TIMETABLE MANAGER BASED ON MULTIDIMENSIONAL ARRAY SOLVING ALGORITHM

K. R. S. KOSWATTE

DEGREE OF MASTER OF SCIENCE IN OPERATIONAL RESEARCH DEPARTMENT OF MATHEMATICS UNIVERSITY OF MORATUWA SRI LANKA

AUGUST 2014

TIMETABLE MANAGER

BASED ON MULTIDIMENSIONAL ARRAY SOLVING ALGORITHM

 \mathbf{BY}

K. R. S. KOSWATTE

09/8456

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT OF
MASTER OF SCIENCE DEGREE IN OPERATIONAL RESEARCH

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MORATUWA
SRI LANKA

AUGUST 2014

DECLARATION OF THE CANDIDATE

I hereby certify that this dissertation does not incorporate acknowledgement of any
material previously submitted for a degree or diploma in any university, and to the
best of my knowledge and belief it does not contain any material previously published
or written by another person or myself except where due reference is made in the next
text.
K.R.S. Koswatte Date

(09//8456)

DECLARATION OF THE SUPERVISOR

I hereby certify that I have supervised a	and accepted this as the	dissertation for the
partial fulfilment of the requirement for	the master in science de	gree in operational
research.		
T. M. J. A. Cooray		Date
(Supervisor)		
Senior Lecturer		
Department of Mathematics,		
Faculty of Engineering,		
University of Moratuwa.		

DEDICATION

This dissertation is dedicated to you all, with love, who works, worked and will work for the wellbeing of all beings.

ACKNOWLEDGEMENT

I offer my enduring gratitude to the faculty, staff and my fellow students at University of Moratuwa, who have inspired me to work in this field. I owe particular thanks to Mr.T.M.J.A. Cooray, whose guidance made me to achieve this task of start and complete the project, without his inspiration I would not have completed this in very busy times of my life.

Special thanks are owed to my parents, who have supported me throughout my years of education, both morally and financially. I should memorize my father respectfully who is now not with us but was the only person who dedicated his whole life for the wellbeing of our family. My mother who is my first teacher should get the awards of what I do as she made me what I am with her love and care. Thank you mother for loving all the children in the country and dedicating your 40 years to your duties in schools and made those parents bless us all.

My brothers and sisters gave me the innermost support, which made my life easier and relaxed in all the troubles I had during my studies. I am indebted to you, which I could never pay.

As well, my gratitude is to be given to my teachers at Pinnawala Central Collage-Rambukkana, President's Collage-Maharagama, Sri Sumana Vidyalaya-Palukadawala-Galgamuwa, and St. Coomb's Collage-Thalawakelle.

I thank all, who made me achieve this task knowingly or unknowingly in any other means and I really apologize for not including their names under this specifically. Specially the hundreds of my friends who supported in many ways to make my life easier and happier throughout the life journey are fondly remembered.

ABSTRACT

Multi-index assignment problems were introduced as a natural extension of linear assignment problems. It seems that this would be a new branch of methods that could be used for solving Multi Index Assignment Problems.

In this study, a method is introduced to solve the multi index assignment problems, where the method is very similar to Hungarian method. The name "Multidimensional Array Solving Algorithm" (MASA) is used for the algorithm presented here. As the name implies the method could be used to solve problems related to multidimensional assignment problems. This method would be very useful when applying to practical computing problems. Even though the example is used for a three dimensional assignment problem, it could be extended to higher order assignment problems and applied to many situations with slight modifications. However, this part is not studied yet and may have lot of different variations.

MASA is also used to develop the algorithm of the software developed under the project. The database desktop application named as the timetable manager is developed with use of object oriented programming. The same application is applied to solve the example. Depending on the number of resources or objects in a dimension, the solving time would increase rapidly. However, due to line and matrix operations, the running time possibly could be reduced.

TABLE OF CONTENTS

Decla	aration of the Candidate	ii
Decla	aration of the Supervisor	iii
Dedic	cation	iv
Ackno	owledgement	v
Abstra	act	vi
Table	e of Contents	vii
List o	of Tables	ix
List o	of Figures	xi
Abbre	eviations	xii
1.	Introduction	1
1.1	Problem Definition and Background	1
1.2	Objectives	2
1.3	Scope of Project	2
1.4	Significance of Project	3
1.5	Content of Dissertation	3
2.	Literature Review.	5
2.1	Linear Assignment Problems	5
2.2	Quadratic Assignment Problems	6
2.3	Multi-index Assignment Problems	6
2.4	Exact & Experimental Solution Methods	7
2.5	Software Implementation of LAP and MAP Optimization	7
3.	Methodology	9
3.1	Linear Assignment Problems (LAP)	9
3.2	Problem Definition for LAP	9
3.3	Algorithms for LAP	9
3.4	Hungarian Method for LAP	10

3.5 Multi- index Array Solving Algorithm (MASA) for Multi-index assignmen
problems
3.6 Problem Definition for MAP
3.7 Three Dimensional Assignment Problems
3.8 Multi-index Array Solving Algorithm (MASA)
3.9 Time table manager Software Architecture
4. Analysis 17
4.1 Example of Solving 3-PAP with MASA
4.2 Solving with Excel Solver using Simplex Method
4.3 Example by Simulating the Application
5. Conclusion
5.1 Comparison of MASA with Other Methods for Solving MAPs66
5.2 Limitations of MASA68
5.3 Future Developments & Recommendations
Bibliography71
Appendix A- Important Coding in The Timetable Manager
Appendix B-Software implementations for the Hungarian algorithm124

LIST OF TABLES

Table 4-1: Step 1- Example MAP Represented on a Table	19
Table 4-2: Step 2	20
Table 4-3: Output of Step 2	21
Table 4-4: Step 3	22
Table 4-5: Operations planes of Step 3	23
Table 4-6: Step 4	24
Table 4-7: Output of Step 4	25
Table 4-8: Step 5	26
Table 4-9: Operations Planes of Step 5	27
Table 4-10: Step 6	28
Table 4-11: Output of Step 6	29
Table 4-12: Step 7	30
Table 4-13: Operations Planes of Step 7	31
Table 4-14: Step 8	32
Table 4-15: Output of Step 8	33
Table 4-16: Step 9	34
Table 4-17: Operations Planes of Step 9	35
Table 4-18: Step 10	36
Table 4-19: Output of Step 10	37
Table 4-20: Step 11	38
Table 4-21: Operations Planes of Step 11	39
Table 4-22: Step 12	40
Table 4-23: Output of Step 12	41
Table 4-24: Step 13	42
Table 4-25: Operations Planes of Step 13	43
Table 4-26: Step 14	44
Table 4-27: Operations Planes of Step 14	45
Table 4-28: Answer for the MAP	46
Table 4-29: Answer for the MAP	47
Table 4-30: Output tables of the Excel Solver	48
Table 4-31: Excel Solver Report	48
Table 4-32: Excel Solver Report	49

Table 4-33: Excel Solver Report	.50
Table 4-34: Answer for the Example MAP	.65

LIST OF FIGURES

Figure 3-1: Flow Chart of the Hungarian Method	11
Figure 3-2: Flow Chart of MASA	14
Figure 3-3: Basic Database Architecture	15
Figure 4-1: Flow Chart of Steps of the Example	18
Figure 4-2: Add Period Interface 1	51
Figure 4-3: Add Period Interface 2	52
Figure 4-4: Add Period Interface 3	52
Figure 4-5: Add Student Group Interface	53
Figure 4-6: Query Student Group Interface 1	54
Figure 4-7: Query Student Group Interface 2	54
Figure 4-8: Add Subject Interface	55
Figure 4-9: Add Teacher Interface	56
Figure 4-10: Query Teacher Interface 1	56
Figure 4-11: Query Teacher Interface 2	57
Figure 4-12: Score View& Edit Interface	58
Figure 4-13: Query Score Interface	59
Figure 4-14: Auto Assign Command Interface	59
Figure 4-15: Query Student Group Time table Interface 1	60
Figure 4-16: Query Student Group Time table Interface 2	61
Figure 4-17: Query Student Group Time table Interface 3	61
Figure 4-18: Query Student Group Time table Interface 4	62
Figure 4-19: Query Teacher Timetable Interface 1	62
Figure 4-20: Query Teacher Timetable Interface 2	63
Figure 4-21: Query Teacher Timetable Interface 3	63
Figure 4-22: Query Teacher Timetable Interface 4	64
Figure 5-1: Advanced MASA for higher order MAPs	67

ABBREVIATIONS

- 3-D 3 Dimensional
- 3-DAP Three Dimensional Assignment Problems
- 3-PAP Planner 3 Dimensional Assignment Problems
- LAP Linear Assignment Problem
- LBAP Linear Bottleneck Assignment Problems
- LSAP Linear Sum Assignment Problem
- MAP Multi-Index Assignment Problem/Multi-Dimensional Assignment Problems
- MASA Multi-index Array Solving Algorithm
- NP Non-deterministic Polynomial-time hard
- OP Operations Plane
- QAP Quadratic Assignment Problem