nalin Ranasinghe, the external supervisor, for his guidance and positive comments for the success of this project.

I am also grateful to the LEARN management committee for allowing me to carry out this project while working in LEARN as well as allowing me to use its resources for this project. Without the sponsorship, this work would not have been possible.

Thanks are also due to Prof. (Mrs.) Ratnayake, Director, Postgraduate Studies, for her guidance throughout the project.

I received valuable comments and guidance from Vishaka Nanayakkara, throughout the project that always encouraged me to successfully complete this project. Without her help, I would not have met Prof. Sven Tafvelin, who gave me valuable guidance as well as a contact for NorduStat. Thank you Vishaka and thank you Prof. Tafvelin.

Thanks to Rasika Amarasiri for his guidance and help given to me whenever I had any problems with Perl or HTML.

Thanks to all staff members of the Department of Computer Science & Engineering and network administrators of LEARN member sites who directly or indirectly helped me to successfully develop and test the LEARNStat.

Thanks to Dave Plonka and Håvard Eidnes for their kindness in allowing me to publish some of the graphs that represent their own network statistics in this thesis.

My special thanks to the final year project group, Karunarathna, Sendanayake, Ms. Wickramasinghe, & Ms. Jayawardana, those who first installed and configured NeTraMet and showed me the capabilities of NeTraMet.

Thanks to Mr. G. H. A. Perera for his help in proof reading and correcting the language mistakes.

Finally, the most important people, my wife Preethi and even little Dilsha endured everything with infinite patience and good grace, during this period. Thank you.

Contents

ABSTRACT		1
ACKNOWL	EDGEMENT	II
CONTENTS		[]]
LIST OF FIC	GURES	v
LIST OF TA	BLESV	II
ABBREVIAT	۲IONS٧١	II
1. INTRODU	JCTION	. 1
I.I OBJ	ECTIVES	.1
1.2 LEA 1.3 OUT	CLINE OF THE THESIS	.2
2. LEARN		.4
21 His	TORY	4
2.2 EXP	ERIENCE IN LEARN	.6
2.2.1	Network Monitoring tools being used	.6
2.2.2	Problems encountered with tools used	.7
2.2.3	Summary	. 8
3. NETWOR	K MANAGEMENT	.9
3.1 150	OSI NETWORK MANAGEMENT STANDARDS	0
3.1 ISO	POST NETWORK MANAGEMENT STANDARDS	10
3.2.1	Simple Network Management Protocol-SNMP	10
3.2.2	TCP/IP	14
3.3 NETWO	RK MONITORING	18
3.3.1	Which layer to monitor?	18
3.3.2	Types of monitors	18
3.4 CAS	E STUDIES	19
3.4.1	MRTG v2.0 (Multi Router Traffic Grapher)	19
3.4.2	FlowScan	21
3.4.3	NeTraMet	24
3.4.4	NORDstat	26
4. LEARNST	TAT SYSTEM DESIGN AND ARCHITECTURE	30
4.1 Sys	TEM OVERVIEW	30
4.2 LEA	RNSTAT SYSTEM DESIGN	30
4.3 Sys	TEM ARCHITECTURE	32
4.4 USE	R INTERFACE	33
4.4.1	User Interface Design	39
5. LEARNST	TAT IMPLEMENTATION	40
5.1 Sve	TEM COMPONENTS	40
5.1.1	LEARNStat Regular Module	40
5.1.2	LEARNStat On-line Module	45
5.2 SYS	TEM INTEGRATION DETAILS	48
5.2.1	Integrating Locally developed LEARNStat components	49
5.2.2	Integrating Re-used components to LEARNStat	50

6. OUTCOM	1E OF LEARNSTAT	
6.1 INT	ERESTING RESULTS	52
6.1.1	Discovery of unknown servers	
6.1.2	Discovery of unauthorized cache users	
6.1.3	Discovery of a Loop-Hole in Router Access-lists	
6.1.4	Monitoring Bandwidth Utilization by Applications	
6.2 LE	ARNSTAT SYSTEM VALIDATION & VERIFICATION	
6.2.1	LEARNStat Unit Testing	
6.2.2	LEARNStat Integration Testing	
6.2.3	LEARNStat System Testing	
6.3 LE.	ARNSTAT RESULT VALIDATION	
6.3.1	Validation of LEARNStat Graphs	
6.3.2	Validation of non-graphical outputs	
6.3.3	Validation using known operations	
6.4 PRO	BLEMS ENCOUNTERED	
6.4.1	Problems in General	
6.4.2	Problems Encountered in Regular module	63
6.4.3	Problems Encountered in On-line Module	
7 CONCLL	SION AND DECOMMENDATIONS	20
7. CONCLU	SION AND RECOMMENDATIONS	
7.1 ME	RITS AND DRAWBACKS OF LEARNSTAT	68
7.1.1	Merits of LEARNStat	
7.1.2	Drawbacks of LEARNStat	
7.2 FUT	URE ENHANCEMENTS POSSIBLE TO LEARNSTAT	
7.2.1	A new Rules Syntax	
7.2.2	A new Algorithm to match Alarm Rules	
7.2.3	Sending urgent alarms	
7.2.4	Alarms on traffic volumes	71
7.2.5	A GUI for Administrators	71
7.2.6	Data Validation	
7.2.7	Code re-writing	72
7.3 LE	ARNSTAT IN SUMMARY	
APPENDIX	Α	
A 1		73
A.I INS	TALLING AND CONFIGURING RE-USED COMPONENTS	
A.1.1	Installing and Configuring Net Flamer	
A.1.2	Configuring Netriow on Cisco routers	
A.1.3	Installing and Configuring KRD1 ools	
A.Z INS	I ALLING AND CONFIGURING LUCALLY DEVELOPED COMPONENTS	
A.2.1	Installation procedure	
A.2.2	Conjiguration procedure	
APPENDIX	B	
B.1 LE	ARNSTAT DATA FORMATS	
B.1 IDE	NTIFYING DATA FLOWS	
B.2 FIL	FORMATS	80
B.2.1	Configuration File Format	80
B.2.2	Rule File Format	
DEEDENG	EC.	0.5
REFERENC	L)	

List of Figures

FIGURE 2.1	LEADN DUASE I NETWORK TOPOLOGY	5
FIGURE 2.1	LEARN FRASE I NEI WORK TOPOLOGY	
FIGURE 2.2	AN MRTG CRAPH SHOWING INTERNET RANDWIDTH USACE	0
FIGURE 2.4	AN MRTG GRAPH SHOWING A LOCAL LINK USAGE	/
FIGURE 2.5	AN MRTG ORAFH SHOWING A LOCAL LINK USAGE	/
FIGURE 3.1	OSI NETWORK MANAGEMENT A DOUTECTURE	0
FIGURE 3.1	SIMD MANACEMENT MODEL	9
FIGURE 3.3	A DADT OF A SN 1 ODJECT MANDIC TREE	12
FIGURE 3.4		15
FIGURE 3.5	A DDING HEADERS AND TRAILERS TO A DRIVE ATION DATA AS IT COES DOUBLITHE TOP/ID	. 15
FIGURE 5.5	PROTOCOL STACK	15
FIGURE 3.6	IP DATAGRAM FORMAT	16
FIGURE 3.7	IP ADDRESS AND NETMASK	16
FIGURE 3.8	MRTG GRAPHS WITH DIFFERENT DATA RESOLUTIONS	19
FIGURE 3.9	MRTG USES SNMP OUERIES TO GATHER DATA FROM A REMOTE ROUTER	.20
FIGURE 3.10	A GRAPH GENERATED BY RRDTOOLS	.21
FIGURE 3.11	FLOWSCAN GRAPH SHOWING WELL-KNOWN SERVICES	.22
FIGURE 3.12	NETFLOW VERSION 5 PDU FORMAT	.23
FIGURE 3.13	INTERACTION BETWEEN METERS AND COLLECTOR & MANAGER	.24
FIGURE 3.14	A SAMPLE FLOW DATA FILE	.25
FIGURE 3.15	NORDSTAT GRAPH SHOWING TRAFFIC RATE IN KBITS/S	.26
FIGURE 3.16	A NETWORK MAP PRODUCED BY NORDSTAT	.27
FIGURE 3.17	HOURLY AVERAGE GRAPH BY NORDSTAT	.27
FIGURE 3.18	SNAPSHOT OF TABULAR INFORMATION PRESENTED BY NORDSTAT	.28
FIGURE 3.19	GRAPH OBTAINED BY CLICKING THE FIRST LINK IN THE TABLE (FIGURE 3.18)	.28
FIGURE 4.1	LEARNSTAT SOFTWARE COMPONENTS	.31
FIGURE 4.2	LEARNSTAT LAYERED ARCHITECTURE	. 32
FIGURE 4.3	SCREEN SHOT OF LEARNSTAT FRONT PAGE	.33
FIGURE 4.4	LEARNSTAT USAGE GRAPHS	.34
FIGURE 4.5	LEARNSTAT PORT SUMMARY SCREENS	.35
FIGURE 4.6	LEARNSTAT NETWORK USERS SCREENS	.36
FIGURE 4.7	SERVERS LISTED BY SERVICES THEY RUN	.37
FIGURE 4.8	KRGRAPHER SCREENS	.38
FIGURE 4.9	LEARNSTAT FRONT PAGE WITH AN ALARM	.38
FIGURE 4.10	LEARNSTAT USER INTERFACE SUMMARY	.39
FIGURE 5.1	THE LEARNSTAT.PL ALGORITHM IN BRIEF.	.41
FIGURE 5.2	SUMMARY OF MAKEDB.PL PROGRAM LOGIC	.42
FIGURE 5.3	LOGIC OF MAKEGRAPHS.PL	.43
FIGURE 5.4	LUGIC OF SERVERS.PL	.45
FIGURE 5.5	SIMPLE LOGIC OF ALARMO.PL	
FIGURE 5.0	LEAKINGTAT ON-LINE MODULE COMPONENTS AND THEIR INTERACTION WITH HIML	17
FIGURE 57		.47
FIGURE 5.7	LEADNETAT COMPONENTS AFTED INTEGRATION	.40
FIGURE 5.0		50
FIGURE 5.10		50
FIGURE 6.1	THE ALARM RULES FUSED FOR BETA TEST	53
FIGURE 6.2	ALARM DETAILS SCREEN	53
FIGURE 6 3	I FARNSTAT GRAPH SHOWING VIDEO CONFERENCING BANDWIDTH USAGE	54
FIGURE 6.4	NEW LINES ADDED TO THE RULES FILE FOR IDENTIFYING VIDEO CONFERENCING DATA	
	FLOWS	
FIGURE 6.5.	MIRROR SYNCHRONIZATION BANDWIDTH UTILIZATION	55
FIGURE 6.6	A COMPARISON OF LEARNSTAT GRAPHS WITH MRTG GRAPHS	59
FIGURE 6.7	LEARNSTAT DATA VALIDATION QUERY AND A RESULT	60

FIGURE 6.8	LEARNSTAT RESULT VERIFICATION USING A KNOWN OPERATION	
FIGURE 6.9.	UDP STREAM OF CACHE-FLOW DATA FROM A ROUTER TO THE METER	
FIGURE 6.10	LEARNSTAT GRAPH THAT SHOWS A DELAY IN GETTING UPDATED	
FIGURE 6.11	LEARNSTAT BATCH JOB SCRIPT WITH TIME STAMPS	
FIGURE 6.12	LEARNSTAT.PL PERFORMANCE VARIATIONS	
FIGURE 6.13	A SCRIPT TO RUN LEARNSTAT.PL WITH TWO SETS OF RULES	
FIGURE 7.1	NEW ALARM RULE SYNTAX	
FIGURE 7.2	A NEW ALGORITHM FOR EVALUATING ALARM RULES	
FIGURE A.1	ALARM RULES AS SEEN FROM LEARNSTAT ON-LINE MODULE	
FIGURE B.1	LOGIC OF ATTRIBUTE BASED SIMPLE TEST	
FIGURE B.2	CONFIGURATION FILE FORMAT	
FIGURE B.3	FORMAT OF THE LEARNSTAT RULE FILE	
FIGURE B.4	FORMAT OF THE ALARM RULE FILE	

List of Tables

SNMP PRIMITIVE DATA TYPES	
OBJECTS GROUPS OF MIB-2	12
IP ADDRESS EXAMPLES	17
SOME OF THE COMMON TCP/UDP PORTS ASSIGNMENTS	17
LEARNSTAT REGULAR MODULE COMPONENTS	40
LEARNSTAT ON-LINE MODULE COMPONENTS	
LEARNSTAT PERL MODULE COMPONENTS	50
LEARNSTAT UNIT TEST RESULTS	
KEYWORDS USED IN LEARNSTAT CONFIGURATION FILE	
LEARNSTAT COMPONENTS WITH THEIR INPUTS AND OUTPUTS	
	SNMP PRIMITIVE DATA TYPES OBJECTS GROUPS OF MIB-2 IP ADDRESS EXAMPLES. SOME OF THE COMMON TCP/UDP PORTS ASSIGNMENTS LEARNSTAT REGULAR MODULE COMPONENTS. LEARNSTAT ON-LINE MODULE COMPONENTS LEARNSTAT ON-LINE MODULE COMPONENTS LEARNSTAT PERL MODULE COMPONENTS LEARNSTAT VNIT TEST RESULTS KEYWORDS USED IN LEARNSTAT CONFIGURATION FILE LEARNSTAT COMPONENTS WITH THEIR INPUTS AND OUTPUTS

Abbreviations

CIDR	Classless Inter Domain Routing
CINTEC	Council for INformation TECnology
GUI	Graphical User Interface
IANA	Internet Assigned Number Authority
ICP	Internet Cache Protocol
IETF	Internet Engineering Task Force
IOS	Internet Operating System (Cisco uses this name for their router operating systems)
ISO	International Standard Organization
IX	Internet eXchange
LEARN	Lanka Education And Research Network
MIB	Management Information Base
NARA	National Aquatic Resources Agency
NARESA	Natural Resources Energy and Science Authority (Now, this is named National Science Foundation - NSF)
NORDUnet	This is the Nordic Internet highway to research and education networks in Denmark, Finland, Iceland, Norway and Sweden and provides the Nordic backbone to the global Internet.
PDU	Protocol Data Unit
RFC	Request For Comments
RPN	Reverse Polish Notation
RTFM	Real-time Traffic Flow Measurement
SMS	Short Message Service
SNMP	Simple Network Management Protocol
Sida	Swedish International Development Cooperation Agency
SAREC	The research arm of the Sida