TO IDENTIFY THE IMPACT OF THE NEW SOUTHERNEXPRESS WAY (SEW) ON THE LAND USE OF INTERCHANGE AREAS BY APPLYING THE CELLULAR AUTOMATA MODEL

K.G.Kalyani Indika

08/9611

Degree of Master of Science in Town and Country Planning

Department of Town and Country Planning

University of Moratuwa Sri Lanka

April 2014

TO IDENTIFY THE IMPACT OF THE NEW SOUTHERN EXPRESS WAY (SEW) ON THE LAND USE OF INTERCHANGE AREAS BY APPLYING THE CELLULAR AUTOMATA MODEL

Kahawe Guruge Kalyani Indika

08/9611

Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science in Town and Country Planning

Department of Town and Country Planning

University of Moratuwa Sri Lanka

April 2014

DECLARATION

I declare that this Research Project represents my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

I wish to also declare that the total number of words in the body of this report (excluding endnotes and references) is 15000.

Signature :

Name of Student : K.G.K.Indika

Group : 2010/2011 programme

Registration No : 08/9611

Date :

CERTIFICATION

I certify herewith that Kahawe Guruge Kalyani Indika, Registration No 08/9611 of the 2008/2009 Group, has carried this research project under my supervision.

Signature of the supervisor: Signature of Head the department

Name: Senior Lecture K.D.Fernando, Name: Dr. Jagath Munasinghe

Department of Town and Country Planning Department of Town and Country Planning

Faculty of Architecture Faculty of Architecture
University of Moratuwa University of Moratuwa

Date: Date:

ABSTRACT

Urban Development is a significant global phenomenon with the conversion of natural land to urban uses .It is a complicated process involving the spatiotemporal changes of all socioeconomic components and physical components at different scales .These physical components of urban growth are related to spatial expansion, land cover changes and land use changes.

Particularly in Sri Lanka, it is revealed that most of the urban centers are growing around road intersections due to relatively good accessibility and other services. Population flows in to urban areas. In this process, some locations have grown faster than the others.

The National Physical Plan & Policy of Sri Lanka has introduced few expressways to the country and some of them are constructing, implementing and being functioning.

As a navel project of the country, when they are functioning in Sri Lanka, land in the interchange areas would have a demand for various activities while the rest of the road is access controlled. Therefore it is expected to have a rapid conversion of lands in interchange areas and relatively higher rate of growth of urban development in adjoining urban centers with a spatial expansion and land use changes.

As a case study of express ways; SEW, the government also has undertaken measures to direct development activities in interchanges by preparing Area Development Plans which provide a growth directions and development guide lines under the Southern Transport Development Project (STDP) for each of the interchanges along the corridor.

In the context of urban development, major theories and approaches conventionally applied in urban development modelling, and the strengths and weaknesses associated with each approach. But several studies have been conducted to understand the urban growth phenomenon that have focused on quantifying, measuring, monitoring, managing, modelling and predicting urban growth.

Therefore, main objective of this study was to identify the Land Use Changes of the Interchange areas of Express Ways with Cellular Automata by applying the cellular automata model.

The Surroundings Kurundugahahethekma and Galanigama Interchanges areas of the Southern Express Way were selected as the case study areas which are covered by the 1.5 km radius of the Interchange Area for this study. After calibrating the model, the result is shown that the urban land use are increasing while the non urban are being decreasing.

The changes in range by the spatially and the time periods, there has been more influenced on the interchanges areas affecting Express Ways which has been built in recent time. With the flexibility of implementing transition rules, planners and decision makers can use the model to test various planning options to answer their "what if" questions. Further, the model can be applied and used in developed and detailed analysis such as land use categories and 3D analysis.

Key words: Express ways, Cellular Automata, Urban Development, Accessibility

ACKNOWLEDGEMENTS

I am deeply indebted to convey my gratitude to Dr Jagath Munasinghe, the Head, Department of Town & Country Planning, University of Moratuwa for giving me the valuable opportunity of undertaking a research study and his valuable guidance, helpful suggestions constructive criticisms during the course.

I would like to pay my gratitude to Mr. K.D.Fernando, Senior Lecture, for his supervision and assistance in conducting the research. I would like to acknowledge the guidance provided by Prof.P.K.S.Mahanama, the Dean, the Faculty of Architecture, the Senior Lecture Mrs. A. L.S. Susantha and Mr.Chathura De Silva for their assistants.

I am grateful to Mr. Prasanna Silva, former Director General of the Urban Development Authority for giving me the opportunity to follow the MSC in Town & Country Planning, and former Directors of Mrs.Swarna Kusumseeli, Mrs,Shirani Ariyathilaka, Mr. R. M. Somarathn, former Deputy, Directors of Mrs Menike Director Mr. Abeygunawardena, Deputy Somarathna ,Mr.Gunathilake Banda, Directoer Mr Prasad Ranaweera and Thushani Alwis, Town Planner Mr.Anuralal, and other all officers of the Western Province Division for their assistant. And also my special thanks to Mrs. Pushpa Gamage, Director GIS of Urban Development who was providing me the technical support and giving the required data.

I am deeply indebted Mrs.Ishika Wijerathna,GIS Spetialist who is giving me unlimited advices and her immense assistant, Nadeesha, Rasoja, Inaxshi, Nadeeka Janitha and Suranji who were providing me the technical support and preparing the required maps for the thesis.

I express my sincere gratitude to my parent, husband, my brothers, the sister and brother in law for their invaluable mental and physical assistance in my educational career. Finally I pay my sincere gratitude to all who have helped me innumerable ways to complete the research.

CONTENTS

		Page
Decla	aration	i
Certification		ii
Abst	ract	iii
Ackr	nowledgments	iv
Cont	ents	v- vii
List	List of Figures	
List	of Tables	xi
List	of Abbreviations	xii
Chaj	pter 1 Introduction	
1.1	Background	1
1.2	Problem Definition	1-2
1.3	Objective	3
1.4	Scope and Limitation	3
1.5	Methodology	3-5
Chaj	pter 2 Literature Review	
2.1	Urban Development	6
2.2	Accessibility/Connectivity	6
2.3	Definitions Express Way	7
2.4	Definitions of an Interchange	8
2.5	Experiences of Expressways in Developing Country	ries 8
	2.5.1 The Lyari Expressway	9
	2.5.2 Chungbu Expressway	9-10
2.6	Models for Urban Growth	11
	2.6.1 Definitions of Models	11-12

	2.6.2	Types of Models	12
	2.6.3	Urban Modeling	13-14
	2.6.4	Urban Growth Theories/ Theories of urban	14
		development Modeling	
		2.6.4.1 Concentric Zone Model	15
		2.6.4.2 Sector Model	15
		2.6.4.3 Multiple Nuclei Model	15-17
		2.6.5 Theoretical Approaches of Urban	17
		Development Modeling	
		2.6.5.1 Urban Ecological Approach	17
		2.6.5.2 Social Physical Approach	17
		2.6.5.3 Neoclassical Approach	17
		2.6.5.4 Behavioral Approach	18
		2.6.5.5 Systems Approach	18-19
	2.6.6	Urban Simulation Overview	19-20
		2.6.6.1. City Engine	20-21
		2.6.6.2 Sim City	21
		2.6.6.3 Urban Sim	22
		2.6.6.4 Cellular Automata	22
		2.6.6.5 SLEUTH model	22-23
		2.6.6.6 Multi-Agent (MA) Approach	23-24
2.7	Cellu	ılar automata	24
	2.7.1	Mathematical Representation of a Cellular Automaton	24-27
	2.7.2	Five Basic Elements of Cellular Automata	27-34
	2.7.3	Cellular Automata in urban modeling	35-37
	2.7.4	Contemporary Cellular Automata-Based Urban	38-40
		Modeling Practices	
	2.7.5.	Conclusion	41-42

Chapter 3 Applying A Cellular Automata In Urban Modeling

3.1	Introd	uction	43
3.2	Mathe	ematical Representation of a Cellular Automata	43-44
3.3	Basic	Elements of Cellular Automata (CA)	44
	3.3.1	The Cell	44
	3.3.2	The State	44-46
	3.3.3	The Neighbourhood	46
	3.3.4	The Transition Rules	46-48
	3.3.5	The Time	48
3.4	The S	tudy Method	48-53
3.5	Case S	Case Study	
	3.5.1	Background	54-57
	3.5.2.	Kurundugahahathekma Interchange: Case Study One	58-61
	3.5.3	Applying a Cellular Automata to the Case Study Areas	61
		3.5.3.1 Data collection and processing	61
		3.5.3.2. Methodology	61-67
		3.5.3.3. Calibration of the Cellular Model of the	67-71
		Study Area	
		3.5.3.4 Galanigama Interchange: Case Study Two	71-83
Chapter 4 Conclusions and Recommendations			
4.1.	Concl	usions	84-86
4.2	Recor	nmendations	86-87
Refe	rences		88-91

List of Figures

Figure		Page
1.1	Methodology of the study	5
2.1	The Mathematical Formula of Cellular Automata	24
2.2	Von Neumann Neighborhood	29
2.3	Moore Neighborhood	29
2.4	Extended Moore Neighborhood	29
2.5	Simulated urban development with terrain constraint.	31
2.6	Simulated urban development with terrain constraint	32
2.7	Simulated urban development with transportation support	33
2.8	A cellular automata-generated urban development in	34
	a plain area at different time frames	
2.9	Graphic illustration of Tobler's five models using a 25-cell	36
	geographical array.	
2.10	A simple simulation based on Conway's "Game of Life."	39
3.1	Land Use Map - Thalangama North (A) Grama Niladari	
	Division-1984	49
3.2	Land Use Map - Thalangama North (A) Grama Niladari Division-2004	50
3.3	Land Use Map - Thalangama North(A) Grama Niladari Division- 2011	50
3.4	Land Use Map - Thalangama North (A) Grama Niladari	52
	Division-2011 (Simulated Model output)	
3.5	Land Use Map – Thalangama North A Grama Niladari Division-2011	
	(Existing land use)	53
3.6	The Southern Express Way Map	55
3.7	The Study Areas Map	57
3.8	The Population of the Study Area (Kurundugahahetekma)	
	2001-2012	59
3.9	The Population Density Map of the Study Area-2001	60
3.10	The Population Density Map of the Study Area-2012	60
3.11	The process	63
3.12	Slope Map of the Study Area	64

3.13	The Road Map of the Study Area	65
3.14	The Land Use Map of the Study Area-2006	66
3.15	Simulated Land Use Change of Kurundugahahethekma	
	Interchange Area, 2006-2016	69
3.16	Simulated Land Use Map of Kurundugahahethekma	
	Interchange Area -2011	69
3.17	Simulated Land Use Map of Kurundugahahethekma	
	Interchange Area -2016	70
3.18	Simulated Land Use Map- 2011,	70
	Kurundugahahetekma Interchange Area	
3.19	Simulated Land Use Map- 2016	70
	Kurundugahahetekma Interchange Area	
3.20	Simulated Land Use Change of Kurundugahahethekma	
	Interchange Area, 2011-2020	71
3.21	Galanigama Interchange of the half-clover type	72
3.22	Population and Population Growth of the Study Area	
	-Galanigama, 2001-2012	74
3.23	Population Density of G.N.Divisions within 1.5 km	
	Radius of the Galanigama Interchange	75
3.24	The Slope Map of the Galanigama Interchange Area	76
3.25	The Road Map of the Galanigama Interchange Area	77
3.26	Galanigama Interchange Area- Simulated Land Use Map- 2011	77
3.27	Galanigama Interchange Area- Simulated Land Use Map- 2013	77
3.28	Galanigama Interchange Area- Simulated Land Use Map- 2015	78
3.29	Galanigama Interchange Area- Simulated Land Use Map- 2020	78
3.30	Simulated Land Use Change of the Study Area-	
	Galanigama, 2011-2020	78
3. 31	Simulated Land Use Change of the Study Area	
	Galanigama, 2011-2020	79
3.32	Simulated Land Use Map of Galanigama Interchange Area -2011	80
3.33	Simulated Land Use Map of Galanigama Interchange Area -2013	80

3.34	Simulated Land Use Map of Galanigama Interchange Area -2015	81
3.35	Simulated Land Use Map of Galanigama Interchange Area -2020	81
3.36	Simulated Urban Land Use Change of the Study Area	
	Galanigama, 2011-2020	82
3.37	The Composition of the Simulated Land Use Categories-2011	83
3.38	The Composition of the Simulated Land Use Categories-2011	83

List of Table

Table		Page No
3.1	Land-Use Categories of the Study Area	45
3.2	Pre-defined Lands Use Categories of the Study Area	46
3.3	Land-Use Categories of Thalangama North-A Grama Niladari	
	Division in Kaduwela Municipal Council, 1984-2011	51
3.4	Population of GN Divisions within 1.5 km Radius	
	of the Kurundugahahetekma Interchange	59
3.5	UDA Regulations for the SEW	66
3.6	Simulated Land Use Change of Kurundugahahethekma	
	Interchange Area 2011-2016	67-68
3.7	Population of G.N.Divisions within 1.5 km Radius of	
	the Galanigama Interchange, 2001-2012	73
3.8	Simulated Land Use Change of the Study Area-	79
	Galanigama, 20011-2020	

List of Abbreviations

Abbreviation Description

SEW Southern Express Way

STDP Southern Transport Development Project

GIS Geographical Information System

UDA Urban Development Authority

CA Cellular Automata

MA Multi-Agent

DS Divisional Secretariat

GN Grama Niladhari