OPTIMUM PRE-COOLING GUIDELINES: APPLICABLE TO COMMERCIAL BUILDINGS IN SRI LANKA

N.A.P.S.K. Narangoda (08/10418)

Department of Mechanical Engineering University of Moratuwa Sri Lanka

May 2013

OPTIMUM PRE-COOLING GUIDELINES: APPLICABLE TO COMMERCIAL BUILDINGS IN SRI LANKA

N.A.P.S.K. Narangoda (08/10418)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree www.lib.mrt.ac.lk Master of Science in Building Services Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

May 2013

DECLARATION

"I declare that this is my own work and this thesis/dissertation² does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

NAPSK Narangoda	Date
The above candidate	University of Moratuwa, Sri Lanka. ElectronicuTheseach& Dissertation under www.lib.mrt.ac.lk

Prof. R. Attalage

Date

Department of Mechanical Engineering University of Moratuwa

ABSTRACT

HVAC plants in buildings are generally started earlier than the building operation start time. That is to absorb the stored thermal energy in the building and reach the set indoor thermal condition by the time which the building operation is started. Cooling energy required during this period is called **Pre-cooling energy** and the early plant running time is called **Pre- cooling time** of the building. Thermal energy in buildings depends on pre-defined factors and predicted factors. Pre-defined factors include building envelope, envelope materials, type of HVAC system installed, Building interior, lighting, other internal heat gain factors, building operation pattern etc. Predicted factors include climatic condition in the region throughout the year. Due to the fact that precooling time is determined by both pre-defined and predicted factors, a thermal modeling study is more appropriate and recommended to assess the "pre-cooling demand and time" of buildings. The focus on this research study is to prepare an optimum "pre-cooling guidelines" for commercial buildings in Sri Lanka taking climatic variations also into accountrsworld Trade centers Cotombos the largest commercial building in Si Lankal was onide Telesce - & UESTS and testins were analyzed with Colombo climatic data throughout the year to study the pre-cooling requirements (demand & time) and hence to derive a set of general pre-cooling guidelines applicable to any commercial building in Colombo.

ACKNOWLEDGMENT

This study is done as the research thesis of the Master degree in Building Services Engineering. First of all, I must thank to University of Moratuwa on behalf of initiating the Master degree program in Building Services Engineering, for the first time in Sri Lanka. And also the lecturers, who made a numerous effort to make the whole course a success, are really appreciated. I'm really thankful to **Prof. Rahula Attalage** on behalf of providing necessary assistance and supervision throughout the study, without which the accomplishment of the task would have never been possible.

I also thank to Sri Lanka Meteorological department for providing Colombo weather data over last few years and also special thank should go to the Engineering staff of the World Trade Center for providing necessary building information and assistance. Assistance provided by the BOC head office and HNB head office engineering staff also acknowledged with my sincers gratitude/loratuwa, Sri Lanka.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Declaratio	P	age
Abstract		11
Acknowle	edgement	iii
Table of C	Contents	iv
List of Fig	gures	vii
List of Ta	bles	viii
List of Ab	breviations	X
1.0 INT	RODUCTION	1
1.1	Background	1
1.2	Research Objectives of Moratuwa, Sri Lanka.	4
	Sope of REsearch onic Theses & Dissertations	
1 /	www.lib.mrt.ac.lk Research Methodology	Δ
1.7	Research Weinouology	
2.0 LITE	ERATURE REVIEW	7
2.1	Building Heat Gain Factors	7
2.2	Stored Thermal Energy in Building Mass	16
	2.2.1 Thermal Mass & In-Building Temperature	18
2.3	Sri Lankan Climate	.19
	2.3.1 Wet Zone	21
	2.3.2 Dry Zone	$\gamma\gamma$
	2.3.3 Intermediate Zone	23

TABLE OF CONTENTS

2.4	Climat	ic Impact on Building Energy23
	2.4.1 S	olar Radiation25
	2.4.2 A	ir Temperature
	2.4.3 R	elative Humidity27
	2.4.4 W	7 ind Speed and Direction
	2.4.5 Pi	recipitation27
2.5	Compu	ter Modeling28
2.6		ch Studies conducted to assess Thermal Performance of Buildings Different approaches, in the World
	2.6.1	Research study on Thermal Analysis of Buildings using a simple mathematical Method, Italy
	2.6.2	Research Study on Thermal Analysis of Residential Buildings using MJ8 & RHB Methods, Indiana40 University of Moratuwa, Sri Lanka.
	2.63	Case Study on Building Thermal Analysistions using MATLAB/SIMUKI INK models, Brazil
	2.6.4	Case Study on Building Thermal Performance Using two-Node System, Geneva43
	2.6.5	Research study on Energy performance Analysis And Thermal Mass of Buildings, China44
	2.6.6	Case Study on Energy Efficient Building Design using sensitivity Analysis, Portugal45
	2.6.7	Assessment of Building Energy Performance for EEMs – A case study in Mumbai
	2.6.8	Case Study on Thermal Performance Of Multi-Family housing Buildings with eQUEST, Singapore49

3	FIELD STUDY & DATA COLLECTION	51
	3.1 Thermal properties of Common Building Materials used in Tropical Countries	53
	3.2 Climatic Data in Colombo	56
	3.3 Site Data Required for Simulation in eQUEST	57
	3.3.1 Building Overview	58
	3.3.2 Data Requirement	59
4	THERMAL MODELING & VALIDATION	70
	4.1 Data Validation	75
5	ESTIMATION OF PRE-COOLING DEMAND & TIME	81
6	CONCLUSION & RECOMMENDATIONS University of Moratuwa, Sri Lanka.	84
	6.1 Optimum prEleoling gifid Theses for conhists at buildings in Sri I www.lib.mrt.ac.lk	Lanka 86
L	IST OF REFERENCES	

Appendix-A

LIST OF FIGURES

	Page
Figure 1.1 World energy consumption by sector	1
Figure 1.2 Energy consumption breakdown of multi-stored office buildings	2
Figure 2.1 Building heat gain factors	
Figure 2.2 Main Climatic zones in the world	20
Figure 2.3 Sri Lankan climatic zones	21
Figure 2.4 Comparison of indoor temperature between measured values	
and simulation model	29
Figure 2.5 Cooling load and room temperature without HVAC System:	
comparison between NBSLD and PTBE methods	32
Figure 2.6 Cooling load profile with MJ8 and RHB methods	41
Figure 2.7 In-building temperature profiles with three types	
of envelope thermal capacitances.	42
Figure 2.8 Thermal model as an equivalence active air Suit Lanka.	43
Figure 2.9 Energy needed in heating to each 20°D of sight types of rooms	44
Figure 2.10 Simulated energy data in Energy10 against actual data	45
Figure 2.11 3D view of the model obtained with Visual DOETM	46
Figure 2.12 Comparative annual cooling energy needs on an hourly basis	47
Figure 2.13 Results of e-QUEST simulation	48
Figure 2.14 Energy break down of the building	48
Figure 2.15 Four story house developed in eQUEST	49
Figure 2.16 Results of eQUEST simulation	50
Figure 3.1 Plan view of the World Trade Center, Colombo	58
Figure 3.2 Template of simulation data requirements	59
Figure 3.3 Basement/Car park floor plan	60
Figure 3.4 Typical floor plan- Podium levels	61
Figure 3.5 Typical floor plan- East Tower	61
Figure 3.6 Typical floor plan- West Tower	62

Figure 3.7 Typical floor plan- Lower Block	62
Figure 4.1 World Trade Center, Colombo- eQUEST model	70
Figure 4.2: Annual Energy Performance of WTC	71
Figure 4.3: Monthly energy consumption details	73
Figure 4.4: Monthly cooling energy and maximum cooling load	74
Figure 4.5: eQUEST cooling load profile	79
Figure 4.6: Actual cooling load profile in April 2012	79
Figure 5.1 Pre-cooling energy: eQUEST	81
Figure 6.1 Comparison of existing pre-cooling with proposed schedule	85

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

	Page
Table 2.1 Thermal properties of commonly used building materials	9
Table 2.2 Some climatic data applicable to Colombo	23
Table 2.3 Colombo - Solar energy and surface meteorology	28
Table 3.1 Site data of three key building	51
Table 3.2 U values and time lag of commonly used building materials	53
Table 3.3 U values of glass & glass composites	56
Table 3.4 Climatic data in Colombo on 15 th Fab, 15 th Apr, 15 th July	
& 15 th Dec 2012	56
Table 3.5 Main structural components of World Trade Center	58
Table 3.6 Floor plan details	60
Table 3.7 Elevations data of World Trade Center	63
Table 3.8 Building envelope details	65
Table 3.9 HVAC Zone details sity of Moratuwa, Sri Lanka.	66
Table 3.10 Electrical & linternational detaits & Dissertations	67
Table 4.1 Building operational hourst. ac.lk	74
Table 4.2 Total energy consumption comparison	76
Table 4.3 HVAC energy consumption comparison	77
Table 4.4 eQUEST cooling energy & operational hours	78
Table 5.1 Building operational hours of the pre-cooling model	82
Table 5.2 Monthly average pre-cooling demand	82
Table 5.3 Monthly average pre-cooling time	83
Table 6.1 Monthly pre-cooling time schedule	84
Table 6.2 Optimum pre-cooling guidelines for commercial buildings	86

LIST OF ABBREVIATIONS

Abbreviation	Description
ASHRAE	American Society of Heating, Refrigerating and Air
	Conditioning Engineers
CIBSE	Charted Institution of Building Services Engineers
а	Absorption coefficient
b	Periodic conduction transfer function
с	Specific heat
К	Transfer function
q	Heat flux
Q	Thermal load
u	Periodic radiation transfer function
X	University of Moratuwa Sri Lanka.
α	Electronic Theses & Dissertations
t	www.lib.mrt.ac.lk Temperature
	1
AC	Air Conditioning
HVAC	Heating, Ventilation a& Air Conditioning
TR	Refrigerant Tons