RELIABILITY IMPROVEMNET IN THE 33kV DISTRIBUTION FEEDER USING OPTIMUM POSITIONING OF AUTO RECLOSERS

Passikku Hannedige Nimeshika Sanjeewi de Silva

(109206J)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2015

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters dissertation under my supervision.

Dr. W. D. A. S. Rodrigo

29th May, 2015

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Asanka Rodrigo for the continuous support given for the research, for the patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this dissertation.

Special thanks goes to Prof. Chintha Jayasinghe, Professor in Civil Engineering Department in University of Moratuwa for frequently reminding me about the submission date and encouraging me to finish my thesis on time.

My sincere thanks go to Mrs. Chulani Gamlath; a Chief Engineer in Ceylon Electricity Board, for enlightening me the first glance of research in year 2010. Also to Mr. L.D.J. Fernando, DGM (P&D) – DD4 and Mr. R.S. Wimalendra CE (P&D) – DD4 for the support gave me throughout the study.

Further, I must thank all the lecturers engaged in the MSc course sessions for making our vision proder, providing us with the opportunity to improve our knowledge in various fields www.lib.mrt.ac.lk

It is a great pleasure to remember the kind cooperation of all my colleagues and my friends who have helped me in this Post Graduate programme by extending their support during the research period.

My special thanks go to my parents Mr. Nihal de Silva and Mrs. Chintha de Silva, and my sister Miss Santhrushika de Silva, for supporting me spiritually throughout my life and tolerating my engagement on this work.

P.H.N.S. de Silva

ABSTRACT

In an era where Sri Lanka economy is going towards a drastically higher growth it is highly important to have a reliable electricity network in the country. To improve the reliability of the distribution network, Distribution Licensees improve the system capacity and at the same time install protective devices to reduce the interrupted area due to an electrical fault in the network. For this Auto Reclosers and Fuses are used in the Distribution Network.

In developed countries the installation of Protective devices are done optimally and techniques have been developed. In Sri Lanka, the process of planning, design and construction of transmission and medium voltage power lines is solely authoritative by Transmission Licensee and Five Distribution Licensees of the country. At present there is no proper way of selecting optimal location for the installation of Auto reclosers is practiced in either of these Licensees.

As the first step of this study, a research survey was done about the optimal location selection methods researched in other countries. A suitable objective function was modeled to find the optimal location to install an Auto Rectoser with the constraint of finding two prunal locations in series. Www.lib.mrt.ac.lk

This report will discuss the objective function formation to find the optimal location for the Auto Recloser and also as a supporting study a pilot project done on how to coordinate the fuses with the Auto Reclosers and the Circuit Breakers at the Grid Substation is also included.

Major Findings of this research: Optimal locations to install an Auto recloser for a feeder according to the SAIDI values of substations and the energy consumptions of bulk and retail consumers connected to that specific feeder.

Findings of the pilot project: how to co-ordinate the fuses installed on a feeder and how to decide the rating of a fuse to be installed on the feeder by maintaining the protection co-ordination with other protective devices on the feeder.

	Page
Decl	aration of the candidate and supervisors ii
Ackr	nowledgementiii
Abst	iv
Cont	ents v
List	of figures vii
List	of tablesviii
List	of abbreviationsx
List	of appendicesxi
Chap	oter 1
Intro	duction
1.1	Background/Survey of previous work 12
1.2	Motivation14
1.3	Objectives
1.4	Problem Statementversity of Moratuwa, Sri Lanka
1.5	Scope of work Electronic Theses & Dissertations 17 www.lib.mrt.ac.lk
Chap	oter 2
Math	nematical Modeling
2.1	Theoretical Background
2.2	Objective Function
Chap	oter 3
Data	Collection, Data Analysis and Data Flow
3.1	Data Collection
3.2	Feeder Selection
3.3	Data Analysis
3.4	Data Flow for the Study
Chap	oter 4
Case	Study

CONTENTS

4.1 Introduction of the Selected Feeder	
4.2 Location Identification for AR Installation	
4.3 Supporting Calculation for Ambalangoda Feeder 3	
4.4 Data Analysis for Ambalangoda Feeder 3	
4.5 Results from the Objective Function	40
4.6 Sensitivity Analysis	43
Chanter 5	40
	48
	40
5.1 Introduction	
5.2 Model Validation – 1 st Case: Galle Feeder 8	48
5.2.1 Location Identification for AR Installation	48
5.2.2 Supporting Calculation for Galle Feeder 8	50
5.2.3 Data Analysis for Galle Feeder 8	52
5.2.4 Results from the Objective Function	53
5.3 Model Validation – 2 nd Case: Matara Feeder 7	56
5.3.1 Location Identification Solvar Instantation va, Sri Lanka.	56
5.3.2 Supporting Calculation for Matara Feeder Pissertations	56
5.3.3 Data Analysis for Matara Feeder 7	56
5.3.4 Results from the Objective Function	60
	(7
Protection Co-ordination of Fuses with the Auto Recloser	
6.1 Present Scenario	67
6.2 Theoretical Background of Protection Co-ordination	67
6.2.1 Fuse – Fuse Co-ordination	67
6.2.2 Fuse – AR Co-ordination	
6.3 How a Distribution Network properly Co-ordinated is working	69
6.4 Pilot Project: Matara Feeder 7	71
6.4.1 Overview of Matara GSS – Feeder 7	71
6.4.2 Proposed Fuse Ratings for Matara Feeder 7	72

Chapter 7	
Discussion	
7.1 Discussion	75
7.2 Conclusions	
7.3 Suggestions to be implemented	
7.3.1 Recommendations for Optimal Positioning	of AR77
7.3.2 Recommendations for Fuse Selection	77
References	
Appendices	

List of Figures

Page

Figure 3.1	Geographical Map of Ambalangoda Feeder 3	25
Figure 3.2	Geographical Map of Matara Feeder 8	26
Figure 3.3	Geographical Map of Galle Feeder 8	27
Figure 3.4	How the Distances obtained from the Syner GEE model	33
Figure 3.5	Data Flow for the Study. 1k	34
Figure 4.1	Indentified AR Locations on Ambalangoda Feeder 3	36
Figure 4.2	Finalized Optimal AR Locations on Ambalangoda Feeder 3	47
Figure 5.1	Indentified AR Locations on Galle Feeder 8	49
Figure 5.2	Finalized Optimal AR Locations on Galle Feeder 8	55
Figure 5.3	Finalized Optimal AR Locations on Matara Feeder 7	66
Figure 6.1	Backup Fuse and Main Fuse on a Feeder	68
Figure 6.2	Fuse – Fuse Co-ordination from TC curves	69
Figure 6.3	Fuse – AR Co-ordination from TC curves	69
Figure 6.4	Properly Coordinated Distribution Feeder	69
Figure 6.5	Proposed Fuse Ratings	74

List of Tables

Page

Table 1.1	Cost of Protection Devices used in	Distribution Network	14
Table 1.2	2 Steps followed by DDs to select an AR Location		16
Table 3.1	Outage Rate of Selected Distribution	on Feeders	28
Table 3.2	Bulk and Retail Consumer Energy	Consumption of	
	Selected Feeders		29
Table 3.3	Customer Interruption Duration for	substations on Galle Feeder 8	30
Table 3.4	Temporary Fault percentage for Ni	ndana Gantry Gonapinuwala	
	side Feeder		31
Table 3.5	Maintenance and Fuel Cost for a C	rew Cab	32
Table 4.1	SAIDI values calculated for Identif	ied Locations on	
Table 4.2	Ambalangoalasteedof Moratuwa Electronic Theses & Di SAIDI valuesicaloulated due to line	n, Sri Lanka. ssertations e tripping for Identified	37
	Locations on Ambalangoda Feeder	3	38
Table 4.3	CoR, Average CoI and B _{cost} for M	Vindana Gantry – Kahatapitiya	
	side Feeder		40
Table 4.4	CoR, Average CoI and B _{cost} for M	Nindana Gantry – Kuleegoda	
	side Feeder		41
Table 4.5	CoR, Average CoI and B_{cost} for N	Nindana Gantry – Gonapinuwala	a
	side Feeder		42
Table 5.1	SAIDI values calculated for Identif	ied Locations on	
	Galle Feeder 8		50

Table 5.2	SAIDI values calculated due to line tripping for Identified	
	Locations on Galle Feeder 8	51
Table 5.3	CoR, Average CoI and B _{cost} for Galle Feeder 8	53
Table 5.4	SAIDI values calculated for Identified Locations on	
	Matara Feeder 7	57
Table 5.5	SAIDI values calculated due to line tripping for Identified	
	Locations on Matara Feeder 7	59
Table 5.6	CoR, Average CoI and B_{cost} for Kaburupitiya Gantry – Andaluw	/a
	side Feeder	60
Table 5.7	CoR, Average CoI and B_{cost} for Kaburupitiya Gantry – Semidale	e
	side Feeder	62
Table 5.8	CoR, Average CoI and B _{cost} for Kaburupitiya Gantry – Hakaman University of Moratuwa, Sri Lanka.	na
	side Ferdetronic Theses & Dissertations	63
Table 6.1 🔌	Operation of Protection devices for permanent and	
	Temporary faults	70
Table 6.2	General Statistics of Matara Feeder 7	71
Table 6.3	Protection settings of Matara Feeder 7 Circuit Breaker	71
Table 6.4	Protection settings of Kamburupitiya Gantry Andaluwa side AR	71
Table 6.5	Proposed Fuse Ratings	72
Table 7.1	Proposed Fuse Ratings which are connected after an AR	77
Table 7.2	Proposed Fuse Ratings which are not connected after an AR	78

LIST OF ABBREVIATIONS

AR	Auto Recloser
AEE	Area Electrical Engineer
СВ	Circuit Breaker
CEB	Ceylon Electricity Board
CSC	Customer Service Center
DD1, 2, 3, 4	Distribution Division 1,2,3,4
EENS	Expected Energy Not Served
ENS	Energy Not Served
GA	Genetic Algorithm
GSS	Grid Sub Station
LKR	Sri Lankan Rupees University of Moratuwa, Sri Lanka.
MINLP	E Mixed Integen NonsL&near iBrogramming
MV	Www.lib.mrt.ac.lk Medium Voltage
NLIP	Non-Linear Integer Programming
SAIDI	System Average Interruption Duration Index
RTS	Reactive Tabu Search
TC	Time Vs Current
USD	US Dollars

LIST OF APPENDICES

- Appendix 1: Feeder wise installed ARs in DD4 network
- Appendix 2: Customer Interruption Duration for the 3 Feeders
- Appendix 3: Supporting Calculations for Ambalangoda Feeder 3
- Appendix 4: Fuse to Fuse Co-ordination for Different Fuses
- Appendix 5: Fuse AR Co-ordination for Matara Feeder 7
- Appendix 6: Temporary Fault percentage of spur

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk