INTELLIGENT LOAD SHEDDING MECHANISM FOR CEB NETWORK

Rajapaksha Vithanage Dona Hansi Nilanka Rajapaksha

(109246F)

University of Moratuwa, Sri Lanka. Dissertation State of the second state of the secon

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2015

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate Date: (R. V. D. H. Rajapaksharsity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters dissertation under my supervision.

.....

Signature of the supervisor (Prof. H. Y. R. Perera) Date:

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Prof. H.Y.R. Perera for the continuous support given for the research, for the motivation, enthusiasm and immense knowledge.

My sincere thanks go to Mr. Eranga Kudahewa, Electrical Engineer in System Control branch in transmission division for enlightening me the first glance of the research and extending all the assistance required and giving technical instructions.

Furthermore I must thank Mr. H. D. S. Thimothies, Deputy General Manager(System Control) and all Engineers in System Control branch in transmission division and all Engineers in Protection Development branch in transmission division for the guidance and assistance they have given during my research period.

Further, I would like to pay my gratitude to all the lecturers engaged in the MSc course sessions for making our vision broader and providing us with the opportunity to improve our knowledge in various fields.

Moreover technical staff evolving finderative stations who have helped me in providing evolving failure analysis done by myself. www.lib.mrt.ac.lk

My sincere thanks also should go to Mrs. Dhammika Tilakasena, Deputy General Manager (Asset Management(transmission)), Mr. G.W.V. Priyantha, Chief Engineer(Maintenance Planning) and my colleague Engineers who work with me in Asset Management(transmission) branch and all the office staff there who always gave their co-operation to conduct my research work.

It is a great pleasure to remember the kind cooperation of all my colleagues who have helped me in this Post Graduate programme by extending their support during the research period.

My special thanks go to my parents Mr. and Mrs. Piyatilake Rajapaksha, my husband Asanka, my sisters and brother for supporting me spiritually throughout my life and tolerating my engagement on this work.

R. V. D. H. N. Rajapaksha

ABSTRACT

Load Shedding plays a major role as the guard which protects the power system from a disturbance-induced collapse. In Sri Lanka, Ceylon Electricity Board being the major power network authorizer practice 'under-frequency load shedding' with the support of under-frequency load shedding relays.

There are some drawbacks of this under frequency load shedding scheme which promotes power system authorizers to shift into a computerized power management system to form an 'automated load shedding scheme'.

An intelligent load shedding system can provide faster and optimal load relief by utilizing actual operating conditions and knowledge of past system disturbances [1]

As the first step in this study is the search our vey was gone about present load shedding system practiced in Electric Teledric The Board & Past faithfeldinalysis was done to identify major drawbacks of the system print. ac.lk

During literature survey characteristics of an intelligent load shedding system were observed and the way of forming an intelligent load shedding system in a power network was studied.

Through selection of southern part of CEB network including seven grid substations, two major hydro power plants, two thermal power plants and three mini hydro power plants, model was designed using MATLAB software.

Initially a data bank was formed including load data, generation data for the selected network. Load data at each grid substation for a week day, Saturday and for Sunday were formed based on the load equations derived depending on the time of the day (off-peak, day-peak, night-peak). Generation data was adjusted according to the total load requirement. Feeders that can be shed were selected considering the category of load

connected at each feeder and categorization by System Control center as high priority feeders and low priority feeders.

Coding was built up in MATLAB software after importing excel sheets consisting all the data collected and modeled to create a 'Graphical User Interface'(GUI). Further code was extended for the load shedding process which activates once a power imbalance occurs between generation and demand. Simulation was done for tripping of major hydro power plants which contribute to load shedding process.

Further comparisons were done between existing load shedding mechanism which is under frequency load shedding(UFLS)and Intelligent Load Shedding (ILS) mechanism in Power System Simulator for Engineering(PSS/E) software which is the software used by System Control Center branch in transmission division for analyzing and simulating power system performance.

It is concluded that reasonable improvements can be achieved through application of intelligent load shedding mechanism to CEB network which contributes to quality of uninterrupted supply to consumers.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE OF CONTENTS

DECLA	RATION OF THE CANDIDATE AND SUPERVISORSii
ACKNO	WLEDGEMENTSiii
ABSTR	ACTiv
LIST OF	F FIGURESviii
LIST OF	F TABLESxi
LIST OF	F ABBREAVIATIONSxii
LIST OF	F APPENDICESxiii
Chapter	1- INTRODUCTION1
1.1	Background1
1.2	Requirement of the load shedding scheme
1.3	Motivation
1.4	Objectives
1.5	Methodology
Chapter	University of Moratuwa, Sri Lanka. 2001 ALYSIS OF EXISTING LOAD SHEDDING SCHEME
2.1	Existing Loud Shedding Schemek. 5
2.2	Historical Failure Analysis
2.2.1	Analysis of partial failure occurred on 06 th May 2013 at 20:41 hours 6
2.2.2	Analysis of partial failure occurred on 29 th October 2013 at 15:27 hours11
2.2.3	Analysis of major failure occurred on 07 th December 2007 at 04:48 hours 14
2.3	Weaknesses of the existing load shedding mechanism
Chapter	- 3- INTELLIGENT LOAD SHEDDING MECHANISM17
3.1	Forming mathematical model in MATLAB software
3.1.1	Selection of reduced network19
3.1.2	Data collection and modeling
3.1.3	Extracting load data of the feeders that can be shed
3.1.4	Importing modeled data into MATLAB software
3.1.5	Designing Graphical User Interface (GUI) in MATLAB software24

3.1.6	Developing the program algorithm and coding to update optimal load	
	shedding tables and to activate load shedding	.25
3.1.7	Application of case studies in MATLAB software	.27
Chapter	4- RESULT ANALYSIS IN PSS/E	.33
4.1	Introduction to PSS/E software	. 33
4.2	Planning Criteria	. 33
4.2.1	Voltage criterion	. 33
4.2.2	Thermal criterion	. 34
4.2.3	Security criterion	. 34
4.2.4	Stability criterion	. 34
4.3	Static versus Dynamic Analysis	. 34
4.3.1	Static Analysis	. 34
4.3.2	Dynamic Analysis	. 34
4.4	Result Analysis	. 35
4.4.1	Implementation of ILS in PSS/E software	
4.4.2	Implementation of UFIS in PSIS/Elsoftware Lanka.	. 43
4.4.3	Electronic Theses & Dissertations Comparison of UFLS and ILS through waveforms obtained in PSS/E www.lib.mrt.ac.lk	
4.4.4	Result Analysis on loads shed through ILS and UFLS	. 50
Chapter	5- CONCLUSION AND RECOMMENDATIONS	.60
5.1	CONCLUSION	. 60
5.2	RECOMMENDATIONS	. 61
Reference	ce List	.63

LIST OF FIGURES

		Page
Figure 2.1	Frequency plot of 132 kV Sub C feeder at Kolonnawa GIS	
	On 06 th May 2013 at 20:41:39 hrs	07
Figure 2.2	DFR record at Kotugoda GSS at 20:41 hrs	08
Figure 2.3	DFR record at Lakvijaya power station at 20:41 hrs	08
Figure 2.4	Frequency plot at 15:27 hours on 29 th October 2013	11
Figure 2.5	Load of the feeders shed under load shedding stage-I	12
Figure 2.6	Load of the feeders shed under load shedding stage-II	13
Figure 2.7	Load of the feeders shed under load shedding stage-III	13
Figure 2.8	Load of the feeders shed under load shedding stage-IV	14
Figure 3.1	Basic representation of Intelligent Load Shedding System	17
Figure 3.2	Selected network for MATLAB modeling	19
Figure 3.3	Graphical User Interface (GUI) designed in MATLAB software	24
Figure 3.4	View of selected plots for a Sunday	25
Figure 3.5	Flow Chart for the load shedding mechanism	26
Figure 3.6	MATLAB coding for checking frequency and frequency devi Rate	iation 27
Figure 3.7	Plots of 'load and generation Vs. time' and 'operation of power p Vs. time' for example-01	plants 28
Figure 3.8	Plots of 'load and generation Vs. time', 'frequency Vs. time'	and
	'feeder Shutdowns' for example-01	29
Figure 3.9	Plots of 'load and generation Vs. time' and 'operation of power p	lants
	Vs. time' for example-02	30
Figure 3.10	Plots of 'load and generation Vs. time', 'frequency Vs. time'	and
	'feeder Shutdowns' for example-02	30
Figure 3.11	Plots of 'load and generation Vs. time' and 'operation of power p	lants
	Vs. time' for example-03	31

Figure 3.12	Plots of 'load and generation Vs. time', 'frequency Vs. time'	and
	'feeder Shutdowns' for example-03	32
Figure 4.1	Load modeled feeder wise in PSS/E	36
Figure 4.2	Machine file updated with generation data in PSS/E	36
Figure 4.3	Diary file written for case study-01	37
Figure 4.4	Diary file written for case study-02	37
Figure 4.5	Diary file written for case study-03	38
Figure 4.6	Diary file written for case study-04	39
Figure 4.7	Frequency waveform obtained for case study-01	39
Figure 4.8	Voltage waveform obtained for case study-01	40
Figure 4.9	Frequency waveform obtained for case study-02	40
Figure 4.10	Voltage waveform obtained for case study-02	41
Figure 4.11	Frequency waveform obtained for case study-03	41
5 (11)	Voltagenwaveform obtained toricase study-opika.	42
Figure 4.13	Electronic Theses & Dissertations Frequency waveform obtained for case study-04 www.lib.mrt.ac.lk	42
Figure 4.14	Voltage waveform obtained for case study-04	43
Figure 4.15	Frequency waveforms obtained through application of UFLS and ILS for case study-01	44
Figure 4.16	Voltage waveforms obtained under UFLS for case study-01	44
Figure 4.17	Voltage waveforms obtained under ILS for case study-01	44
Figure 4.18	Frequency waveforms obtained through application of UFLS and ILS for case study-02	45
Figure 4.19	Voltage waveforms obtained under UFLS for case study-02	46
Figure 4.20	Voltage waveforms obtained under ILS for case study-02	46
Figure 4.21	Frequency waveforms obtained through application of UFLS and ILS for case study-03	47
Figure 4.22	Voltage waveforms obtained under UFLS for case study-03	48

Figure 4.23	Voltage waveforms obtained under ILS for case study-03	48
Figure 4.24	Frequency waveforms obtained through application of UFLS and ILS for case study-04	49
Figure 4.25	Voltage waveforms obtained under UFLS for case study-04	49
Figure 4.26	Voltage waveforms obtained under ILS for case study-04	49
Figure 4.27	Total MW disconnected under UFLS for case study-01	52
Figure 4.28	Total MW disconnected under ILS for case study-01	53
Figure 4.29	Total MW disconnected under UFLS for case study-02	54
Figure 4.30	Total MW disconnected under ILS for case study-02	54
Figure 4.31	Total MW disconnected under UFLS for case study-03	56
Figure 4.32	Reactive power components of interrupted feeders with less MW values under UFLS for case study-03	57
Figure 4.33	Total MW disconnected under ILS for case study-03	58
Figure 4.34	Reactive power components of interrupted feeders under ILS for c study-03 Electronic Theses & Dissertations	ase 59

www.lib.mrt.ac.lk

LIST OF TABLES

Page

Table 2.1	Existing Load shedding scheme in CEB	05
Table 2.2	Power stations tripped	09
Table 2.3	Grid substations tripped	09
Table 2.4	Load shed under existing load shedding mechanism on 07 th Decem 2007 at 04:48 hrs	ıber 15
Table 3.1	Derived Demand curve equations for each GSS based on time of day	the 20
Table 3.2	Descending order of real power and reactive power of the feed which can be shed	lers 22
Table 4.1	Permissible voltage variation in 220 kV, 132 kV and 33 kV systems	33
Table 4.2	Total load shed under UFLS and ILS	48
Table 4.3	Difference retive of disconnected, 1Sad land generation loss un UFL Statutionic Theses & Dissertations	ider 48
Table 4.4	www.lib.mrt.ac.lk Number of interrupted feeders under UFLS and ILS	49
Table 4.5	Uninterrupted load under UFLS and ILS as a percentage (%) of the load connected	otal 49

LIST OF ABBREVIATIONS

Abbreviation	Description
CEB	Ceylon Electricity Board
UFLS	Under Frequency Load Shedding
ILS	Intelligent Load Shedding
PSS/E	Power System Simulator for Engineering
GUI	Graphical User Interface
GSS	Grid Sub Station
PS	Power Station
GIS	Gas Insulated Substation
DFR	Digital Fault Recorder University of Moratuwa, Sri Lanka.
КССР	ElKelanitissa Charbased-Clycle Poweri plant
SCADA	www.lib.mrt.ac.lk Supervisory Control and Data Acquisition
PLC	Programmable Logic Controller
MH	Mini Hydro
SAIDI	System Average Interruption Duration Index
SAIFI	System Average Interruption Frequency Index
STM-1	Synchronous Transport Module level-1
SDH	Synchronous Digital Hierarchy management
ITU-T	International Telecommunication Union- Telecommunication
	Standardization Sector

LIST OF APPENDICES

Appendix	Description	Page
Appendix-A:	Selected reduced network from CEB system	61
Appendix-B:	'loadData.m' file created in MATLAB software to read demand in each GSS from excel file	62
Appendix-C: '	generationData.m' file created in MATLAB software to read generation at each power station from excel file	63
Appendix-D:	'gui.m' file created in MATLAB software to view 'GRAPHICAL USER INTERFACE'	64
Appendix-E:	'loadSheddable.m' file created in MATLAB software to read demand of each GSS feeder which can be shed from excel file	66
	'cutoff.m' file created in MATLAB software to define cutoff function for doad shedding a, Sri Lanka.	67
Appendix-G	SimulateSystem.m file created in MATLAB	68
Appendix-H:	'run.m' file created in MATLAB software to run the Simulation	71
Appendix-I:	Load Shedding Sequence used in ILS mechanism for PSS/E simulation	72

INTRODUCTION

1.1 Background

Considering the benefits from electric power systems to the human life, it is a sole responsibility of the utility to secure reliability of this electric power system in every possible way. Through power system blackouts a large group of consumers is left without electrical energy for some time duration. At any critical situation operator has to shed down excess load to gain power system stability. This process is called "load shedding" which keeps the system stable until the fault is cleared. Requirement for shedding the optimum amount of load is high nowadays which results in minimum interruptions due to a contingency.

1.2 Requirement of the load shedding scheme

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

Mainly due to a generation loss through tripping of any generator connected to the system or excess generation through tripping of transmission lines, system frequency deviates from the permissible range. In Sri Lanka permissible range of system frequency is between 49.5 Hz and 50.5Hz. Without activation of load shedding mechanism, it may lead to total system collapse which will affect a large number of customers and it will take longer time period for the system recovery. Governors cannot respond quickly for sudden imbalances in generation and load. Therefore load shedding mechanism should get activated in a proper way to reduce system blackouts.

1.3 Motivation

Initially I studied the existing load shedding mechanism which is Under Frequency Load Shedding (UFLS) mechanism used by CEB. Further I studied some partial system failures and a major system failure occurred in recent past to identify the loop holes in the existing load shedding mechanism.

Through my study I found out major weaknesses of the existing load shedding mechanism as follows;

- 1. Excessive load shedding.
- 2. Inadequate load shedding which may lead to system collapse.
- 3. Occurrence of more feeder interruptions.
- 4. Same pre-defined load shedding table is used for off-peak, day-peak and night-peak (independent of time of the day).
- 5. Reactive power produced at each feeder is not taken into consideration.

Considering above major weaknesses, necessity for a more accurate load shedding mechanism is identified which can make a fast, optimum and reliable load shedding decision. The "intelligent load shedding" is a means enabling to improve power system stability, by providing a real time adapted load control and load shedding, in situations where the power system otherwise would go unstable[1].

In recent decades, the advantages of a fast development in the computer and communication University of Moratuwa, Sri Lanka. technology have been successfully harvested in the majority of technological areas for updating various mechanisms and processes. Power system control and protection is no exception [6]. The outcome of this project is developing a load shedding mechanism to make an optimum and reliable load shedding activity.

1.4 Objectives

- 1. To devise a load shedding mechanism to handle contingency situations more effectively.
- 2. To build knowledge database for the selected CEB network in MATLAB software.
- 3. To model an algorithm to monitor system frequency and frequency deviation rate and to update optimal load shedding tables in MATLAB software.
- 4. To develop the algorithms to make an optimum and reliable load shedding activity through intelligent load shedding application to CEB network.
- 5. To analyze and compare the proposed load shedding mechanism-'intelligent load shedding' mechanism with existing load shedding mechanism-UFLS in 'Power System Simulator for Engineering'(PSS/E).

1.5 Methodology

- 1. Analyzing failures occurred in recent past and how the system has responded in such failure events.
- 2. Selecting a reduced network from CEB network to form a model in MATLAB software.
- 3. Collecting data related to the network and modeling data for the uploading purpose in MATLAB software.
- 4. Extracting load data of the feeders that can be shed.
- 5. Importing modeled data into MATLAB software.
- 6. Designing Graphical User Interface (GUI) in MATLAB software.
- 7. Developing the coding to update optimal load shedding tables and to activate load shedding through monitoring system frequency and frequency deviation rate.
- 8. Application of case studies in MATLAB software.
- 9. Analyzing results of existing load shedding scheme (UFLS) in Power System Simulator for Engineering (PSS/E) software tool.
- 10.Application of University of Moratuwa, Sri Lanka Electronic Theses & Dissertations Engineering(PSS/E) software tool.
- 11. Result analysis through comparison of the results obtained for UFLS and ILS.

Validation of the proposed load shedding mechanism- 'intelligent load shedding' was done mainly through the results obtained through PSS/E as existing load shedding mechanism – 'under frequency load shedding' mechanism was also applied for the same case studies in PSS/E. After completion of SCADA system for the CEB network, application of intelligent load shedding is a possible action to be taken to improve system reliability.

ANALYSIS OF EXISTING LOAD SHEDDING SCHEME

Under normal operating conditions total generation equals to total demand plus total loss. Under this balanced condition system operates at 50 Hz of system frequency. Whenever this balanced state is disturbed system frequency varies and sometimes it may vary beyond the permissible range.

The decline in frequency is due to insufficient amount of generation to meet the load demand. This will cause load to acquire power from the stored kinetic energy in a rotating system and causes the slowing rotation. Slowing rotation causes the frequency to decline. Any frequency violation may cause damage to the machines. In situations where the spinning reserve is insufficient or slow bad shedding is the best alternative response to prevent the system breakdown extension causes that influence power system are minimized [2].

Load shedding mechanism applied in CEB network at present is 'Under Frequency Load Shedding' (UFLS). Theoretical explanation for UFLS is disconnecting some selected loads so that the system frequency does not drop below lowest acceptable limit. Relay used in UFLS detects rapid change in frequency (frequency-wise and frequency deviation rate-wise) and initiates operation of circuit breakers installed at loads that can be shed. Several stages are included in UFLS scheme where at a certain stage relay waits a predetermined amount of time which named as 'time delay' and rechecks system frequency before tripping the load breakers.

Even the system frequency has not recovered, relay has to wait for the next stage where another frequency limit and a time delay are specified to trip another set of load breakers. This process continues until system frequency is recovered or all the frequency relays have operated.

2.1 **Existing Load Shedding Scheme**

Stogo	Load to be	Remarks	Tripping	Load to be	Reconnection
Stage	Tripped (%)	Kemarks	Criteria	Reconnected (%)	Criteria
Ι	5		48.75 Hz + t = 100 ms	0	None
II	5		48.5 Hz + t = 500 ms	0	None
		7% load on only frequency based	48.25 Hz + t = 1 s OR		Freq. > 50
III	10	3% load on frequency based	49 Hz AND df/dt =	5	AND df/dt=
		+ df/dt based	0.85 Hz/sec		0.2 Hz/sec
		7% load on only frequency based	48.00 Hz + t = 1.5 s		Freq. > 51
IV	10	3% load on frequency based	OR 49 Hz AND df/dt=	7	AND df/dt=
		+ df/dt based	0.85 Hz/sec		0.2 Hz/sec
		6% load on only frequency based	47.5 Hz + t = inst OR		
V	10	4% load on frequency based	49 Hz AND df/dt =	0	None
		+ df/dt based	0.85 Hz/sec		
N/T	10	100/ lood on df/dt hourd	49 Hz AND df/dt =	0	News
VI	10	Sam 2	oratestational		None
		Electronic Thes	es & Dissertation	ns	1

Table 2.1: Existing Load shedding scheme in CEB

Under frequency load shedding scheme applied in CEB at present consists of six load shedding stages as tabulated above. As per the scheme 50% load of the total load at the time of failure will be shed if all six load shedding stages get operated. A reconnection criterion was introduced for the load shedding stages III and IV.

Some percentage of loads falling under stage III, IV and V also get rejected when frequency deviation rate is 0.85 Hz/s. If frequency deviation rate is about 0.85 Hz/s when system frequency is 49 Hz, it implies that system frequency is getting reduced very quickly, so that a quick and noticeable response is required from load shedding scheme. This results in rejecting a considerable amount of load in the system to make frequency stable.

System response under this load shedding scheme was studied and described below for three historical failures occurred in the system.

2.2 Historical Failure Analysis

Two partial failures and one major failure occurred in the system in recent past are analyzed;

- 1. Partial failure occurred on 06th May 2013.
- 2. Partial failure occurred on 29th October 2013.
- 3. Major failure occurred on 07th December 2007.

2.2.1 Analysis of partial failure occurred on 06th May 2013 at 20:41 hours

A failure has occurred on 06th May 2013 at 20.41hrs involving 132kV transmission lines, power stations and 132 kV grid sub stations. Following five grid sub stations were affected;

- 1) Kelaniya Grid Sub Station(GSS)
- 2) Maradana GSS
- 3) Havelocktown GSS
- 4) Dehiwala GSS
- 5) Sapugaskanda GSS

Following six power stations Were affected; of Moratuwa, Sri Lanka.

- Electronic Theses & Dissertations
- 1) Norochcholar Power Station(PS) WWW.110.10rt.ac.lk
- 2) Wimalasurendra PS
- 3) Kukule PS
- 4) Asia Power
- 5) AES Kelanitissa
- 6) Berge Power

First I analyzed the frequency plot and Digital Fault Records obtained at this time. Through analyzing frequency plot it is possible to identify each load shedding stage that was activated after this failure.

Then I studied the reports prepared about this failure. As per the event records at Kelaniya and Sapugaskanda GSS's, there has been an earth fault at 20.41 hours. During that time, only the circuit breaker at Sapugaskanda GSS of Sapugaskanda – Kelaniya line 1 has tripped due to Distance Protection relay operation. The Circuit Breaker of above line 2 at Kelaniya end has tripped due to operation of backup protection. Meantime, all lines connected to Kelaniya GSS have tripped by operation of breaker failure protection causing the Kelaniya GSS to be dead.

Sapugaskanda GSS has tripped operating 'Over Current Protection', since Sapugaskanda GSS has been unable to feed the load connected to the GSS due to Kelaniya GSS being dead.

During the failure, power system frequency has dropped to 47.7Hz and it has resulted in tripping of six power stations including Norochcholai power station. Due to earth fault detection at Maradana GSS, Maradana – Kolonnawa line has tripped during the failure causing Maradana, Havelock town and Dehiwala GSS to be dead.

Following mentioned figure is of the frequency plot of 132kV Sub C feeder at Kolonnawa GIS on 06th May 2013 at 20.41 hours.

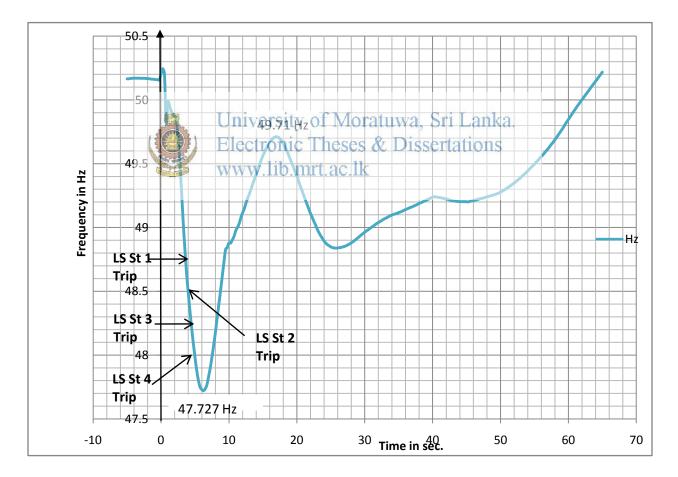
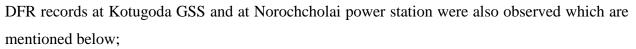



Figure 2.1 Frequency plot of 132kV Sub C feeder at Kolonnawa GIS on 06th May 2013 at 20:41:39 hrs

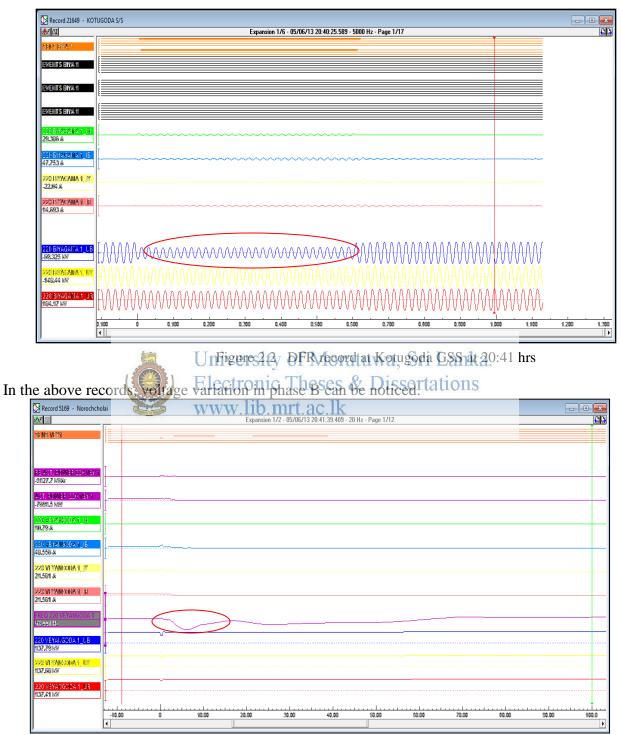


Figure 2.3 DFR record at Lakvijaya power station at 20:41 hrs

Frequency fluctuation during the failure has indicated in the DFR record at Norochcholai power station at 20.41 hours.

After obtaining MW value of each power station and grid substation which were affected just prior to the failure and MW value of each load shed under existing UFLS mechanism, system performance under this load shedding mechanism was evaluated.

➢ Loss of Generation

Table 2.2: Power stations tripped

Power station	MW At the time of	Tripped before load shedding	Tripped after load shedding
	failure	MW	MW
WPS 2	25	25.00	
Kukule	2 x 38	76.00	
Asia power	42	42.00	
AES Kelanitissa	160		160.00
Barge power	60	60.00	
Sum of generation loss		<u>203.00</u>	<u>160.00</u>

Total generation loss = 363 MW

> <u>Tripping of load</u>

Table 2.3: Grid substations tripped

	Tuble 2.5. Offer bubbleforms utpped		
GSS		iversTripped before load wa shedding/due to load shedding ctronic Thoses & Diss	SriTripped after load shedding criationMW
Kelaniya GSS	W	ww.lib.mrt924lk	
Sapugaskanda GSS		30.99	
Maradana GSS			22.00
Havelock town GS	S		24.88
Dehiwala GSS		17.82	
Matugama	Feeder 1	0.40	
	Feeder 5	0.83	
	Feeder 6	0.76	
	Feeder 8	3.56	
	Feeder 9	2.74	
	Feeder 10	2.67	
Habarana	Feeder 1	2.97	
	Feeder 3	5.45	
	Feeder 6	4.13	
	Feeder 7	4.13	
Kiribathkumbura	Feeder 6	4.29	
	Feeder 7	5.61	
	Feeder 14	2.64	
Thulhiriya	Feeder 5	5.05	
	Feeder 6	1.65	
	Feeder 4	6.83	
	Feeder 2	1.52	
	Feeder 1	3.27	

eder 8 eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 5 eder 5 eder 6 eder 3 eder 7 eder 7 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 3 eder 4 eder 3 eder 1 eder 2 eder 4 eder 3 eder 1 eder 2 eder 4 eder 4 eder 6 eder 4 eder 4 eder 4 eder 6 eder 1 eder 4 eder 4 eder 4 eder 4 eder 4 eder 4 eder 4 eder 4 eder 4 eder 1 eder 1 ed	$\begin{array}{c} \text{ctronic Tl}_{3.60}^{1.75} \& \text{Diss}\\ \hline \text{w.lib.mr} 353 lk \\ 6.93 \\ 4.22 \\ 2.57 \\ 2.44 \\ 0.50 \\ 4.79 \\ 3.80 \\ 4.95 \\ 0.17 \\ 3.99 \\ 0.56 \\ 4.42 \\ 3.27 \\ 1.19 \\ 3.27 \\ 2.64 \\ 1.22 \\ 3.96 \\ 5.28 \\ 5.08 \\ 3.99 \\ 6.70 \\ 7.39 \\ \end{array}$	
eder 4 E10 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 6 eder 3 eder 1 eder 3 eder 1 eder 2 eder 4 eder 6 eder 3 eder 1 eder 1 eder 2 eder 4 eder 3 eder 1 eder 1 eder 3 eder 1 eder 1 eder 3 eder 1 eder 1 eder 1 eder 3 eder 1 eder 1 eder 3 eder 1 eder 1 eder 3 eder 1 eder 2 eder 4 eder 6 eder 3 eder 1 eder 1 e eder 1 eder 1 eder 1 eder 1 eder 1 eder 1 eder	$\begin{array}{r} & \textbf{w.lib.mrt 353 lk} \\ \hline 6.93 \\ \hline 4.22 \\ \hline 2.57 \\ \hline 2.44 \\ \hline 0.50 \\ \hline 4.79 \\ \hline 3.80 \\ \hline 4.95 \\ \hline 0.17 \\ \hline 3.99 \\ \hline 0.56 \\ \hline 4.42 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 2.64 \\ \hline 1.22 \\ \hline 3.96 \\ \hline 5.28 \\ \hline 5.08 \\ \hline 3.99 \end{array}$	
eder 4 E10 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 4 eder 6 eder 3 eder 1 eder 3 eder 1 eder 2 eder 4 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 2 eder 4 eder 3 eder 1 eder 1 eder 2 eder 5 eder 7 eder 3 eder 1 eder 2 eder 4 eder 4 eder 3 eder 1 eder 2 eder 4 eder 4 eder 3 eder 1 eder 2 eder 4 eder 4 eder 2 eder 4 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 1 eder 2 eder 4 eder 7 eder 7 eder 1 eder 1	$\begin{array}{r} & \textbf{w.lib.mrt 353 lk} \\ \hline 6.93 \\ \hline 4.22 \\ \hline 2.57 \\ \hline 2.44 \\ \hline 0.50 \\ \hline 4.79 \\ \hline 3.80 \\ \hline 4.95 \\ \hline 0.17 \\ \hline 3.99 \\ \hline 0.56 \\ \hline 4.42 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 2.64 \\ \hline 1.22 \\ \hline 3.96 \\ \hline 5.28 \\ \hline 5.08 \\ \end{array}$	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 3 eder 4 eder 4 eder 3 eder 4 eder 3 eder 4 eder 4 eder 4 eder 3 eder 4 eder 4 eder 4 eder 4 eder 5 eder 4 eder 5 eder 4 eder 6 eder 3 eder 81(13) eder A1(15) eder A2(16)	$\begin{array}{r} \text{rw.lib.mrt 353 lk} \\ \hline 6.93 \\ \hline 4.22 \\ \hline 2.57 \\ \hline 2.44 \\ \hline 0.50 \\ \hline 4.79 \\ \hline 3.80 \\ \hline 4.95 \\ \hline 0.17 \\ \hline 3.99 \\ \hline 0.56 \\ \hline 4.42 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 2.64 \\ \hline 1.22 \\ \hline 3.96 \\ \hline 5.28 \end{array}$	
eder 4 E16 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 3 eder 4 eder 3 eder 1 eder 2 eder 4 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 5 eder 4 eder 3 eder 7 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 3 eder 4 eder 3 eder 1 eder 3 eder 1 eder 3 eder 1 eder 2 eder 4 eder 3 eder 1 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 4 eder 3 eder 4 eder 5 eder 4 eder 3 eder 7 eder 3 eder 6 eder 3 eder 6 eder 3 eder 6 eder 3 eder 81(13) eder 82(14) eder A1(15)	$\begin{array}{r} \textbf{w.lib.mrt 353 lk} \\ \hline 6.93 \\ \hline 4.22 \\ \hline 2.57 \\ \hline 2.44 \\ \hline 0.50 \\ \hline 4.79 \\ \hline 3.80 \\ \hline 4.95 \\ \hline 0.17 \\ \hline 3.99 \\ \hline 0.56 \\ \hline 4.42 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 2.64 \\ \hline 1.22 \\ \hline 3.96 \end{array}$	
eder 4 E10 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 3 eder 7 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 3 eder 4 eder 3 eder 1 eder 3 eder 4	$\begin{array}{r} & \text{w.lib.mrt 353 lk} \\ & 6.93 \\ & 4.22 \\ & 2.57 \\ & 2.44 \\ & 0.50 \\ & 4.79 \\ & 3.80 \\ & 4.95 \\ & 0.17 \\ & 3.99 \\ & 0.56 \\ & 4.42 \\ & 3.27 \\ & 1.19 \\ & 3.27 \\ & 2.64 \\ & 1.22 \end{array}$	
eder 4 E10 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 3 eder 7 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 3 eder 4 eder 3 eder 1 eder 3 eder 4	$\begin{array}{r} & \text{w.lib.mrt 353 lk} \\ & 6.93 \\ & 4.22 \\ & 2.57 \\ & 2.44 \\ & 0.50 \\ & 4.79 \\ & 3.80 \\ & 4.95 \\ & 0.17 \\ & 3.99 \\ & 0.56 \\ & 4.42 \\ & 3.27 \\ & 1.19 \\ & 3.27 \\ & 2.64 \\ & 1.22 \end{array}$	
eder 4 E16 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 3 eder 3 eder 4 eder 3 eder 3 eder 4 eder 3 eder 3 eder 4 eder 3 eder 5 eder 5 eder 5 eder 5 eder 6 eder 3 eder 7 eder 3 eder 3 eder 7 eder 3 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 4 eder 3 eder 5 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 3 eder 7 eder 3 eder 7 eder 3 eder 7 eder 3 eder 1 eder 3 eder 4 eder 3 eder 1 eder 3 eder 4 eder 3 eder 1 eder 3 eder 4 eder 3 eder 1 eder 3 eder 3 ed	$\begin{array}{r} \textbf{w.lib.mrt 353 lk} \\ \hline 6.93 \\ \hline 4.22 \\ \hline 2.57 \\ \hline 2.44 \\ \hline 0.50 \\ \hline 4.79 \\ \hline 3.80 \\ \hline 4.95 \\ \hline 0.17 \\ \hline 3.99 \\ \hline 0.56 \\ \hline 4.42 \\ \hline 3.27 \\ \hline 1.19 \\ \hline 3.27 \\ \hline 2.64 \end{array}$	
eder 4 E10 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 3 eder 1 eder 2 eder 4 eder 2 eder 4 eder 3 eder 3 eder 3 eder 3 eder 3 eder 4	$\begin{array}{r} \textbf{w.lib.mrt 353 lk} \\ \hline 6.93 \\ \hline 4.22 \\ \hline 2.57 \\ \hline 2.44 \\ \hline 0.50 \\ \hline 4.79 \\ \hline 3.80 \\ \hline 4.95 \\ \hline 0.17 \\ \hline 3.99 \\ \hline 0.56 \\ \hline 4.42 \\ \hline 3.27 \\ \hline 1.19 \end{array}$	
eder 4 E10 eder 3 WV eder 3 eder 4 eder 2 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7 eder 3 eder 1 eder 2 eder 2 eder 4	xw.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80 4.95 0.17 3.99 0.56 4.42 3.27	
eder 4 Ele eder 3 ww eder 3 eder 4 eder 2 eder 5 eder 6 eder 4 eder 3 eder 7 eder 3 eder 1 eder 2	w.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80 4.95 0.17 3.99 0.56 4.42	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 3 eder 3 eder 3 eder 1	ww.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80 4.95 0.17 3.99 0.56	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 3	w.lib.mrt 353 lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80 4.95 0.17 3.99	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 5 eder 6 eder 4 eder 3 eder 7 eder 7	vw.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80 4.95 0.17	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 6 eder 4 eder 3 eder 3 eder 7	vw.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80 4.95	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 6 eder 4 eder 3	ww.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80	
eder 4 eder 3 eder 3 eder 4 eder 2 eder 5 eder 6 eder 4 eder 3	ww.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50 4.79 3.80	
eder 3 eder 3 eder 3 eder 4 eder 2 eder 5 eder 6	vw.lib.mrt353lk 6.93 4.22 2.57 2.44 0.50	
eder 3 eder 3 eder 3 eder 4 eder 2 eder 5	vw.lib.mrt.353lk 6.93 4.22 2.57 2.44	
eder 3 eder 3 eder 3 eder 4 eder 2 eder 5	vw.lib.mrt.353lk 6.93 4.22 2.57 2.44	
eder 4 E16 eder 3 wy eder 3 eder 4 eder 2	ww.lib.mrt.353.lk 6.93 4.22 2.57	
eder 3 WV eder 3 eder 4	ww.lib.mrt353lk 6.93 4.22	ertations
eder 4 Elt eder 3 WW eder 3	vw.lib.mrt.3 5 3.lk 6.93	ertations
eder 4 Ele	vw.lib.mrt3a53.lk	ertations
eder 4 Ele		ertations
	etronic These & Dies	ertations
eder 3 Un	iversity of ² ¹⁸ 4oratuwa,	Sri Lanka.
eder 4	3.30	
		-
		-
	4.46	
	1.82	
eder 6	4.29	
eder 7	8.58	
eder 1	1.82	
eder 2	2.48	
eder 6	3.30	
eder 2	3.30	
eder 5	3.47	
eder 8	3.14	
	MW	MW
		Tripped after load shedding
	eder 5 eder 2 eder 6 eder 2 eder 1 eder 7 eder 6 eder 2 eder 3 eder 3 eder 4 eder 5 eder 8 eder 2 eder 2 eder 2 eder 2 eder 8 eder 2 eder 4 eder 4 eder 4 eder 4 eder 4 eder 3	eder 8 3.14 eder 5 3.47 eder 2 3.30 eder 2 3.30 eder 6 3.30 eder 7 8.58 eder 7 8.58 eder 6 4.29 eder 2 1.82 eder 3 4.46 eder 4 7.62 eder 5 2.77 eder 8 9.41 eder 2 2.41 eder 4 5.61 eder 5 3.96 eder 6 3.96

According to the above table,

Total load disconnected = 343.06 MW

- Total loss of generation after the failure occurrence and prior to the load shedding process activation is 203 MW.
- Total load disconnected after the failure occurrence and prior to the load shedding process activation or due to the load shedding process is 296.18 MW.
- If we consider separately total load shed under the load shedding mechanism, it is 238.13 MW.

From the above observations, it is clear that under the existing load shedding mechanism excessive loads were disconnected. Load interrupted unnecessarily is about 93.18 MW.

2.2.2 Analysis of partial failure occurred on 29thOctober 2013 at 15:27 hours

Lakvijaya power plant was tripped at 15:27 hours giving the indication as 'drum level low'. Load shedding process was activated up to stage IV.

Load tripped under each load shedding stage was analyzed in order to consider each load shed individually. Frequency plot drawn from the system frequency values extracted from Veyangoda 220 kV bus is mentioned below; ww.lib.mrt.ac.lk

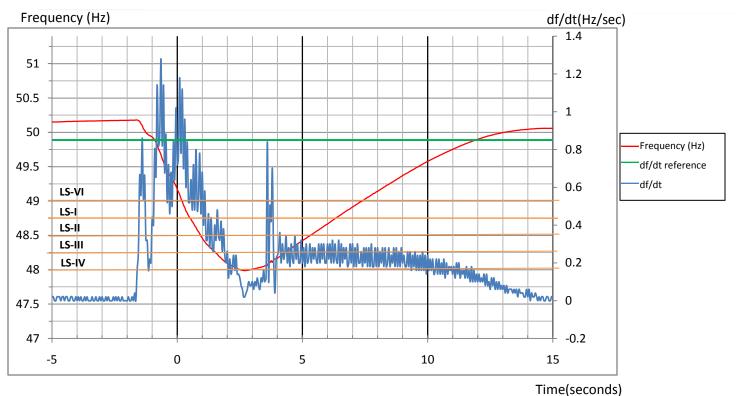
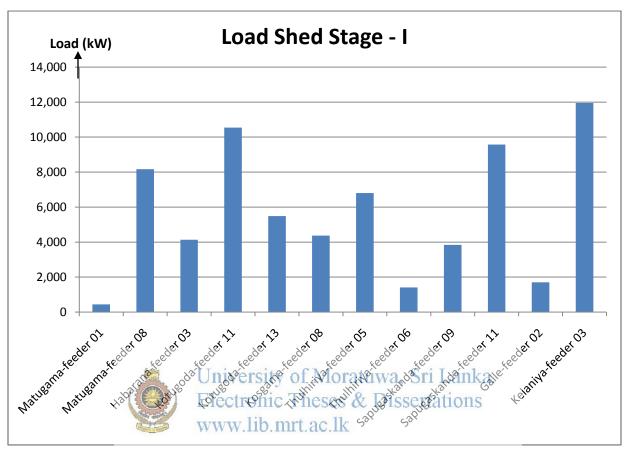



Figure 2.4 Frequency plot at 15:27 hours on 29th October 2013

Loads shed under each load shedding stage are graphically represented as below;

Figure 2.5 Load of the feeders shed under load shedding stage-I

Through analyzing above graph, loads which were unnecessarily interrupted can be clearly identified. Loads of Matugama GSS feeder 01, Thulhiriya feeder 06 and Galle feeder 02 were very less values and also not in the category which usually contribute greatly to reactive power value. Therefore these loads were unnecessarily interrupted through this existing load shedding mechanism due to pre-defined load shedding tables.

Load of the feeders shed under load shedding stage-II is illustrated below which also shows Matugama GSS feeder 05 was unnecessarily interrupted. Unawareness of the load of each feeder which can be shed at the time of the failure leads to this situation.

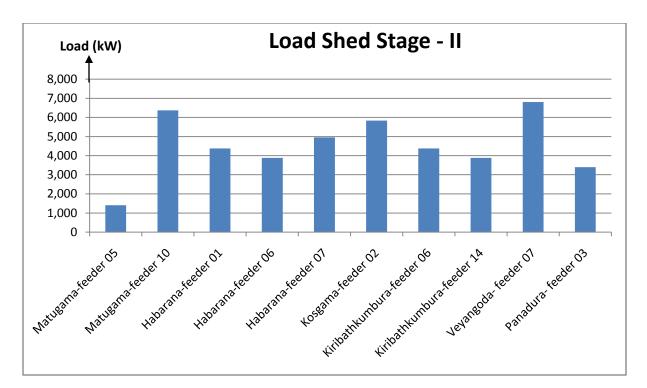


Figure 2.6 Load of the feeders shed under load shedding stage-II

Loads shed under 1000 ddiffs affermian Thearesing Paisa stations www.lib.mrt.ac.lk

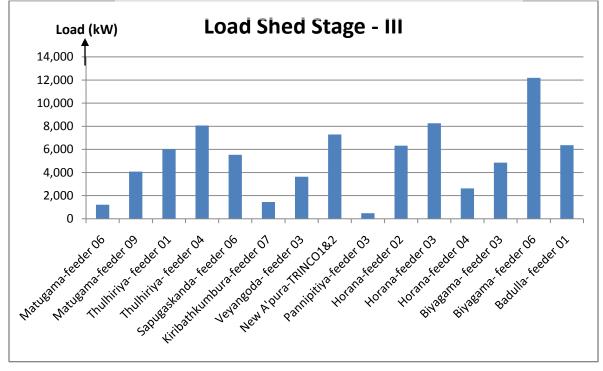


Figure 2.7 Load of the feeders shed under load shedding stage-III

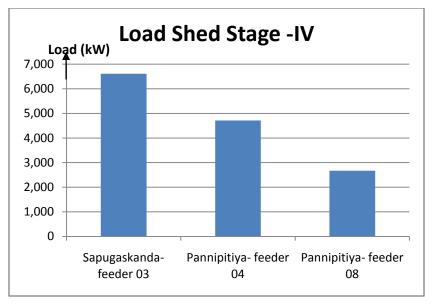


Figure 2.8 Load of the feeders shed under load shedding stage-IV

Loads of Matugama feeder 06, Kiribathkumbura feeder 07 and Pannipitiya feeder 03 were not contributing much for the total real power, but as per the predefined load shedding table these loads were shed. University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

Through the analysis this failure and load shedding process it can be concluded that unnecessary load shedding was occurred due to predefined load shedding tables under existing under frequency load shedding mechanism.

2.2.3 Analysis of major failure occurred on 07thDecember 2007 at 04:48 hours

Kelanitissa Combined Cycle power plant (KCCP) was tripped at 04.48 hours rejecting 163 MW from the system due to a mechanical fault. Load shedding was operated up to stage-V. In the meantime ACE Embilipitiya was tripped after about 8 seconds. Associated frequency drop cascaded in to a total system collapse.

After data collection relevant to this failure following details were observed.

- Total generation available prior to the failure= 856.5 MW
- Generation loss after KCCP tripping = 163 MW (19%)
- Generation loss after Ace Embilipitiya tripping= (163+70)MW = 233 MW(27%)

Then I calculated the total load shed under existing under frequency load shedding mechanism.

LOAD SHED. STAGE	FEEDER	TRIPPED AT	RESTORED AT	LOAD (MW)
	Mathugama F1	-		
	Mathugama F3	-		
	Kotugoda F8	-		
Ι	Thulhiriya F1	4:48	6:00	1.7
	Thulhiriya F5	4:48	6:09	4.3
	Sapugaskanda F9	4:48	5:10	0.8
	Sri J'Pura F3	Off		
	Sri J'Pura F8	4:48	5:52	0
	Sapugaskanda F4	4:48	5:52	4.1
	Sapugaskanda F6	4:48	5:16	1.45
	Sapugaskanda F10	4:48	5:16	2.3
	Rathmalana F2	4:48	5:15	0.5
	Rathmalana F6	4:48	5:55	4.5
	Rathmalana F7	4:48	5:57	0.25
II	Pannipitiya F2	-		
	Mathugama F5	-		
	Mathugama F6	_		
	Mathugama F8	_		
	Kotugoda F6	_		
	Dehiwala F7	4:48	6:04	4.4
	Habarana F8	4:48	6:20	1
	Habarana Eniversity of Mo	~	anka. 6:20	3.25
				5.25
III	Kotugoda F4ectronic Theses & Dissertations			
	Demwala P8ww.lib.mrt.ac.l	4:48	6:02	3.65
	Sapugaskanda F3	4:48	5:16	8.65
	Mathugama F10	-	0.10	0.00
	Thulhiriya F2	4:48	6:09	1.1
	Thulhiriya F6	4:48	6:10	1.65
	Kolonnawa A1	Off	0.10	1.05
IV - 1	Kolonnawa A2	4:48	5:29	2.2
14 - 1	Kolonnawa B1	4:48	5:48	2.2
	Kolonnawa B1	4:48	5:28	2.4
	Pannipitiya F8	4.40	5.20	2.2
	Pannipitiya F7			
	Pannipitiya F4			
	Dehiwala F6	-		
	Sub E F 252	4:48	5:58	15.8
	Sub E F 232	4:48	5:56	0
IV - 2	Sub F F 08	4:48	5:54	8
1 V - 2	Sub F F 346	4:48	5:54	<u> </u>
	Sub F F 351			<u> </u>
		4:48	5:54	4
• •	Pannipitiya - Rath 1 and 2	-	+ +	
V	Kotugoda - Veyan 1 and 2	-	6.15	17
	Badulla - Ampara line	4:48	6:15	16
	New Anuradhapura - Trinco 1 and		6:33	21
	TOTAL LOAD SHED	(MW)		<u>120.2</u>

Before tripping of Ace Embilipitiya power plant, load shedding was operated. Even the generation loss due to tripping of KCCP was about 163 MW, total load shed was only 120.2 MW. Due to this insufficient load shedding, system frequency was not stabilized and this has caused a total system collapse.

From the above table it is observable that some feeders included in the load shedding table were not energized at that time due to some reason. But system was not aware about that. Online data monitoring is not possible within CEB system and load shedding tables are not updated.

Same pre-defined load shedding table is used without consideration of the time of the day (off-peak/day-peak/night-peak).

2.3 Weaknesses of the existing load shedding mechanism

Through the analysis of above partial and major failures occurred in recent past, following weaknesses were identified for the existing load shedding mechanism;

- (I) Possibility of system collapse due to inadequate load shedding.
- (II) Excessive load shedding due to pre-defined load shedding tables.
- University of Moratuwa, Sri Lanka.
- (III) Occurrence of feeder interruptions than required Electronic Theses & Dissertations
- (IV) Reactive power produced at each feeder is not under consideration.

(V) Same pre-defined load shedding table for off-peak, day-peak and night-peak.

To overcome these weaknesses, a properly managed updated load shedding mechanism is required to be implemented. Through the literature survey I learnt 'intelligent load shedding mechanism' is the best application to adapt in CEB network which can be practiced after completion of SCADA (Supervisory Control and Data Acquisition) which facilitates online data monitoring.

An intelligent load shedding system can provide faster and optimal load relief by utilizing actual operating conditions and knowledge of past system disturbances [1].

INTELLIGENT LOAD SHEDDING MECHANISM

An effective load shedding mechanism requires knowledge about power system dynamics, process constraints and system disturbances. This is possible within 'intelligent load shedding mechanism'.

An intelligent load shedding system can be illustrated as below;

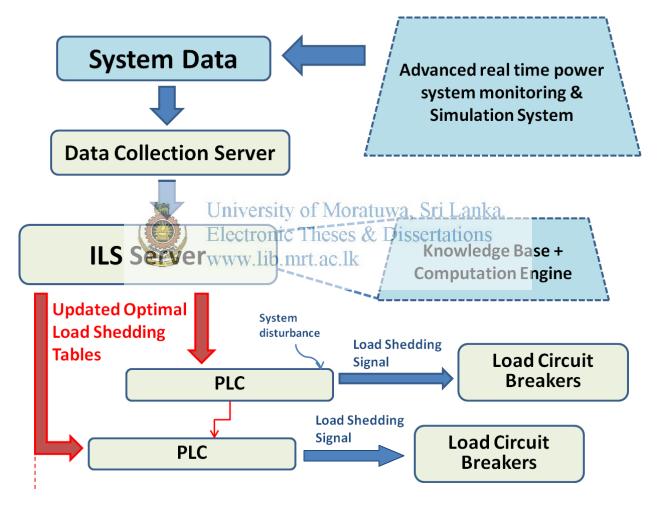


Figure 3.1 Basic representation of intelligent load shedding system

Here system data is continuously observed through advanced real time power system monitoring and simulation system. These system data can be generation of each on-site unit, total generation, total load demand, load demand of each feeder which is in the list of low priority feeders, spinning reserve.

These data is collected at data collection servers located at each substation. 'Intelligent Load Shedding server' (ILS server) which is a combination of 'knowledge base' and 'computation engine' is located at System Control Centre. This ILS server gets data from data collection servers continuously. Based on the input data and system updates, the knowledge base periodically sends requests to the ILS computation engine to update the load shedding tables, thus ensuring that the optimum load will be shed when a disturbance occurs [3].

These updated optimal load shedding tables are getting transferred to Programmable Logic Controllers (PLC) installed near feeders which can be shed. Whenever a system disturbance occurs, load shedding gets activated following updated optimal load shedding tables.

An intelligent load shedding scheme provides following main benefits;

- 1. Time-variant load shedding tables which reflect true status and loading conditions for the loads which can be shed.
- 2. Optimal combination of loads of feeders which can be shed to maximize load preservation Electronic Theses & Dissertations
- 3. Fast response to disturbancey.lib.mrt.ac.lk
- 4. Environment to accelerate operator training with the ability to simulate and validate load shedding decisions [4].

3.1 Forming mathematical model in MATLAB software

As in CEB network online data accessing is not possible, MATLAB software was selected to build-up a model which facilitates ILS. Following steps were followed in this process;

- i. Selecting a reduced network from CEB network to form a model in MATLAB software.
- ii. Collecting data related to the network and modeling data for the uploading purpose in MATLAB software.
- iii.Extracting load data of the feeders that can be shed.
- iv. Importing modeled data into MATLAB software.
- v. Designing Graphical User Interface (GUI) in MATLAB software.
- vi. Developing the program algorithm and coding to update optimal load shedding tables and to activate load shedding through monitoring system frequency and frequency deviation rate.
- vii. Application of case studies in MATLAB software.

3.1.1 Selection of reduced network

Following reduced network was selected in order to build-up a model in MATLAB software to apply ILS;

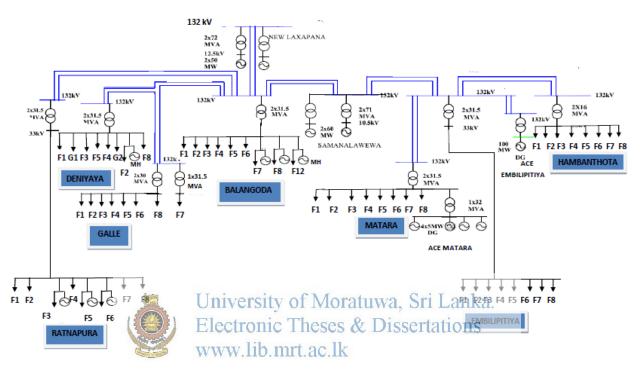


Figure 3.2 Selected network for MATLAB modeling

Two major hydro power plants, two thermal power plants and mini-hydro power plants are located in this network with below mentioned generation capacities;

- □ New Laxapana Power plant 2 x 50 MW
- □ Samanalawewa Power plant 2 x 60 MW
- $\Box \quad Ace Power Matara 4 \ge 5 MW$
- □ Ace Power Embilipitiya 100 MW
- □ Mini-hydro power plants in Ratnapura –22.05 MW
- □ Mini-hydro power plants in Deniyaya 4 MW
- □ Mini-hydro power plants in Balangoda 25.85 MW

Total generation produced at mini-hydro power plants were considered as constant values for this study.

There are seven grid substations located in this network as follows;

- Embilipitiya GSS
- Matara GSS
- Balangoda GSS
- Deniyaya GSS
- Galle GSS
- Hambanthota GSS
- Ratnapura GSS

3.1.2 Data collection and modeling

Initially MW readings of each GSS were modeled after deriving demand curve equation for each GSS. Average Watt readings extracted from energy meters located at GSS were obtained and demand curves were derived for day-peak, night-peak and off-peak as below;

i. Embilipitiya GSS:				
Day	University of Time af the day Sri Lanka.			
Weekday	y= 0.02 x 0.35x + 9.54w.11	b.mrtyac.xk+39.3 x -368	$y = 0.24 x^2 - 0.97 x + 5.05$	
Saturday	y=-0. 02x ² +0.66x+ 4.55	$y = -0.93x^2 + 36.2x - 337.5$	$y = 0.11x^2 - 0.39x + 5.4$	
Sunday	y=0.011x ² -0.175x+8.78	$y = -1.02x^2 + 39.6x - 369.04$	y=0.15x ² -0.813x+6.5	
ii. Matara	ii. Matara GSS:			
Day	Time of the day			
	Day-peak	Night-peak	Off-peak	
Weekday	$y = -0.014x^2 + 0.53x + 14.35$	$y = -1.17 x^2 + 44.65 x - 400$	$y = 0.54 x^2 - 2.15x + 11.9$	
Saturday	$y = -0.07x^2 + 1.83 x + 7.08$	$y = -1.12 x^2 + 43.12 x - 387$	$y= 0.28 x^2 - 1.264x + 12$	
Sunday	$y = 0.004x^2 + 0.008 x + 15$	$y = -1.28 x^2 + 50 x - 454$	$y=0.245 x^2 - 1.33x + 12.41$	
iii. Balangoda GSS:				
Day	Time of the day			
	Day-peak	Night-peak	Off-peak	
Weekday	$y=0.07x^2+1.27x+34.3$	$y = -3.63 x^2 + 141.43x - 1326$	$y = 0.87 x^2 - 3.5x + 18.2$	
Saturday	$y = -0.098x^2 + 3.28 x + 22.75$	$y = -4.65 x^2 + 180.95 x - 1687.7$	$y= 0.539 x^2 - 1.95x + 27$	
Sunday	$y = 0.034x^2 + 0.525 x + 26.35$	y= -3.058 x ² + 118.7 x - 1107	$y=0.5 x^2 - 2.44x + 19.5$	

Table 3.1: Derived Demand curve equations for each GSS based on time of the day

iv. Deniyaya GSS				
Dav	Time of the day			
Day	Day-peak	Night-peak	Off-peak	
Weekday	$y=0.02x^2 - 0.34x + 9.25$	$y = -0.98 x^2 + 38x - 357$	$y = 0.23 x^2 - 0.942x + 5$	
Saturday	$y = -0.09x^2 + 2.6 x + 9.9$	$y = -1.57 x^2 + 60.37 x - 541.9$	$y= 0.386 x^2 - 1.77x + 16.7$	
Sunday	$y=0.022x^2 - 0.35 x + 17.6$	$y = -2.04 x^2 + 79 x - 738$	$y=0.3 x^2 - 1.63x + 13$	
v. Galle (GSS			
Dev		Time of the day		
Day	Day-peak	Night-peak	Off-peak	
Weekday	$y = -0.02 x^2 + 0.74x + 20$	$y = -1.64 x^2 + 62.5 x - 560$	$y = 0.76 x^2 - 3.01x + 17$	
Saturday	$y = -0.105x^2 + 2.93 x + 11.326$	$y = -1.8 x^2 + 69 x - 619$	$y= 0.44 x^2 - 2.023x + 19.05$	
Sunday	$y = 0.006x^2 + 0.011 x + 19.5$	$y = -1.7 x^2 + 64.5 x - 590$	$y=0.32 x^2 - 1.33x + 16.2$	
vi. Hambanthota GSS				
Dev	Time of the day			
Day	Day-peak	Night-peak	Off-peak	
Weekday	$y = -0.007 x^2 + 0.26x + 7.18$	$y = -0.584 x^2 + 22.33x - 200$	$y=0.27 x^2 - 1.08x + 6$	
Saturday	$y = -0.034x^2 + 0.917x + 3.54$	$sity = f^{0.561} x^{2} + 21.6 x s^{1.93} c_{an1}$	$x^2 = 0.137 x^2 - 0.633x + 5.95$	
Sunday		nic Theses $x^2 + 25$ sectation		
vii. Ratnapura GSS www.lib.mrt.ac.lk				
Dav	Time of the day			
Day	Day-peak	Night-peak	Off-peak	
Weekday	$y = 0.06 x^2 - 1.06x + 28.6$	$y = -3.02 x^2 + 118x - 1105$	$y=0.72 x^2 - 2.9x + 15.15$	
Saturday	$y = -0.08x^2 + 2.626x + 18.2$	$y = -3.72 x^2 + 144.76 x - 1350.16$	$y= 0.43 x^2 - 1.56x + 21.7$	
Sunday	$y=0.05x^2 - 0.7x + 35$	$y = -2.5 x^2 + 99 x - 922$	$y=0.6 x^2 - 3.25x + 26$	

In these demand curve equations, x defines time of the day in hours while y represents the load at the particular time. Total load of each GSS was calculated based on this demand curve equation. After analyzing readings taken by System Control branch at off-peak, day-peak and night-peak feeder wise, relationship between demand of each feeder and total demand was observed. Total demand value at a particular time was distributed over feeders based on this relationship.

Demand database was formed as per the above criterion. Depending on the total demand at a particular time, generation database was formed. Main concern was on dispatching hydro generation units such as New Laxapana and Samanalawewa. Mini hydro generation was kept as constant.

3.1.3 Extracting load data of the feeders that can be shed

Electricity demand of the feeders which can be shed were filtered and entered in a separate sheet. Feeders which can be shed were selected depending on the demand of each feeder which is not categorized as 'high priority feeder'.

(i) Embilipitiya feeder 06

(ii) Matara feeder 01

- (iii)Matara feeder 06
- (iv)Matara feeder 07
- (v) Balangoda feeder 05
- (vi)Deniyaya feeder 01
- (vii) Galle feeder 04
- (viii)Galle feeder 07
- (ix)Hambanthota feeder 05
- (x) Ratnapura feeder 01

(xi)Ratnapura feeder 08 -

University of Moratuwa, Sri Lanka.

Here reactive power component of each feeder which can be shed was also calculated and entered. Power factor value was obtained for each GSS from readings taken by grid operators recently. Reactive power was calculated based on this power factor value.

Feeders which can be shed were arranged in descending orders of real power and reactive power as below;

Table 3.2: Descending order of real power and reactive power of feeders which can be shed

Descending order of real power	Descending order of reactive power
Ratnapura feeder 08	Ratnapura feeder 08
Balangoda feeder 05	Balangoda feeder 05
Galle feeder 04	Galle feeder 04
Galle feeder 07	Matara feeder 06
Matara feeder 06	Matara feeder 07
Ratnapura feeder 01	Ratnapura feeder 01
Matara feeder 07	Matara feeder 01
Matara feeder 01	Hambanthota feeder 05
Embilipitiya feeder 06	Galle feeder 07
Hambanthota feeder 05	Embilipitiya feeder 06
Deniyaya feeder 01	Deniyaya feeder 01

Based on above order, load shedding sequence was built up as below;

- (i). Ratnapura feeder 08
- (ii).Balangoda feeder 05
- (iii).Galle feeder 04
- (iv).Matara feeder 06
- (v). Matara feeder 07
- (vi).Galle feeder 07
- (vii)Ratnapura feeder 01
- (viii)Matara feeder 01
- (ix) Hambanthota feeder 05
- (x) Embilipitiya feeder 06
- (xi) Deniyaya feeder 01

3.1.4 Importing modeled data into MATLAB software

Excel sheets consist of demand data, generation data and demand of feeders which can be shed

were imported to MATLAB software. University of Moratuwa, Sri Lanka. Calculation of system frequency was done using following equation: Dissert ations

$$f_{new} = f_0 \underbrace{=}_{dt} \times (0.1)^{\text{int.active}}_{\text{Here 0.1 is } \Delta t \text{ in seconds}}$$

$$\frac{df}{dt} = \text{rate of change of frequency (Hz/s)}$$

The basic characteristic of the frequency change of a power system is derived from the following equation;

$$\frac{df}{dt} = \frac{(P_L - P_G)}{P_G} \times \frac{f_o}{2H} + D \times \Delta f$$

 f_0 = frequency at the time of disturbance (Hz)

- H = System inertia constant on system base (3.35)
- P_{L=} Load prior to generation loss (MW)
- $P_{G=}$ Generation sum after loss (MW)
- D = Power system load damping constant in pu/Hz
- Δf = Change in frequency (Hz)

D depends on the load categories and varies between 1% and 2%. To simplify the model 'D' is assumed as 'zero'.

$$\frac{df}{dt} = \Delta P \times \frac{f_0}{2H}$$

Here, $\Delta P = \frac{(P_L - P_G)}{P_G}$

 ΔP = Power change (per unit in system load base)

3.1.5 Designing Graphical User Interface (GUI) in MATLAB software

Coding was built-up in MATLAB software to form Graphical User Interface (GUI) where user can select required details as follows;

- > Day of the week user wants to view data.
- > Required plots such as 'load vs. generation' or 'operation of power plants vs. time', etc.
- > Resolution in minutes and update speed in milliseconds.
- ➢ Manual option to trip a machine.

Here manual option was given for the user to input time for a machine tripping and time when relevant machine is coming back to the system. This facility was included in order to view the University of Moratuwa, Sri Lanka. behavior of the system preach machine trippingses & Dissertations www.lib.mrt.ac.lk

📣 Load Shedding Simulator		And Street Street, Square, Squa		
File Edit View Insert To	ols Desktop Window Help			-
🗋 🗃 🛃 🎍 🔍 🔍	** * * * * 🗟 🛯 🗉 = 🗖			
Set Date Sunday Monday Uesday Wednesday Thursday Friday Saturday	Set Resolution (minutes)	Set Update Speed(millseconds)	Set Display Options Load vs Generation Operation of Power Plants vs Time Demand vs GSS System Frequency Feeder Shutdowns	Cptions
Power Plants Settings Power Plants		Time Pairs		
Laxapana 01	0 0	Time Pairs		
Laxapana 02	00			
Samanalawewa 01	00			
Samanalawewa 02	0.0			
ACE-Matara	0 0			
ACE Embilipitiya	0 0			
				Simulate

Figure 3.3 Graphical User Interface (GUI)

Imported data into MATLAB software can be accessed as below;

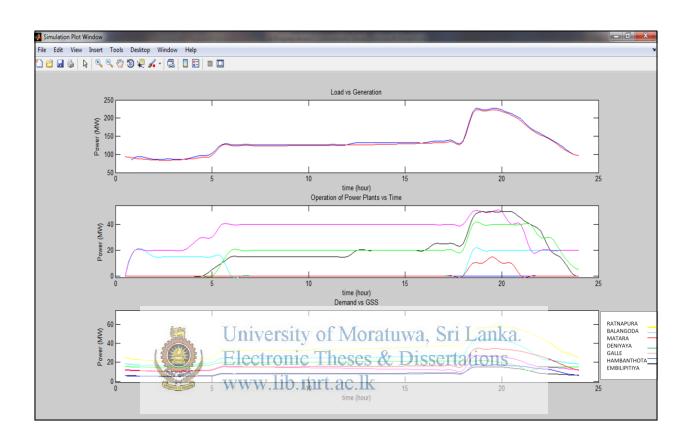


Figure 3.4 View of selected plots for a Sunday

3.1.6 Developing the program algorithm and coding to update optimal load shedding tables and to activate load shedding

Initially developing program algorithm for the operation of intelligent load shedding mechanism is done.

Flow chart representation is illustrated below;

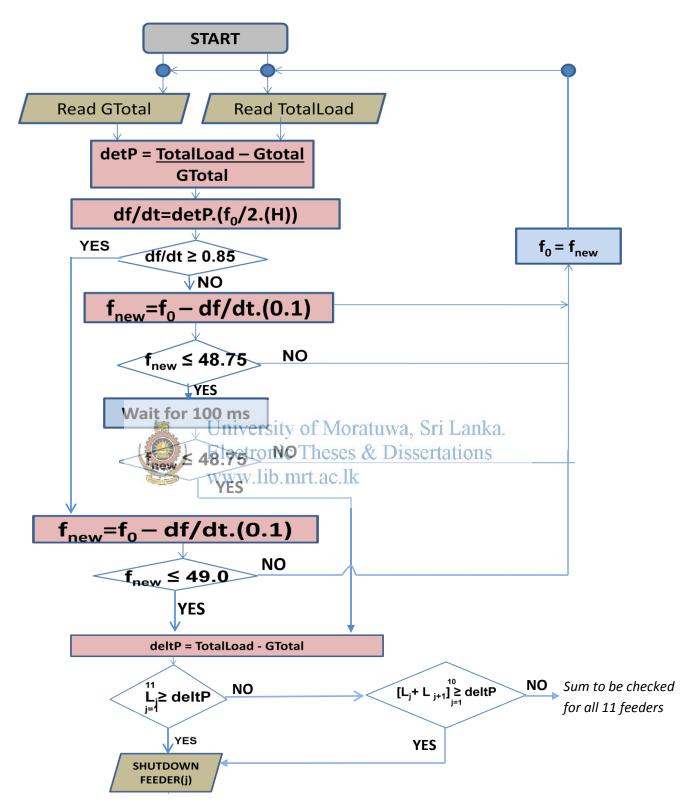


Figure 3.5 Flow Chart for the load shedding mechanism

Here L_j = Load of the feeder no.(j) which can be shed, at the time load shedding is required.

Each MATLAB file ('m' file) created is attached at the end of this report as appendix-B, appendix-C, appendix-D, appendix-E, appendix-F, appendix-G and appendix-H.

Coding written for the checking of system frequency and frequency deviation rate is shown below;

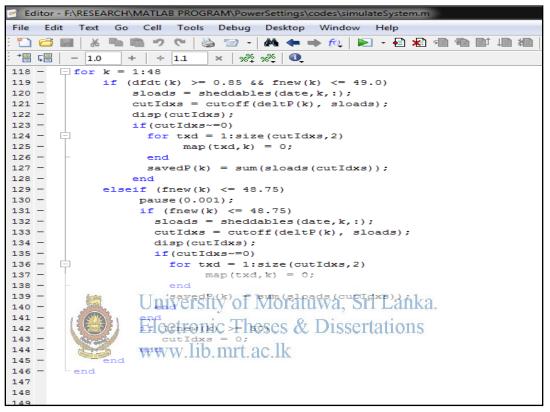


Figure 3.6 MATLAB Coding for checking frequency and frequency deviation rate

Here, a time delay of 100 ms is introduced before activation of load shedding to check whether frequency is improved or not. This is the same time delay used by CEB to avoid unnecessary interruption of load.

3.1.7 Application of case studies in MATLAB software

Following case studies were implemented using the algorithm developed in MATLAB software;

(1). Shutting down of machine-02 in Laxapana power station at t=1000 minutes (16:40 hours) and bringing back to the system at t=1110 minutes (18:30 hours).

(2). Shutting down of machine-01 in Samanalawewa power station at t=1140 minutes (19:00 hours) and bringing back to the system at t=1170 minutes (19:30 hours).

(3). Shutting down of machine-01 in Laxapana at t=1200 minutes (20:00 hours) and bringing back to the system at t=1230 min (20:30 hrs) and shutting down machine-01 in Samanalawewa at t=1210 minutes (20:10 hours) and bringing back to the system at t=1240 minutes (20:40 hours).

3.1.7.1 Shutting down of machine-02 in Laxapana power station at t=1000 minutes (16:40 hours) and bringing back to the system at t=1110 minutes (18:30 hours)

The above time pairs when machine tripping occurs and coming back to the system were entered in GUI under 'power plants settings' column. Initially plots of 'load and generation vs. time' and 'operation of power plants vs. time' were obtained as below;

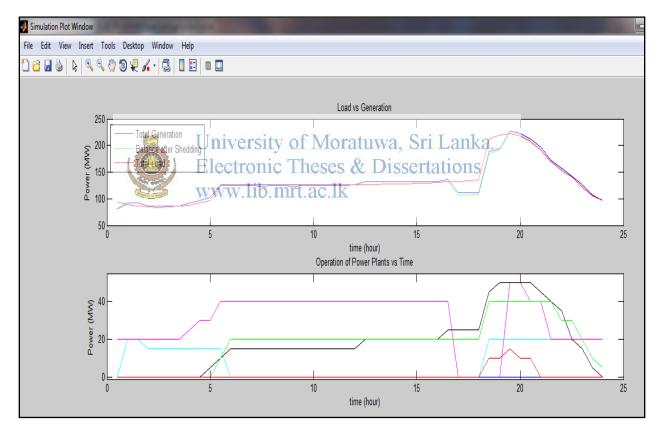


Figure 3.7 Plots of 'load and generation vs. time' and 'operation of power plants vs. time' for example-

Machine-02 in Laxapana power station was generating about 40 MW which was almost 29% of total generation available at that time. Plot line represented by 'pink colour' shows MW generated by machine-02 in Laxapana power station.

Plot of feeder shutdowns is shown below which represents shedding of feeder 08 in Ratnapura GSS, feeder 05 in Balangoda GSS, feeder 04 in Galle GSS, feeder 06 and 07 in Matara GSS. It

can be said that it is the best combination of the loads to be shed by looking at system frequency behavior.

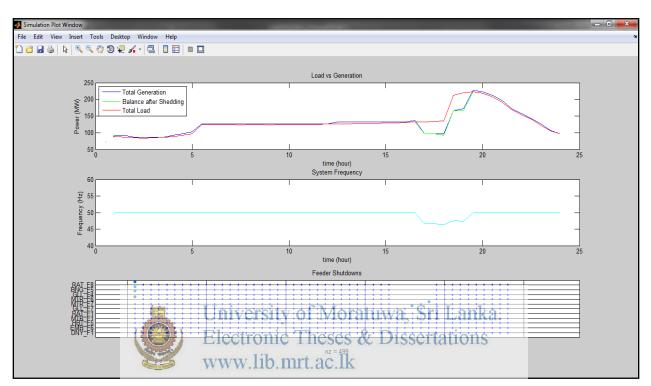


Figure 3.8 Plots of 'load and generation Vs. time', 'frequency Vs. time' and feeder shutdowns For example-01

3.7.1.2 Shutting down of machine-01 in Samanalawewa power station at t=1140 minutes (19:00 hours) and bringing back to the system at t=1171 minutes (19:31 hours)

The above time pairs when machine tripping occurs and coming back to the system were entered in GUI under 'power plants settings' column. Initially plots of 'load and generation vs. time' and 'operation of power plants vs. time' were obtained as below;

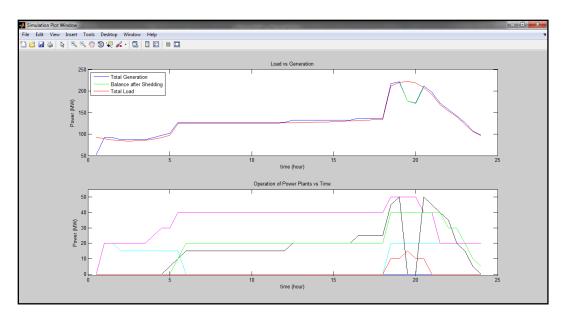


Figure 3.9 Plots of 'load and generation vs. time' and 'operation of power plants' for example-02

Machine-01 in Samanalawewa power station was generating about 50 MW which was almost 22% of total generation available at that time. Plot line represented by 'black colour' shows MW generated by machine-01 in Samanalawewa power stationwa, Sri Lanka.

Plots of frequency with time and feeden shutdowns are shown below which represents shedding of feeder 08 in Ratnapura GSS, feeder 051111 Balangoda GSS, feeder 04 in Galle GSS, feeder 06 in Matara GSS;

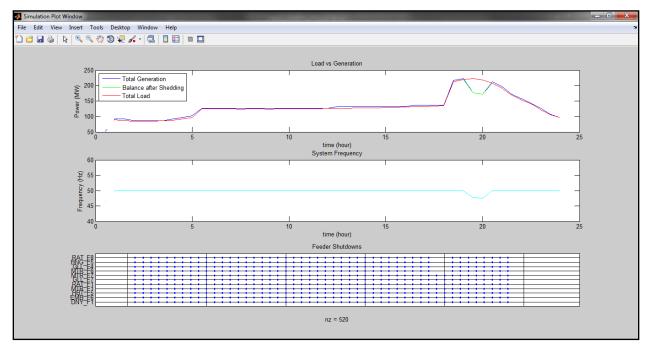


Figure 3.10 Plots of 'load and generation vs. time', 'frequency vs. time' and 'feeder shutdowns' for example-02

3.7.1.3 Shutting down of machine-01 in Laxapana at t=1200 minutes (20:00 hours) and bringing back to the system at t=1230 min (20:30 hrs) and shutting down of machine-01 in Samanalawewa at t=1210minutes (20:10 hours) and bringing back to the system at t=1240 minutes (20:40 hours)

The above time pairs when machines' tripping occurs and machines' coming back to the system occurs were entered in GUI under 'power plants settings' column. Initially plots of 'load and generation vs. time' and 'operation of power plants vs. time' were obtained as below;

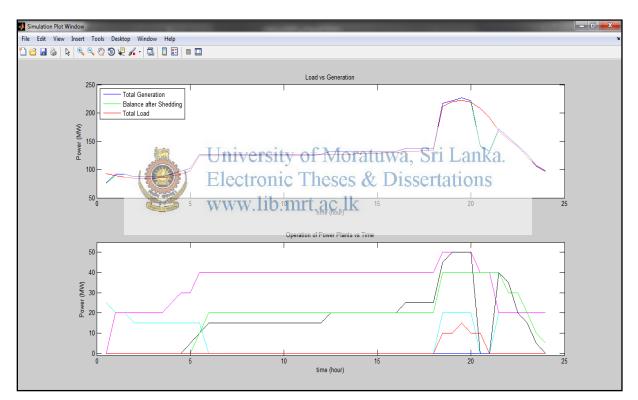


Figure 3.11 Plots of 'load and generation vs. time' and 'operation of power plants' for example-

Machine-01in Laxapana power station was generating about 20 MW which was about 9% of total generation available at that time. Plot line represented by 'cyan colour' shows MW generated by machine-01 in Laxapana power station.

Machine-01in Samanalawewa power station was generating about 50 MW which was almost 22% of total generation available at that time. Plot line represented by 'black colour' shows MW generated by machine-01 in Samanalawewa power station.

Plot of feeder shutdowns is shown below which represents shedding of feeder 01 and08 in Ratnapura GSS, feeder 05 in Balangoda GSS, feeder 04 and 07 in Galle GSS, feeder 06 and 07 in Matara GSS;

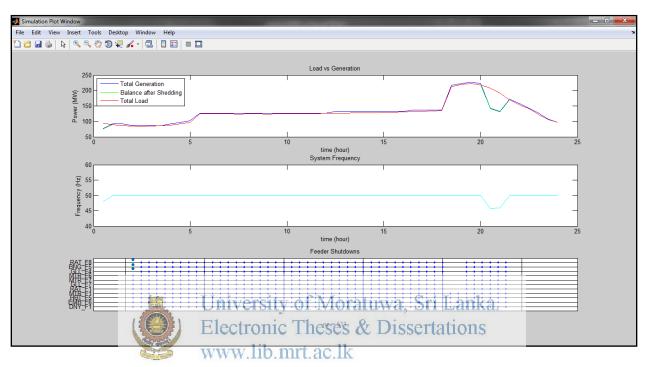


Figure 3.12 Plots of 'load and generation vs. time', 'frequency vs. time' and 'feeder shutdowns' for example-03

Even though intelligent load shedding can be implemented in MATLAB software, result analysis cannot be done in a proper way as we have to apply 'under frequency load shedding mechanism' also in MATLAB software. It was decided to apply both load shedding mechanisms in 'Power System Simulator for Engineering' (PSS/E) software for further verification. This is described in the next chapter.

RESULT ANALYSIS IN PSS/E

4.1 Introduction to PSS/E software

Power System Simulator for Engineering (PSS/E) is an integrated program for simulating, analyzing and optimizing power system performance. This software is a tool for use in the design and operation of reliable networks. Transmission and Generation planning Engineers in CEB also make use of this software tool in order to improve system performance.

4.2 Planning Criteria

The planning criteria were established to ensure quality and reliable supply of electricity under normal operating conditions as well as under emergency situations. It was done in four important areas;

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

(i). Voltage criterion

(ii). Thermal criterion

(iii). Security criterion

(iv). Stability criterion

4.2.1 Voltage criterion

Permissible voltage variations from standard voltage at any live bus bar of the network under normal and single contingency operating conditions are defined.

www.lib.mrt.ac.lk

Bus bar voltage	Permissible volta	age variation (%)
	Normal operating condition	Single contingency condition
220 kV	±5%	-10% to +5%
132 kV	±10%	±10%
33 kV	±1%	$\pm 1\%$

Table 4.1 Permissible voltage variation in 220 kV, 132 kV and 33 kV systems

4.2.2 Thermal criterion

This is a limitation for the loading of transmission network to avoid overheating under 'overloading'.

4.2.3 Security criterion

The system performance is assessed under emergency situations in this criterion. The adopted contingency level for the planning purposes is N-1 which implies outage of any one element of the transmission system at a time. When N-1 situation arises the system should be able to meet the distribution demand following voltage criterion and thermal criterion.

After system readjustment following a disturbance described above, the voltage and loading of elements should return to their corresponding normal limits [7].

4.2.4 Stability criterion

Under stability criterion system stability must be confirmed during and after a system disturbance.

For all pertaining equipment in service, the system should remain stable in case of;

- Three-phase taut at any one overhead Moretunial, String by the primary protection with successful and unsuccessful auto re-closing
- Loss of any one generation unit
- ➤ Load rejection by loss of any transformer [7]

4.3 Static versus Dynamic Analysis

Static and dynamic analysis studies are two most common methods used within CEB for analyzing power system stability.

4.3.1 Static Analysis

Static or steady-state analyses are the load-flow studies done when system is under equilibrium state. Here generation always equals to load demand and losses. Voltage stability studies are done through static analysis.

4.3.2 Dynamic Analysis

Dynamic analysis or time-domain analyses are the power system stability studies done when a disturbance occurs.

Here for the result analysis and for a better comparison, dynamic analysis was done for both load shedding mechanisms- under frequency load shedding(UFLS) and Intelligent Load Shedding(ILS) in PSS/E software.

4.4 Result Analysis

Simulation was done in PSS/E software for both load shedding mechanisms for three scenarios as mentioned below;

- CASE STUDY 1: Tripping of both machines in New Laxapana power station and both machines in Samanalawewa power station.
- CASE STUDY 2: Tripping of both machines in New Laxapana power station, both machines in Samanalawewa power station and machines in Old Laxapana power station.
- CASE STUDY 3: Tripping of both machines in New Laxapana power station, both machines in Samanalawewa power station and machine 1 in Lakvijaya power station.

As in PSS/E load data are mentioned GSS-wise, initially I had to remodel load network in order to view 33 kV feeders in each GSS. Intelligent load shedding mechanism is considering each feeder separately not GSS-wise. Several other modifications were also done to the modeled PSS/E file for the implementation of TLS.

As these three scenarios were considered for a better comparison of the results I also considered another case study as mentioned below which has already been occurred in the system.

CASE STUDY 4: Tripping of machine-01 in Lakvijaya power station

Tripping of machine-01 in Lakvijaya power station was occurred on 07th April 2015 at 23:33 hours due to a failure in the cooling system. This scenario was considered as a practical case study.

4.4.1 Implementation of ILS in PSS/E software

Following procedure was followed in implementation of ILS in PSS/E.

(i). Load demand of each feeder in each GSS was collected for a particular date (14/12/2014).

(ii). Real power and reactive power were obtained for each feeder for the same date at 19:00 hours. Following equations were used in calculating real power (equation 1) and reactive power(equation 2) of GSS where relevant MW or MVAr meters are not available.

 $P = \sqrt{3} \times V \times I \times \cos \emptyset \longrightarrow 1$ $Q = \sqrt{3} \times V \times I \times \sin \emptyset \longrightarrow 2$ Here, P=Active power or Real power in kW, V = Voltage in kV, I = Current in kA $\cos \emptyset$ = power factor, \emptyset = The angle of difference between current and voltage in degrees (iii). Generation data was collected for the same date (14/12/2014) at 19:00 hours where readings were taken in MW.

(iv). As feeders were not included in available PSS/E file for CEB network in System ControlCentre, feeders were included for each GSS up-to-date with active power (P) and reactive power (Q).

ile Edit View Diagram Po																					
.00% 💌 🔍 🤤 💟 🔍 🖭									¥ ¥			: 🔤 🕫 🛰	H , : -	= 24	LF 🗄 DA1	∎ DIF≣ HSC≣ I	ECE RELE DYNE	RCCE OPFE GICE		8 ° -	
	a \Upsilon	i 🜮 🚣 🕏	r 🖅 🎹	 . ∎		D M	88 E E	hr 🖕													
t Tree View 🔻 🕈 🗙	Netv	work data 🔉	×																		
		Bus	Bus		Id	Code	Area	Area	Zone	Zone	Owne		In	Scalab		erruptible	Pload	Qload	IPload	IQload	L
		Number	Nam				Num	Name	Num	Name	- r	Name	Service				(MW)	(Mvar)	(MW)	(Mvar)	
Comtrade Files			WIMAL-3	33.0 1		-2	1		1		1		V	🔽 Ye		Yes	11.2000	7.6818	0.0000	0.0000	
Eurotions			AMPA-3	33.0 1		1	1		1		1		V	V Ye		Yes	8.1000	1.3056	0.0000	0.0000	
			AMPA-3	33.0 2		1	3		1		1		V	V Ye		Yes	7.0000	1.1283	0.0000	0.0000	
			AMPA-3	33.0 3		1	3		1		1		V	V Ye	s [Yes	29.5000	4.7548	0.0000	0.0000	
				33.000 1		1	1		1		1		V	V Ye		Yes	0.0000	0.0000	0.0000	0.0000	
			UKUWE-3			-2	1		1		1		V	Ve Ye	s (Yes	0.0000	0.0000	0.0000	0.0000	
			UKUWE-3	33.0 2		-2	4		1		1		V	V Ye		Yes	0.0000	0.0000	0.0000	0.0000	
			UKUWE-3			-2	4		1		1		V	🔽 Ye	s (Yes	11.0500	3.0694	0.0000	0.0000	
		3200	UKUWE-3	33.0 4		-2	4		1		1		V	🔽 Ye	s [Yes	6.8500	1.9028	0.0000	0.0000	
		3200	UKUWE-3	33.0 5		-2	4		1		1		V	🔽 Ye	s [Yes	14.0000	3.8890	0.0000	0.0000	
			VAVUN-33			1	1		1		1		V	V Ye	s [Yes	2.8500	0.4594	0.0000	0.0000	
		3240	VAVUN-33	33. 2		1	4		1		1		V	VYe	s	Yes	1.1000	0.1773	0.0000	0.0000	
		3240	VAVUN-33	33. 3		1	4		1		1		V	VYe	s [Yes	5.1500	0.8301	0.0000	0.0000	
		3240	VAVUN-33	33. 4		1	4		1		1			V Ye	s	Yes	1.1500	0.1854	0.0000	0.0000	
		3240	VAVUN-33	33. 5		1	4		1		1			V Ye	s	Yes	3.8500	0.6205	0.0000	0.0000	
		3250	RANTE-3	33.0 1		-2	1		1		1		V	V Ye	s	Yes	0.2000	0.0640	0.0000	0.0000	
		3260	MAHIYANO	GE 3 3 1		1	1		1		1		V	V Ye	s	Yes	9.6000	1.5473	0.0000	0.0000	
		3260	MAHIYANO	GE 3 3 2		1	1		1		1		V	VYe	s	Yes	3.7500	0.6044	0.0000	0.0000	
	_		MAHIYAN	GE 3 3 3		1	1		1		1		V	V Ye	s	Yes	1.9000	0.3062	0.0000	0.0000	
	-	3301	KELAN-3A	33. 1		-2	1		1		1			V Ye	s	Yes	4.2500	1.1903	0.0000	0.0000	
	-	3302	KELAN-3B	33.0 1		-2	1		1		1	iwa,		V Ye	s [Yes	7.0000	1.9605	0.0000	0.0000	
	-	33208	AULA-3	33.0	Γ.	in the	1-	mit	- fi	Man	- 11		Cari	Ve Ye	8.44	Yes	0.0000	0.0000	0.0000	0.0000	
		33335	ANARA-	3 33. 1		4	/01	SHV	()	VIOI	2 1	Wa.		Ve Ve	s	Yes	0.0000	0.0000	0.0000	0.0000	
		3840	DELLATT-3	33.0 1		1	1		1		1			V Ye	S	Yes	6.8000	1.0960	0.0000	0.0000	
		1 3340	HALL B	33.0 2		1	1		mad1		01	T		V. Ye	s	Yes	1.0000	0.1612	0.0000	0.0000	
		534	GUAP-3	33.0 3		00	tra	mic	1	PCPC	XII	Diss	Arte	V Ye	631	Res	5.9000	0.9510	0.0000	0.0000	
		3400	HALIHAJA	33.0 3 33. 7		~~		/IIIV		COCO	U	D199	4 40	- Trye	<u>5</u> 1	Yes	20,1000	1.8198	0.0000	0.0000	
	-	3-195	HAMEA-3	33 1		1	1		1		1		V V V	V Ye		Yes	0.0000	0.0000	0.0000	0.0000	
		3420	HORANA	3 33. 4		-	¥ 7 1	ih n	1 4-1	ac.lk	1			V Ye		Yes	1,1000	0.7545	0.0000	0.0000	
	-	34205	HORAVA	3 33. 2	W1	W-2	V al	10.11	1	dC.IK	1			V Ye		Yes	11.1500	7.6475	0.0000	0.0000	
	-	3420	HORANA			-2	8		1		1		V	V Ye		Yes	5.3000	3.6351	0.0000	0.0000	
	-		HORANA			-2	8		1		1		V	V Ye		Yes	4.5500	3.1207	0.0000	0.0000	
			HORANA			-2	8		1		1			V Ye		Yes	5.8000	3.9781	0.0000	0.0000	
			IICHANA_				0 1						3	N IC		105	0.0000	3.3701	0.0000		

Figure 4.1 Load modeled feeder wise in PSS/E

(v). Collected generation data was entered to the same PSS/E file as shown in figure 4.2.

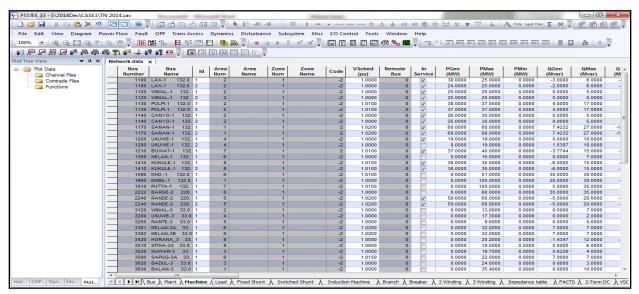


Figure 4.2 Machine file updated with generation data in PSS/E

(vi). Depending on active power and reactive power descending order, best load shedding sequence was obtained as attached in appendix-I.

(vii). Diary file(.dyr file) was written for each 4 scenario as mentioned above (case study 1, case study 2, case study 3 and case study 4) with the use of best load shedding sequence.

Screenshot of each diary file is given below;

🧾 2014 DY	RE CASE1 - Notepad								-								- 0
File Edit	Format View Help																
4300	'GENROU' 1	6.64	0.049	1.18	0.066	8	0.5	1.81	1.77	0.259	0.344	0.179	0.1	0.125	0.589	1	
4300	'SEXS'	1	0.1	10	100	0.05	0	3.5	/								
4300	'GAST'	1	0.05	0.4	0.1	3	1	2	0.95	0	0	/					
3580	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	,					
3650	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	',					
3770	LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	,					
3600	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.00	',					
3530	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	',					
3600	LDSHBL' 5	48.75	0.1	1	0 0	0.0	0.0	ŏ	0.0	0.0	0.06	1					
3520	LDSHBL' 2	48.75	0.1	1	ů 0	0.0	0.0	Ő	0.0	0.0	0.06	,					
3890	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/					
3790	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1					
3820	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/					
3420	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1					
3200	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1					
4920	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/					
3570	'LDSHBL' 7	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/					
3580	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/					
3705	'LDSHBL' 1	48.75	QUAR	1	Univ	7 000 C		ofM	lo cat	usva	0.06	i Ta	nla				
3260	'LDSHBL' 1	48.75	D.Yelly	1	Com	0.0	0.0				1						
3570	'LDSHBL' 5	48.75	5 (R. 1)	31	-0	0.0	.0.0		esº &	0.0	0.06 SS-0611	11					
3680	'LDSHBL' 5	48.75	201	51	Elec	101		Ines	Ce C	0.01		allo	ns				
3560	'LDSHBL' 6	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/					
3590	'LDSHBL' 5	48.75	0.4	1	WWW	V ^{0.0}	0.01	rt _° ac	0.0	0.0	0.06	/					
4435	'LDSHBL' 4	48.75	0.1	1	* * 0 * * *	0.0	· 0.0		• 0.0	0.0	0.06	/					

Figure 4.3 Diary file written for case study-01

	YRE CASE2 - Notepad												
ile Edit	Format View Help												
3580	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3650	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3770	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3600	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3530	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3600	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3520	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3890	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3790	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3820	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1	
3420	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3200	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
4920	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1	
3570	'LDSHBL' 7	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3580	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3705	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1	
3260	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3570	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3680	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3560	'LDSHBL' 6	48,75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1	
3590	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
4435	'LDSHBL' 4	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	,	
3790	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/	
3860	LDSHBL' 5	48.75	0.1	1	ő	0.0	0.0	Ő	0.0	0.0	0.06	,	
3900	LDSHBL' 3	48.75	0.1	1	ů 0	0.0	0.0	0	0.0	0.0	0.06	,	
1430	LDSHBL' 1	48.75	0.1	1	0 0	0.0	0.0	0	0.0	0.0	0.06	,	
4435	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06		
3770	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	,	

Figure 4.4 Diary file written for case study-02

2014 DYF	RE CASE3 with df by dt -	- Notepad						_								- 0
	Format View Help															
3580	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3650	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3770	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3600	'DLSHBL' 3	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	/	
3530 3600	'LDSHBL' 3 'DLSHBL' 5	48.75 0	0.1 0.0	1 0.0	0	0.0	0.0	0 49.0	0.0 0.0	0.0 1	0.06	/ -0.85	-0.85	-0.85	1	
3520	DLSHBL 3	0	0.0	0.0	0	0.0	0.0	49.0 49.0	0.0	1	0.06	-0.85	-0.85	-0.85	,	
3890	DLSHBL' 1	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	,	
3790	DLSHBL' 5	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	,	
3820	'DLSHBL' 3	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	1	
3420	'DLSHBL' 2	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	1	
3200	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
4920	'DLSHBL' 1	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	/	
3570	'DLSHBL' 7	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	/	
3580 3705	LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3705	'LDSHBL' 1 'LDSHBL' 1	48.75 48.75	0.1 0.1	1 1	0	0.0 0.0	0.0 0.0	0	0.0 0.0	0.0 0.0	0.06	/				
3570	DLSHBL' 5	40.75	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	, -0.85	-0.85	-0.85	1	
3680	LDSHBL' 5	48.75	0.0	1	0	0.0	0.0	0	0.0	0.0	0.06	/	0.00	0.00		
3560	'DLSHBL' 6	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	1	
3590	'DLSHBL' 5	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	1	
4435	'DLSHBL' 4	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	/	
3790	'DLSHBL' 1	0	0.0	0.0	0	0.0	0.0	49.0	0.0	1	0.06	-0.85	-0.85	-0.85	/	
3860	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3900 4430	LDSHBL' 3	48.75 0	0.1 0.0	1 0.0	0	0.0	0.0	0	0.0 0.0	0.0 1	0.06	/ -0.85	0.05	-0.85	,	
4430 4435	'DLSHBL' 1 'LDSHBL' 3	0 48.75	0.0	0.0	0	0.0	0.0	49.0 0	0.0	0.0	0.06	-0.85	-0.85	-0.85	/	
3770	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	,				
3850	LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3670	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3860	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3570	'LDSHBL' 4	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3150	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3570	LDSHBL' 8	48.75	olisters	1								i Ta	1-0			
3770	LDSHBL' 5	48.75	O TON	. 1	Un	vers		of M	lonal	LUNV a		I La	пка.			
3650	'LDSHBL' 4	48.75	0.1	3.			0.0		- 0.0 0	0.0	- 0.00		102102			
	LDSHBL 4			3	Ele	CIPOI	110	Thes	esa		SSCI	lanc	ns			
3620		48.75	A start													
3910	'LDSHBL' 3	48.75	0.1		WW	$W^{0.0}_{-11}$	b.in	rt.ºac	. Ke	0.0	0.06	/				
3560	'LDSHBL' 8	48.75	0.1	1	-					0.0	0.06	/				
3830	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3600	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3690	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3620	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3705	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3800	'LDSHBL' 6	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3520	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3600	LDSHBL' 1	48.75	0.1	1	ů	0.0	0.0	ů	0.0	0.0	0.06	,				
3830	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	',				
	LDSHBL 1	48.75	0.1	1.1								1				
3150				1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3770	'LDSHBL' 4	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
4435	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3200	'LDSHBL' 4	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3840	'LDSHBL' 6	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3551	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/				
3340	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3590	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1				
3690	LDSHBL' 3	48.75	0.1	1	0 0	0.0	0.0	0	0.0	0.0	0.06	,				
	200102 0	10.75	0.1		0	0.0	5.0	v	0.0	0.0	0.00	1				

Figure 4.5 Diary file written for case study-03

As 29.6% of total generation was not available under case study-03, df/dt rate would be higher. Therefore separate set of loads were included for the shedding if df/dt rate exceeds -0.85.

	YRE CASE4 - Notepad							-	-					
File Edit	Format View Help													
3580	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3650	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06			
3770	LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3600	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06			
3530	LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
				1	0						0.06			
3600	LDSHBL' 5	48.75	0.1		-	0.0	0.0	0	0.0	0.0				
3520	LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3890	LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3790	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3820	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3420	'LDSHBL' 2	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3200	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
4920	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3570	'LDSHBL' 7	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3580	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3705	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3260	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3570	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3680	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	/		
3560	'LDSHBL' 6	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3590	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
4435	'LDSHBL' 4	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3790	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3860	'LDSHBL' 5	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
3900	'LDSHBL' 3	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
4430	'LDSHBL' 1	48.75	0.1	1	0	0.0	0.0	0	0.0	0.0	0.06	1		
4435	LDSHBL' 3	48.75	0.1	1	Ő	0.0	0.0	Ő	0.0	0.0	0.06	/		

Figure 4.6 Diary file written for case study-04

(viii). PSS/E simulation was done for each case study using diary files written above and modeled PSS/E file and frequency, voltage waveforms were obtained as below;

Voltage was monitored at several bus bars such as at Kolongawat 33 kV bus bar, New Laxapana 132 kV bus bar, Galle 33 kV bus bar, Matara 33 kV bus bar and Kotugoda 33 kV bus bar.

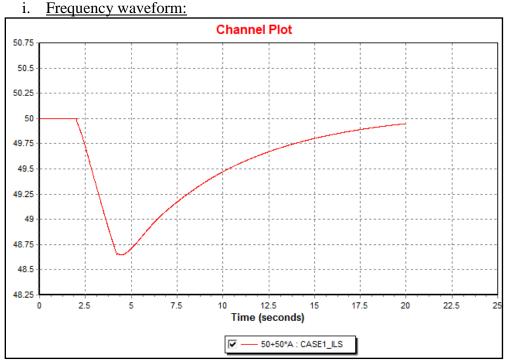


Figure 4.7 Frequency waveform obtained for case study-01

ii. Voltage waveform:

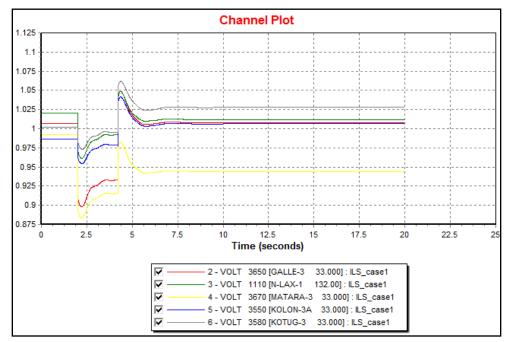


Figure 4.8 Voltage waveform obtained for case study-01

Highest decrease in voltage occurred a Matara 33 RV bus bar due to the disturbance. But voltage has improved in a better way after 1150 applications & Dissertations www.lib.mrt.ac.lk

CASE STUDY-02

i. Frequency waveform:

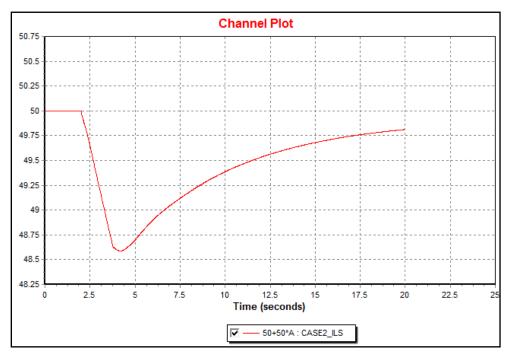


Figure 4.9 Frequency waveform obtained for case study-02

ii. Voltage waveform:

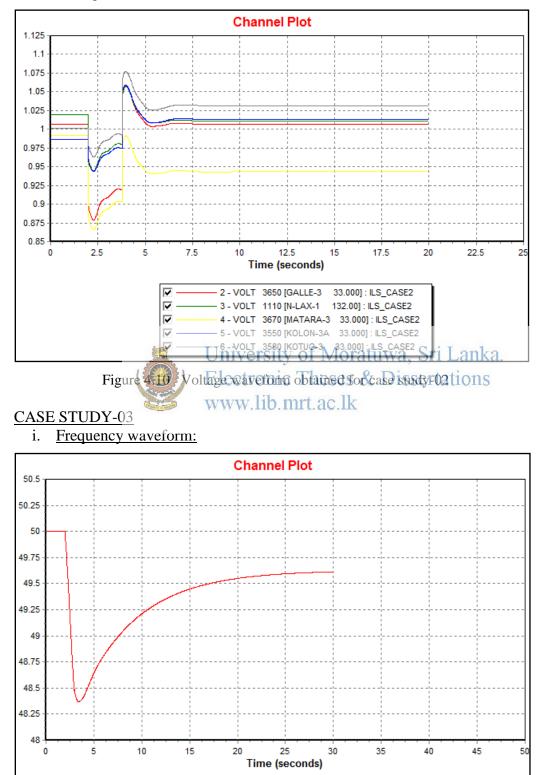


Figure 4.11 Frequency waveform obtained for case study-03

— 50+50*A : case3_ILS

ii. Voltage waveform:

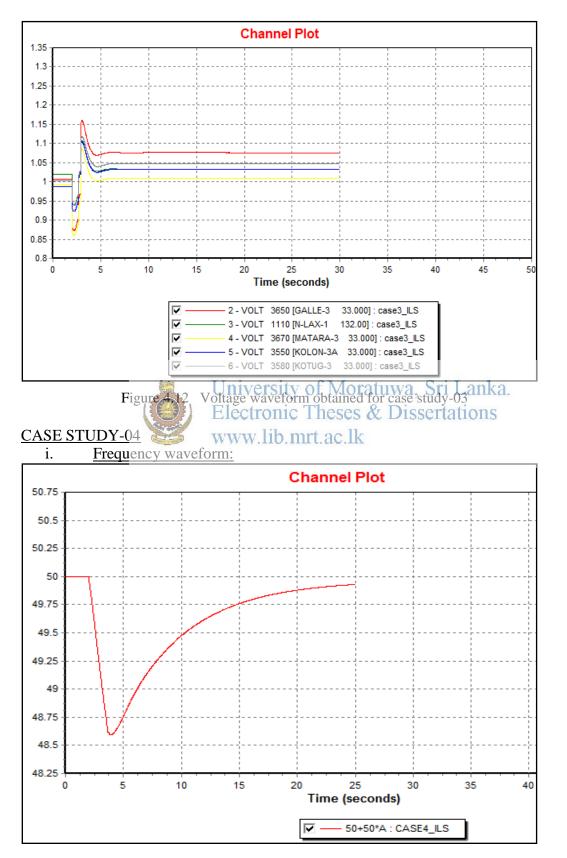
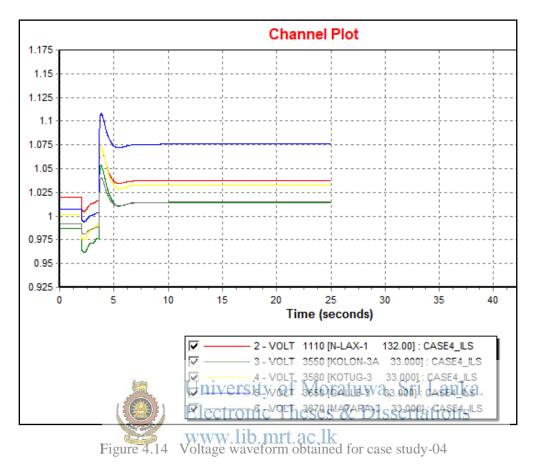



Figure 4.13 Frequency waveform obtained for case study-04

ii. <u>Voltage waveform:</u>

4.4.2 Implementation of UFLS in PSS/E software

For the same four case studies, existing load shedding mechanism- UFLS was applied using the PSS/E file and diary file already used by CEB. Both waveforms obtained under each case study were imported to a single plot area for a better comparison.

4.4.3 Comparison of UFLS and ILS through waveforms obtained in PSS/E software

Waveforms obtained through application of UFLS and ILS under each case study are displayed in the same plot for better comparison of the results.

4.4.3.1 CASE STUDY-01

(i). Frequency waveforms:

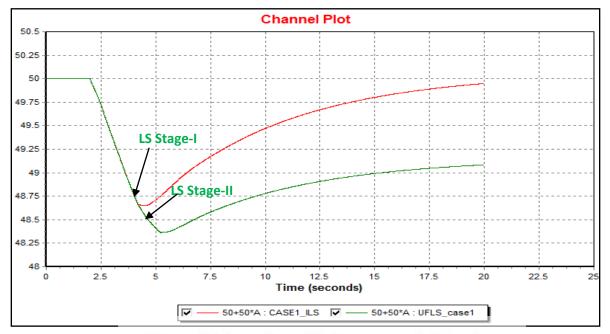
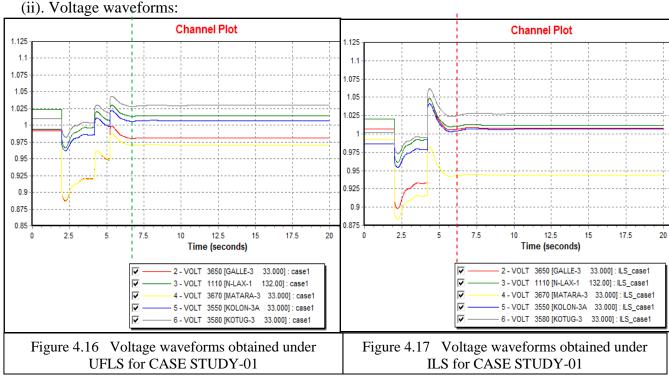



Figure 4.15 Frequency waveforms obtained through application of UELS and ILS for case study-01 Under ILS, system requency has the total dropped below 48.5 Hz and frequency has come back to 50 Hz within 20 seconds which is not the case under UFLS. However under UFLS as indicated above load shedding continued up to stage-II.

Various voltage ripples can be seen in the voltage waveforms obtained under UFLS. But under ILS, voltage has got stabilized within less than 7.5 seconds (within about 3 seconds after the disturbance) with less number of ripples.

4.4.3.2 CASE STUDY-02

(i). Frequency waveforms:

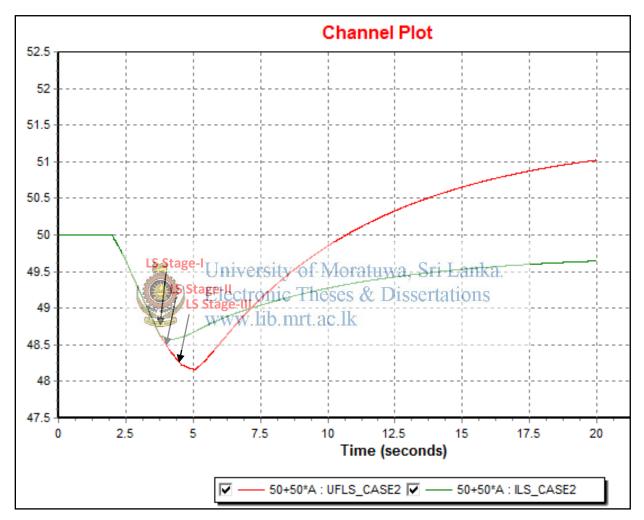
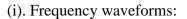


Figure 4.18 Frequency waveforms obtained through application of UFLS and ILS for case study-02


By comparing above frequency curves it can be said that under ILS, system frequency hasn't even dropped below 48.5 Hz and frequency has come close to 50 Hz within 20 seconds which is not the case under UFLS. However under UFLS as indicated above load shedding was occurred up to stage-III. Then only frequency has risen up even exceeding 50 Hz which may be due to shedding more load than required.

(ii). Voltage waveforms:

Voltage overshoots can be seen in the voltage waveforms obtained under UFLS. But under ILS, voltage has got stabilized within less than 7.5 seconds (within about 3 seconds after the disturbance) with less number of ripples.

4.4.3.3 CASE STUDY-03

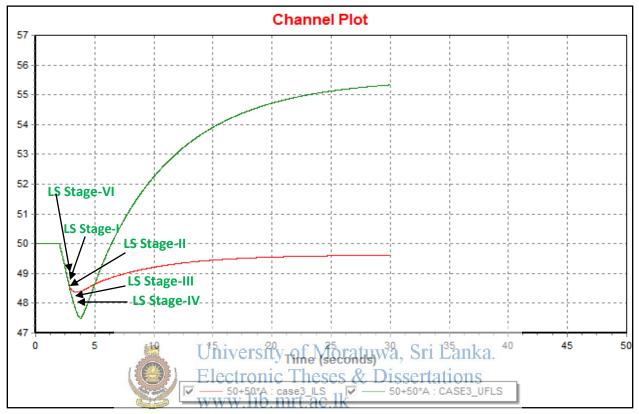
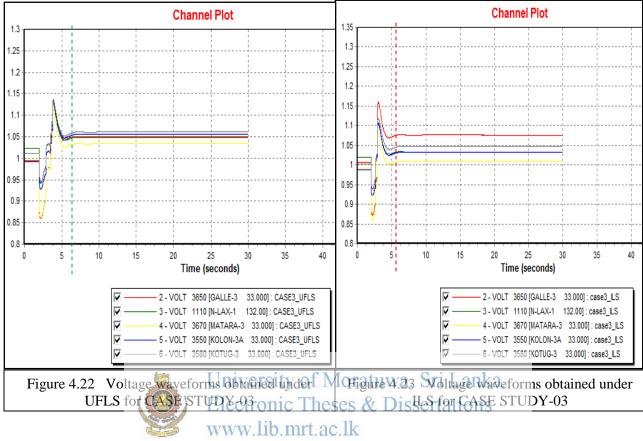



Figure 4.21 Frequency waveforms obtained through application of UFLS and ILS for case study-03

By comparing above frequency curves it can be said that under ILS, system frequency hasn't even dropped below 48 Hz and frequency has come close to 50 Hz within 30 seconds which is not the case under UFLS. However under UFLS as indicated above load shedding was occurred even up to stage-IV and VI. Then only frequency has risen up even exceeding 50 Hz which may be due to shedding more load than required.

(ii). Voltage waveforms:

Various voltage ripples can be seen in the voltage waveforms obtained under UFLS. But under

ILS, voltage has got stabilized within lesser time period with less number of ripples.

Frequency waveforms and voltage waveforms obtained for case study-04 under application of UFLS & ILS are mentioned below;

4.4.3.3 CASE STUDY-04

(i). Frequency waveforms:

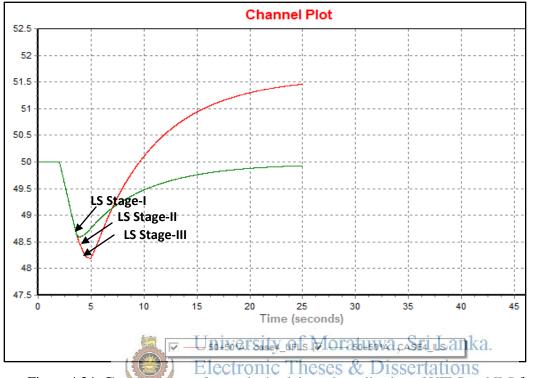
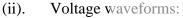
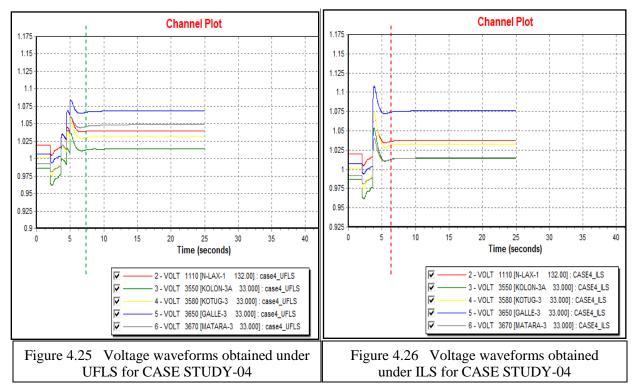




Figure 4.24 Frequency waveforms obtained through application of UFLS and ILS for case study-04

As per the above various voltage ripples can be seen in the voltage waveforms obtained under UFLS. But under ILS, voltage has got stabilized within lesser time period with less number of ripples.

4.4.4 Result Analysis on loads shed through ILS and UFLS

Result analysis was also done in following four areas;

- (1) Difference between disconnected load and generation loss.
- (2) Number of interrupted feeders.
- (3) Uninterrupted load as a percentage (%) of total load connected at that time.
- (4) Total MW of each disconnected load.

4.4.4.1 Difference between shed load and generation deficit

Initially total load shed under UFLS and ILS were calculated for three case studies as below;

- CASE STUDY 1: Tripping of both machines in New Laxapana power station and both machines in Samanalaweive stationoratuwa, Sri Lanka.
- CASE STUDY 2: Topping of Both machines in New & a kapasa power station, both machines in Samanalawewa power station and machines in Old Laxapana power station.
- CASE STUDY 3: Tripping of both machines in New Laxapana power station, both machines in Samanalawewa power station and machine 1 in Lakvijaya power station.

CASE	GENERATION LOSS (MW)	TOTAL LOAD SHED (MW)					
STUDY		Under UFLS	Under ILS				
01	236	206.22	248.45				
02	290	370.73	302.15				
03	511	689.16	518.13				

Table 4.2 Total load shed under UFLS and ILS

Difference between shed load and generation loss are as tabulated below;

CASE	DIFFERENCE BETWEEN DISCONNECTED LOAD AND GENERATION LOSS (MW)								
STUDY	Under UFLS	Under ILS							
01	-29.78	+12.45							
02	+80.73	+12.15							
03	+178.16	+7.13							

Table 4.3 Difference between shed load and generation loss under UFLS and ILS

Through analyzing the above results, it is clear that insufficient load shedding has occurred under UFLS for case study-01. Further excessive load shedding has occurred for case study-02 and 03 under UFLS. However under ILS, excessive load amount shed is not varying much case by case as system is already aware of each load demand which can be shed.

4.4.4.2 Number of interrupted feeders

	University of Moratuwa, Sri Lanka.									
CASE	www.hiumberaorlin	TERRUPTED FEEDERS								
STUDY	Under UFLS	Under ILS								
01	24	22								
02	37	28								
03	71	57								

Number of interrupted feeders under each case study was counted for UFLS and ILS.

Even though insufficient load shedding was occurred under case study-01, number of feeders that were interrupted is higher under UFLS. As excessive load shedding was occurred under case study-02 and 03 under UFLS, number of feeders that were interrupted is higher. Under case study-03, fourteen feeders were shed additionally when compared to ILS. It is clear that some feeders were interrupted unnecessarily through UFLS.

4.4.4.3 Uninterrupted load as a percentage (%) of total load connected at that time

As a better measure I also considered uninterrupted load as a percentage of total load connected at that time under both mechanisms- UFLS and ILS.

CASE STUDY	UNINTERRUPTED LOAD AS A PERCENTAGE (%) OF TOTAL LOAD CONNECTED									
STODI	Under UFLS	Under ILS								
01	86.87%	84.19%								
02	76.4%	80.77%								
03	56.14%	67.02%								

Table 4.5 Uninterrupted load under UFLS and ILS as a percentage (%) of total load

As insufficient load shedding has occurred under case study-01, uninterrupted load in percentagewise (with reference to total load connected) is slightly higher. Considering poor reaction by UFLS under case study-01 this cannot be considered as giving a good result. However under other two cases, uninterrupted load in percentage wise is higher through ILS.

4.4.4.4 Total MW of each disconnected load

Total MW of each disconnected load is graphically represented below for each case study;

(i) CASE STUDY-01

Electronic Theses & Dissertations

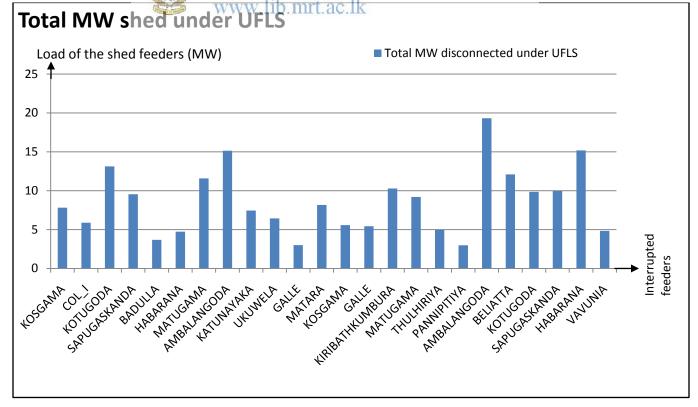


Figure 4.27 Total MW shed under UFLS for CASE STUDY-01

According to the above graph it can be observed that feeders in GSS such as Badulla, Galle and Pannipitiya were unnecessarily interrupted which were not contributing much for frequency improvement. Further MW values of loads in different feeders fall within a wide range.

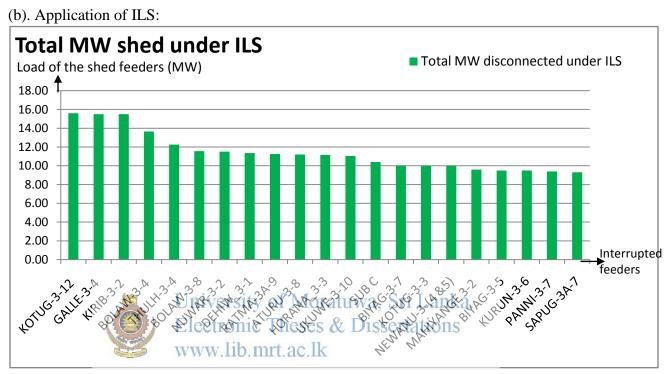


Figure 4.28 Total MW shed under ILS for CASE STUDY-01

According to the above graph, it is observable that MW values of loads shed under ILS are falling in the same region (8 MW~16 MW).

(ii) CASE STUDY-02

(a). Application of UFLS:

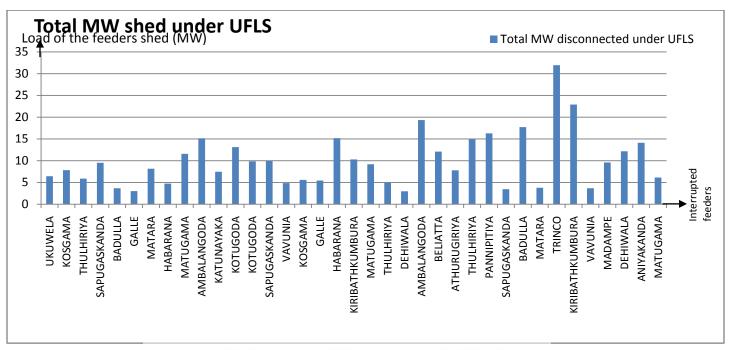
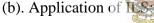



Figure 42% eFstat My shed mater WELS for CASE STUDY-02 Electronic Theses & Dissertations www.lib.mrt.ac.lk

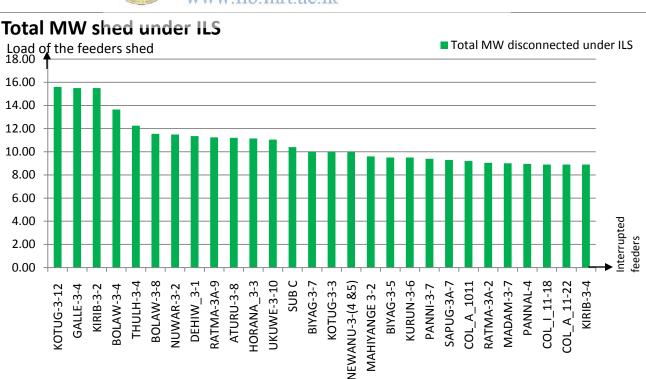


Figure 4.30 Total MW shed under ILS for CASE STUDY-02

According to the above graph, it is observable that MW values of loads disconnected under ILS are falling in the same region (8 MW~16 MW).

(iii) CASE STUDY-03

(a). Application of UFLS:

Graphical representation of total MW values of loads shed under UFLS is illustrated below;

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

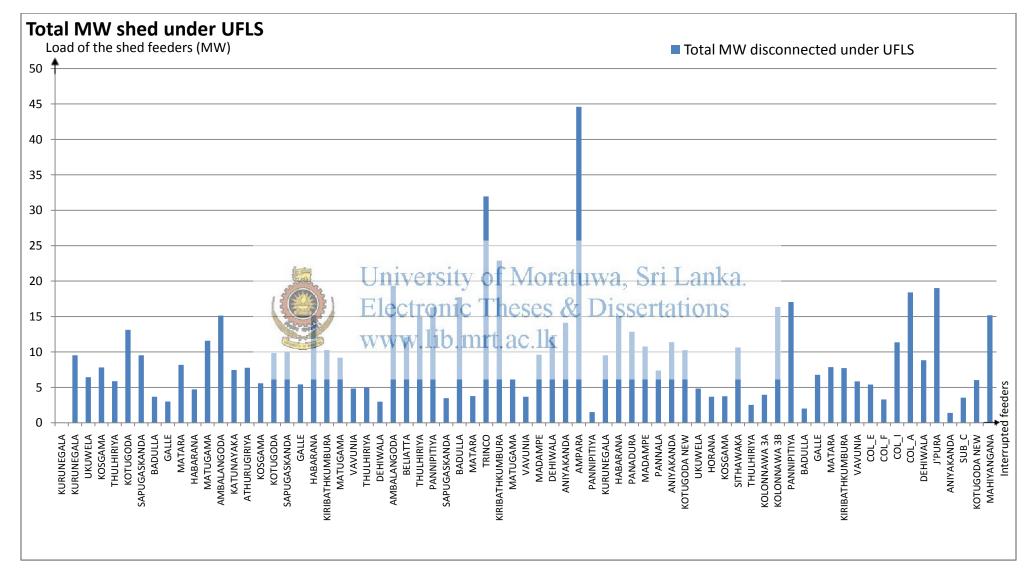


Figure 4.31 Total MW shed under UFLS for CASE STUDY-03

According to the above graph it can be observed that feeders in GSS like Badulla, Galle, Dehiwala, Sapugaskanda, Matara, Vavunia, Ukuwela, Horana, Kosgama, Thulhiriya, Kolonnawa, Badulla, Sub-F and Aniyakanda were unnecessarily interrupted which were not contributing much for frequency improvement. Further MW values of loads in different feeders fall within a wide range.

Reactive power components of interrupted feeders with less real power component were also considered;

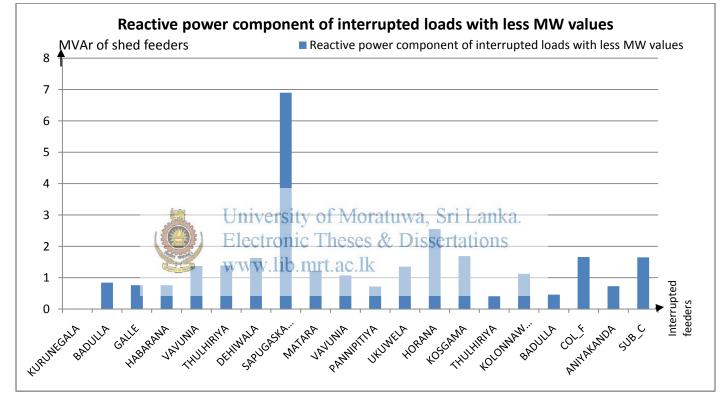


Figure 4.32 Reactive power components of interrupted feeders with less MW values under UFLS for CASE STUDY-03

As per the above graph it is clear that these loads were not contributing much for the total reactive power also. Most of the feeders were having reactive power component even less than 2MVAr. Only feeder in Sapugaskanda GSS was having larger reactive power component compared to the other feeders. These feeders have been unnecessarily interrupted due to unavailability of actual real power and reactive power consumption of each feeder.

(b). Application of ILS:

As in above two cases it is observable that for case study-03 also MW values of loads shed under ILS are falling in the same region (6 MW~16 MW).

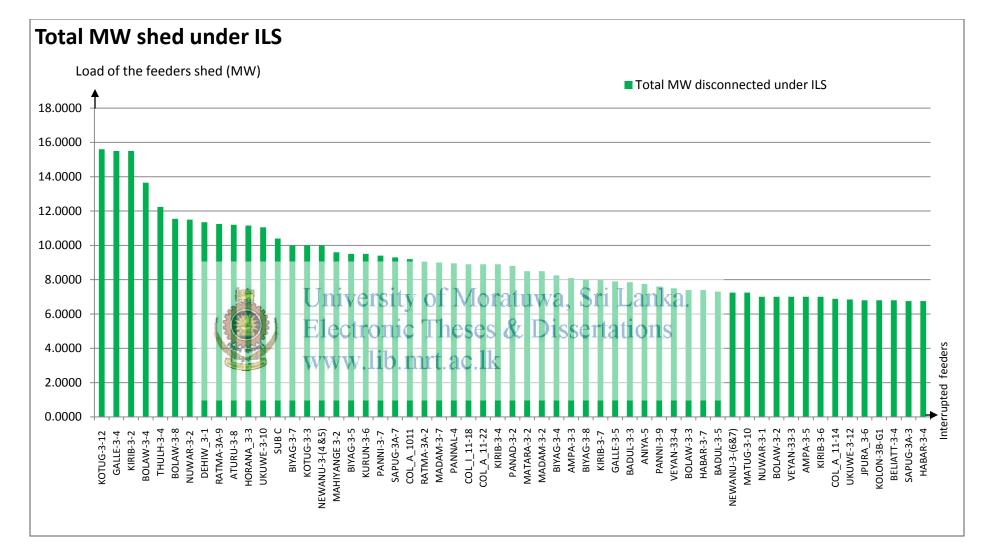


Figure 4.33 Total MW shed under ILS for CASE STUDY-03

Reactive power components of interrupted feeders under ILS mechanism for case study-03 are graphically represented below;

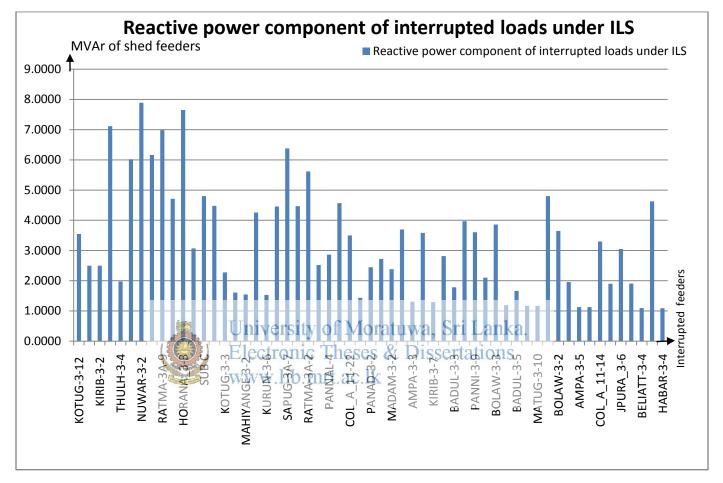


Figure 4.34 Reactive power components of interrupted feeders under ILS for CASE STUDY-03

According to the above graph it is noticeable that most of the interrupted feeders were having high reactive power component which might be affecting voltage stability.

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

Load shedding serves as the ultimate guard that protects the power system from a contingency [4]. It is a logical thought by some ways and means the load shedding has to be minimized [1]. Under Frequency Load Shedding (UFLS) mechanism used by CEB has common drawbacks such as lack of detailed system data before disturbance and after disturbance. Due to this unawareness, incorrect and mostly excessive load shedding occur.

In response to a dip or rate-of-change in frequency, frequency relays operate a set of fixed circuit breakers, independent of their actual operating load [4]. Some feeders might not be energized at the time load shedding is required. As UFLS scheme is totally independent of the system dynamics, total loss of the system is also a possibility.

This dissertation discussed about designing of Intelligent Load Shedding (ILS) mechanism which will shed optimal load after a disturbance considering demand at each feeder. After analyzing historical failures occurred in the system, weaknesses of the existing load shedding scheme-UFLS were identified. A model has been built in MATLAB software with GUI to analyze the operation of ILS at different failures.

In order to conduct a better comparison, both load shedding mechanisms UFLS and ILS were applied in PSS/E software which is the software tool used by CEB for power system studies. Result analysis was done comparing results obtained under three case studies through application of UFLS and ILS.

Through application of ILS to CEB network, following major benefits can be achieved;

- (1). Probability for a total failure is reduced.
- (2). Number of feeders getting interrupted is reduced.
- (3). Quantity of real power curtailed is reduced.
- (4). Voltage profile during contingency period is improved.
- (5). Contribution to SAIDI and SAIFI reliability indicators is reduced.

From above mentioned benefits, benefits mentioned under (4) and (5) require further studies.

Apart from that each mentioned benefit is proved through results obtained in PSS/E simulation.

According to the following equations for the calculation of SAIDI and SAIFI reliability indicators, it can be proven that these indicators are getting improved through application of ILS. This is mainly due to number of feeders getting interrupted is reduced under ILS mechanism.

$$SAIDI = \frac{Sum of all customer interruption durations}{Total number of customers served}$$

$$SAIFI = \frac{Total \ number \ of \ customer \ interruptions}{Total \ number \ of \ customers \ served}$$

5.2 **RECOMMENDATIONS**

SCADA (Supervisory Control and Data Acquisition) is to be implemented in CEB system by the end of the year-20 of the completion of SCADAS implementation communication is possible within control centre grid substantions and power stations. Controlling of remote equipment, remote data monitoring and access, alarm handling, data examination and also taking actions depending on online status of the system are some possible activities in a SCADA facilitatedsystem.

It is recommended to apply 'intelligent load shedding' (ILS) mechanism after successful implementation of SCADA in CEB network. A separate server has to be maintained in Control Centre named 'ILS real-time server' which downloads the time-variant load shedding tables to each PLC located near grid sub stations where loads can be shed. A default priority load shedding table is also to be written to the PLC to use in the event of communication failure between the ILS server and PLC. Frequency relays are also required to be remained in the system.

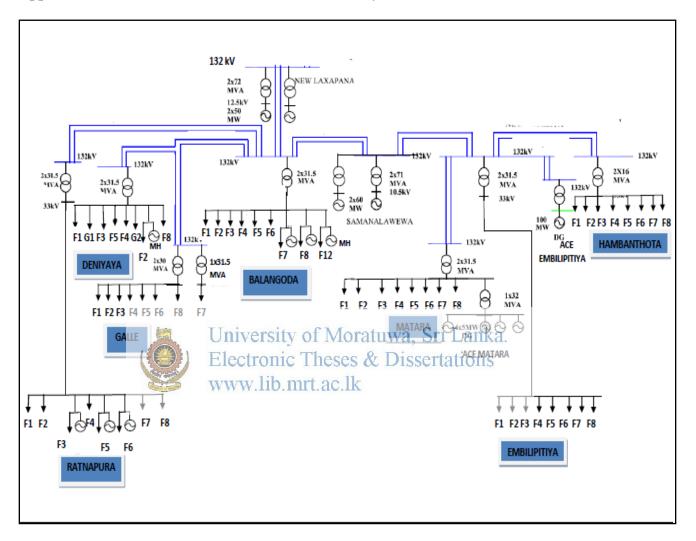
Data collection servers are also required to be installed in the sub stations and power stations to update ILS server about demand and generation continuously. For accurate data acquisition Ethernet- equipped smart meters or intelligent electronic devices (IEDs) are required. SCADA system which is to be implemented in CEB network follows STM-1 (Synchronous Transport Module level-1). The STM-1 is the SDH ITU-T fiber optic network transmission standard. It has a bit rate of 155.52 Mbit/sec [9].

With data transfer rate of 155 Mbit/sec, 19,375 kB of data can be transferred within 1 second. Within 100 milliseconds 1937.5 kB of data can be transferred which is almost more than 1 MB.

It is clear that optimal load shedding tables can be updated by ILS server within 100 milliseconds under operation of this data transmission module.

As all the calculations are done within the ILS server, if any modification is required to be done such as making feeder which is in low priority list as 'high priority' and removing from load shedding list, it can also be done in ILS server. ILS server should be properly maintained and a back-up server is also required to be installed to use in case of an emergency.

To overcome the weaknesses found in existing load shedding mechanism, it is recommended to apply 'intelligent load shedding' mechanism after proper implementation of SCADA and

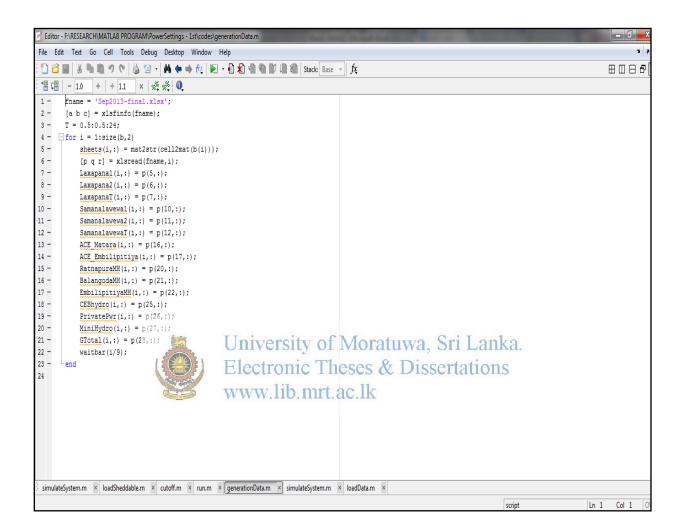


relevant servers in the CEB network. University of Moratuwa, Sri Lanka. **Electronic Theses & Dissertations** www.lib.mrt.ac.lk

REFERENCE LIST

- [1] Rekha A., Rathina Kumar, M. Ashok Kumar N., Vanitha D., "An intelligent load shedding to improve power system congestion", International Journal of Current Research, Vol 5, Issue, 04, April, 2013, pp.973-977.
- [2] Ghazanfar Shahgholian, Mahdi Ebrahimi Salary, "Effect of load shedding strategy on interconnected power systems stability when a blackout occurs", International Journal of Computer and Electrical Engineering, Vol.4, No. 2, April 2012.
- [3] Farrokh Shokooh, J J Dai, Shervin Shokooh, Jacques Tastet, Hugo Castro, Tanuj Khandelwal, Gary Donner, "An intelligent load shedding (ILS) system application in a large industrial facility", Industry Applications Conference, Fortieth IAS Annual Meeting, Irvine, California, USA, 2005, pp. 417-425.
- [4] Shervin Shokooh, Tanuj Khandelwal, Farrokh Shokooh, Jacques Tastet, JJ Dai,
 "Intelligent load shedding meeting of fast and uppermatrix durink", IEEE PCIC Europe 2005.
 Electronic Theses & Dissertations www.lib.mrt.ac.lk
- [5] Rasha M. El Azab and P. Lataire, E.H. Shehab Eldin, M. M. Sallam, "Simulation programs for load shedding studies: Experimental Results", *International Journal of Simulation, Systems, Science and Technology (IJSSST)*, Vol. 11, No. 6, December 2011.
- [6] Urban Rudez, Rafael Mihalic, "Adaptive UFLS schemes in modern power systems conceptual and simulation proved comparison", *International Journal of Energy Engineering*, May 2012, 2(3):100-107.
- [7] Ceylon Electricity Board, "Coal fired thermal development project west coast CEB transmission connection power system analysis studies", Rep., 2009.
- [8] Global Energy Consulting Engineers and PA Government Services Inc., "India-Sri Lanka submarine cable interconnection project, interconnection reliability and stability study", PA Consulting Group, Haryana, India, Rep. Task order 1.3, October 12, 2009.
- [9] Wikipedia the Free Encyclopedia, STM-1, 13th January 2015.

APPENDICES

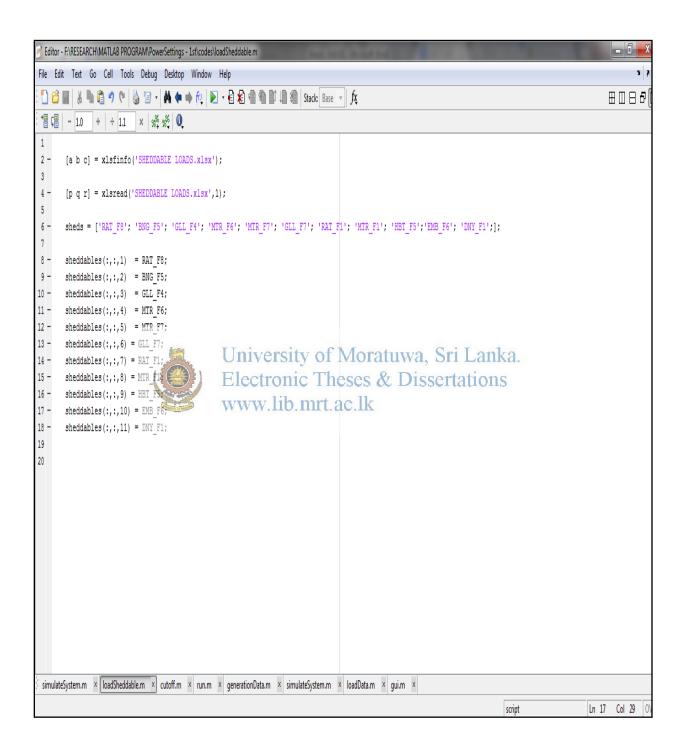


Appendix-A: Selected reduced network from CEB system.

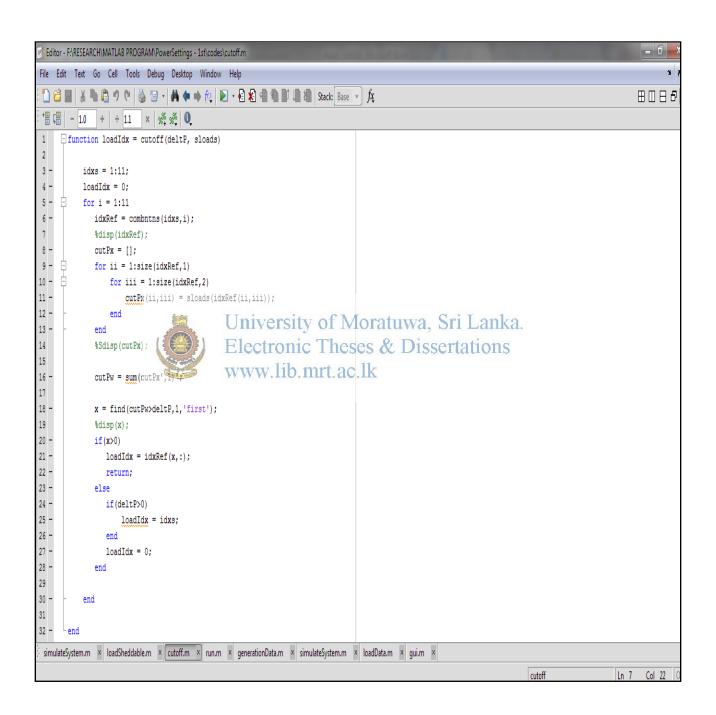
No fair for the field Tota by Output Water Wether $ \begin{array}{cccccccccccccccccccccccccccccccccccc$		and the second of the second	tor - F:\RESEARCH\MATLAB PROGRAM\PowerSettings - 1st\codes\JoadData.m	🖞 Edito
Image:				
<pre> def def</pre>		- fx		
<pre>1 - The = (***********************************</pre>				
<pre>1 - [th o] = alcine(tume); 1 - [th o] = alcine(tume); 2 - [th o] = alcine(tume); 4 - [th o] = alcine(tume); 4</pre>				
<pre>1 - Clear - Linze(h, 2)</pre>			<pre>[a b c] = xlsfinfo(fname);</pre>	з —
<pre> # decs(i,i) = million(0); # decs(i,i) = million(0);</pre>				
 Bellet 1 = p(6,1) Bellet 1 = p(6,1)<				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				7 -
<pre>bit difference bit difference b</pre>			$FMR(i, \cdot) = n(5, \cdot)$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				10 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				11 -
				12 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<pre>EMB_F5(1,:) = p(10,:);</pre>	14 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			EMB F6(i, :) = p(11, :); $FMB F7(i, :) = p(12, :);$	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$				17 -
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				18
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				19 - 20 -
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			<pre>MTR_F2(1,:) = p(20,:);</pre>	21 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				22 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				24 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				25 -
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$				26 - 27 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				28
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
Bit B			BNG F2(1,:) = p(34,:);	31 -
Bit B			BNG F3(i,:) = p(35,:);	32 -
BS BSS_F(i, i) = p(30, i); BSS_F(i, i) = p(40, i); BSS_F(i, i) = p(50, i); BSS_F(i, i) = p(60, i); BSS_F(i, i) = p(60, i); BSS_F(i, i) = p(60, i); BSS_F(i, i) = p(60, i); BSS_F(i, i) = p(70, i); BSS_F				33 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			BNG F6(i,:) = p(38,:);	35 -
Bit E E 2 (4,1) = p(64,1); DWT (44,1) = p(64			BNG_F7(1,:) = p(39,:);	
<pre>bit control = p(4, :) = p(4, :); bit control = p(4, :); bit control = p(4, :); bit control = p(5, :); bit control = p(72, :); bit control = p(7</pre>			BNG $F12(i, :) = p(41, :);$	
		Moratuwa Sri Lanka	Iniversity of	39
		woratuwa, 511 LallKa.	$DNY(1, :) = p(46, :); \qquad UIIIVCISILY UI$	40 -
<pre>44 - DWY_G2(x, i) = p(5, i); 45 - DWY_E3(x, i) = p(5, i); 47 - DWY_E3(x, i) = p(5, i); 48 - DWY_E3(x, i) = p(5, i); 49 - GLL (x, i) = p(5, i); 51 - GLL F2(x, i) = p(65, i); 52 - GLL F2(x, i) = p(65, i); 53 - GLL F2(x, i) = p(65, i); 54 - GLL F2(x, i) = p(65, i); 55 - GLL F2(x, i) = p(65, i); 55 - GLL F2(x, i) = p(65, i); 56 - GLL F2(x, i) = p(65, i); 57 - GLL F2(x, i) = p(65, i); 58 - GLL F2(x, i) = p(65, i); 59 - GLL F2(x, i) = p(65, i); 50 - BBT (x, i) = p(74, i); 61 - BBT F2(x, i) = p(74, i); 62 - BBT F2(x, i) = p(75, i); 63 - BBT F2(x, i) = p(75, i); 64 - BBT F2(x, i) = p(75, i); 65 - GLL F2(x, i) = p(75, i); 66 - BBT F2(x, i) = p(75, i); 67 - BBT F2(x, i) = p(75, i); 68 - BBT F2(x, i) = p(75, i); 61 - BBT F2(x, i) = p(75, i); 62 - BBT F2(x, i) = p(75, i); 63 - BBT F2(x, i) = p(75, i); 64 - BBT F2(x, i) = p(75, i); 75 - BAT F2(x, i) = p(75, i); 71 - BAT F2(x, i) = p(74, i); 65 - BBT F2(x, i) = p(74, i); 66 - BBT F2(x, i) = p(74, i); 67 - BBT F2(x, i) = p(74, i); 68 - BBT F2(x, i) = p(74, i); 67 - BBT F2(x, i) = p(74, i); 68 - BBT F2(x, i) = p(74, i); 71 - BAT F2(x, i) = p(74, i); 72 - BAT F2(x, i) = p(74, i); 73 - BAT F2(x, i) = p(74, i); 74 - RAT F2(x, i) = p(74, i); 75 - BAT F2(x, i) = p(74, i); 76 - BAT F2(x, i) = p(74, i); 77 - BAT F2(x, i) = p(74, i); 78 - BAT F2(x, i) = p(74, i); 79 - BAT F2(x, i) = p(74, i); 70 - BAT F2(x, i) = p(74, i); 71 - BAT F2(x, i) = p(74, i); 72 - BAT F2(x, i) = p(74, i); 73 - BAT F2(x, i) = p(74, i); 74 - RAT F2(x, i) = p(74, i); 75 - BAT F2(x, i) = p(74, i); 75 - BAT F2(x, i) = p(74, i); 76 - BAT F2(x, i) = p(74, i); 77 - BAT F2(x, i) = p(74, i); 78 - BAT F2(x, i) = p(74, i); 79 - BAT F2(x, i) = p(74, i); 70 - BAT F2(x, i) = p(74, i); 71 - BAT F2(x, i) = p(74, i); 72 - BAT F2(x, i) = p(74, i); 73 - RAT F2(x, i) = p(74, i); 74 - BAT F2(x, i) = p(74, i); 75 -</pre>		and & Discortations	DNY G1(i,:) = p(48,:);	41 - 42 -
		eses & Dissertations		43 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		0.011	DNY G2 (i,:) = $p(51,:)$	
$ \begin{array}{c} 80 & - & 0 \\ 80 & - & 0 \\ 81 & - & 0$		IC.IK		46 -
49				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			$\frac{\partial (d_{i},d_{i})}{\partial (d_{i},d_{i})} = p(d_{i},d_{i})$	49
$ \begin{aligned} & S_{2} &= & CIL_F2(x, i) = p(62, i); \\ & S_{3} &= & CIL_F2(x, i) = p(63, i); \\ & S_{4} &= & CIL_F5(x, i) = p(65, i); \\ & S_{5} &= & CIL_F5(x, i) = p(65, i); \\ & S_{5} &= & CIL_F7(x, i) = p(67, i); \\ & S_{8} &= & CIL_F7(x, i) = p(67, i); \\ & S_{8} &= & CIL_F2(x, i) = p(72, i); \\ & S_{1} &= & P(72, i); \\ & C_{1} &= & PITFF2(x, i) = p(74, i); \\ & C_{2} &= & HBTFF2(x, i) = p(75, i); \\ & S_{3} &= & HBTFF2(x, i) = p(77, i); \\ & C_{4} &= & HBTFF2(x, i) = p(77, i); \\ & C_{5} &= & HBTFF2(x, i) = p(77, i); \\ & C_{6} &= & HBTFF2(x, i) = p(77, i); \\ & C_{6} &= & HBTFF2(x, i) = p(77, i); \\ & C_{6} &= & HBTFF2(x, i) = p(77, i); \\ & C_{7} &= & HBTFF2(x, i) = p(77, i); \\ & C_{7} &= & HBTFF2(x, i) = p(80, i); \\ & C_{8} &= & HBTFF2(x, i) = p(80, i); \\ & C_{7} &= & RATFF2(x, i) = p(80, i); \\ & C_{7} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{1} &= & RATFF2(x, i) = p(80, i); \\ & T_{2} &= & RAT$				50 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$			<pre>GLL F3(i,:) = p(63,:);</pre>	53 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			GLL F4(i,:) = p(64,:); $GLL F5(i,:) = p(65,:);$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			<pre>GLL F6(i,:) = p(66,:);</pre>	56 -
59 60 - HBT (1; :) = p(72; :); 61 - HBT $f2(1, :) = p(74, :);$ 62 - HBT $f2(1, :) = p(75, :);$ 63 - HBT $f2(1, :) = p(76; :);$ 64 - HBT $f2(1, :) = p(77, :);$ 65 - HBT $f2(1, :) = p(78, :);$ 66 - HBT $f2(1, :) = p(77, :);$ 66 - HBT $f2(1, :) = p(77, :);$ 67 - HBT $f2(1, :) = p(78, :);$ 68 - HBT $f2(1, :) = p(80, :);$ 69 70 - RAT $f2(1, :) = p(85, :);$ 71 - RAT $f2(1, :) = p(85, :);$ 72 - RAT $f2(1, :) = p(80, :);$ 73 - RAT $f2(1, :) = p(90, :);$ 74 - RAT $f2(1, :) = p(90, :);$ 75 - BAT $f2(1, :) = p(93, :);$ 76 - RAT $f2(1, :) = p(93, :);$ 77 - RAT $f2(1, :) = p(93, :);$ 78 - RAT $f2(1, :) = p(93, :);$ 77 - RAT $f2(1, :) = p(93, :);$			GLL_F7(i,:) = p(67,:);	
			<u>utt rd</u> (1,:) = p(00,:);	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				60 -
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			HBT F3(i,:) = p(76,:);	63 -
			HBT F4(1,:) = p(77,:);	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
69 $70 -$ RAT (1, :) = p(85, :); 71 - RAT F1(1, :) = p(87, :); 72 - RAT F2(1, :) = p(86, :); 73 - RAT F3(1, :) = p(96, :); 74 - RAT F3(1, :) = p(90, :); 75 - BAT F5(1, :) = p(90, :); 76 - RAT F5(1, :) = p(92, :); 77 - RAT F3(1, :) = p(93, :); 78 - RAT F3(1, :) = p(93, :); 77 - RAT F5(1, :) = p(93, :);			$HBT_{F7}(i,:) = p(80,:);$	67 -
$\begin{array}{llllllllllllllllllllllllllllllllllll$			HBT F8(i, :) = p(81, :);	
$\begin{array}{llllllllllllllllllllllllllllllllllll$				70 -
$\begin{array}{llllllllllllllllllllllllllllllllllll$			<pre>RAT_F1(i,:) = p(87,:);</pre>	71 -
$\begin{array}{llllllllllllllllllllllllllllllllllll$				73 -
$76 - BAT_FE(i, :) = p(92, :);$ $77 - BAT_F7(i, :) = p(93, :);$ $78 - BAT_F8(i, :) = p(94, :);$			<pre>RAT_F4(i,:) = p(90,:);</pre>	74 -
77 - RAT F7(1,:) = p(93,:); 78 - RAT F8(1,:) = p(94,:);				
78 - RAT F8(1,:) = p(94,:);				77 -
12				
<pre>80 - Intelload(i,:) = p(96,:);</pre>			<pre>TotalLoad(i,:) = p(96,:);</pre>	
81 - waitbar((i+4)/9);			waitbar((i+4)/9);	B1 —
82 end cimulatSutam m × loadSheddahlam × cutoff m × non m × casastionDatam × cimulatSutam m × loadDatam ×		InadData m X		
simulateSystem.m × loadSheddable.m × cutoff.m × run.m × generationData.m × simulateSystem.m × loadData.m ×	n 1 Cel 1		natesysteman in loadsheddable.m in culuit.m in run.m in generationbata.m in simulatesystem.m	simul
script In 1	.n 1 Col 1	script Ln		

Appendix-B: 'loadData.m' file created in MATLAB software to read demand in each GSS from excel file.

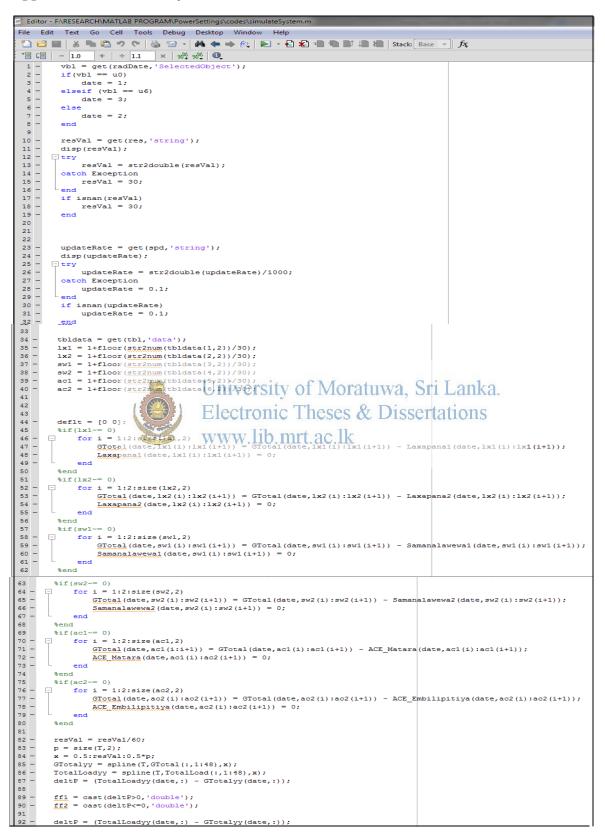
Appendix-C: 'generationData.m' file created in MATLAB software to read generation at each power station from excel file.



Appendix-D: 'gui.m' file created in MATLAB software to view 'GRAPHICAL USER INTERFACE'.



90	'Units', 'Normalized', 'BackgroundColor', 'white',
91	'Position',[0 0.65 1 .18]);
92 -	ldVfdr = uicontrol(
93	'Parent',dispOptPanel, 'Style','checkbox',
94	'String', Demand vs GSS',
95	'Units', 'Normalized', 'BackgroundColor', 'white'
96	'Position',[0 0.45 1 .18]);
97 -	freqs = uicontrol(
98	'Parent', dispOptPanel, 'Style', 'checkbox',
99	String', System Frequency',
100	'Units', 'Normalized', 'BackgroundColor','white',
100	'Position',[0 0.25 1 .18]);
101	
	fdrSht = uicontrol(
103	'Parent',dispOptPanel, 'Style', 'checkbox',
104	'String', 'Feeder Shutdowns',
105	'Units', 'Normalized', 'BackgroundColor','white',
106	'Position',[0 0.05 1 .18]);
107	
108 -	uipanel(
109	'Parent', mainPanel,
110	'Title', 'Options',
111	'Units', 'Normalized',
112	'BackgroundColor', 'white',
113	'Position',[.81 .88 .18]);
114	
115 -	onOffPanel = uipanel (
116	^{'Parent', mainPanel,} University of Moratuwa, Sri Lanka.
117	ITitlal IDense Diante Article
118	'Units', 'Normalized Electronic Theses & Dissertations
119	'BackgroundColor', 'what',
	www.lib.mrt.ac.lk
120	'Position',[.01 .15 .93 .86]); // // // // // // // // // // // // //
121	
122 -	columnname = {'Power Plants', 'Time Pairs'};
123 -	<pre>columnformat = {'char', 'char'};</pre>
124 -	columneditable = [false true];
125 -	tbl = uitable(
126	'Parent', onOffPanel,
127	'Units','normalized',
128	'Data',gsData,
129	'Position',[0.01 0.98 0.98],
130	'ColumnName', columnname,
131	'ColumnFormat', columnformat,
132	'ColumnEditable', columneditable,
133	'ColumnWidth', {150,1100),
134 135	'Interruptible', 'off',
135	<pre>'RowName','');</pre>
136	
138 -	simulator = uicontrol(
139	'Paret',mainPanel, 'Style','pushbutton',
140	'String', 'Simulate',
140	'Units', 'Normalized',
142	'Callback', 'similate3ystem',
143	*Position', [0.84 0.12 0.08 .05]);
143	
145	
	teSystem.m × loadSheddable.m × cutoff.m × run.m × generationData.m × simulateSystem.m × loadData.m × gui.m ×
, annaid	


Appendix-E: 'loadSheddable.m' file created in MATLAB software to read demand of each GSS feeder which can be shed from excel file.

Appendix-F: 'cutoff.m' file created in MATLAB software to define 'cutoff' function for load shedding.

Appendix-G: 'simulateSystem.m' file created in MATLAB software for the simulation.


```
93
                                                                   t0 = size(x, 2);
               94
                                                                  ub = Site(s,2);
map = ones(11,t0);
savedP = zeros(1,t0);
detP = (TotalLoadyy(date,:)) + savedP - GTotalyy(date,:))./GTotalyy(date,:);
fnew = 50*ones(size(detP));
              95 -
            96 -
97 -
98 -
       99
100 -
101 -
                                                                                              dfdt = detP*50/(2*2.92);
                                                                                              fnew = fnew - dfdt*(resVal);
ff1 = cast(fnew<50,'double');
ff2 = cast(fnew>=50,'double');
          102 -
  102 -

103 -

104 -

105 -

106 -

107 -

109 -

110 -

111 -

112 -

113 -

114 -

113 -

114 -

115 -

116 -

117 -

116 -

117 -

118 -

119 -

120 -

121 -

121 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

122 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

123 -

124 -

125 -

126 -

127 -

126 -

127 -

126 -

127 -

127 -

126 -

127 -

127 -

127 -

128 -

129 -

129 -

129 -

129 -

129 -

129 -

120 -

120 -

127 -

129 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

120 -

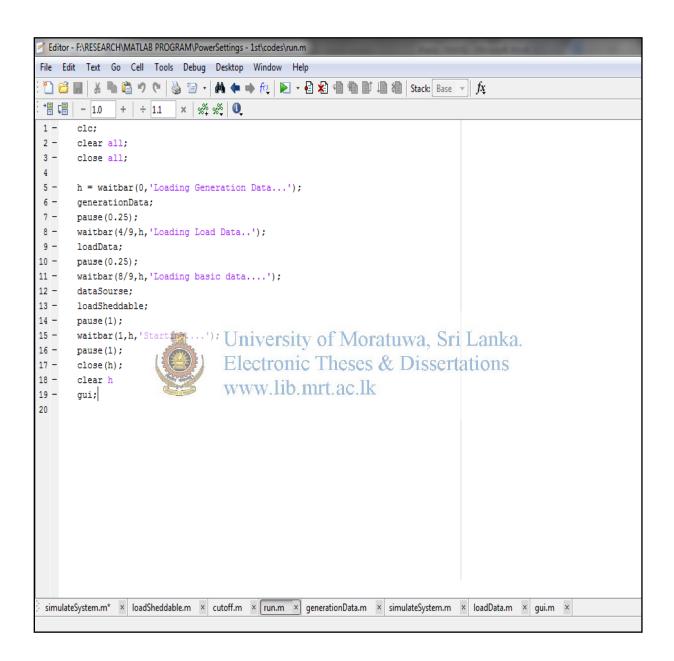
120 -

120 -

120 -

120 -

120 -


120 -

120 -

12
                                                  fnew = (50*ones(size(detP)).*ff2) + fnew.*ff1;
for k = 1:48
if (dfdt(k) >= 0.85 && fnew(k) <= 49.0)</pre>
                                                                                                                         sloads = sheddables(date,k,:);
cutIdxs = cutoff(deltP(k), sloads);
                                                                                                                         disp(cutIdxs);
                                                                                                              if(cutIdxs~=0)
for txd = 1:size(cutIdxs,2)
                                                                                                                            ---- - 1:size(cut)
map(txd,k) = 0;
end
                                                                                                                                         savedP(k) = sum(sloads(cutIdxs));
                                                                                                                            end
                                                                                          elseif (fnew(k) <= 48.75)</pre>
                                                                                                               self (Inew(k) <= 48.75)
pause(0.001);
if (fnew(k) <= 48.75)
sloads = sheddables(date,k,:);
cutIdxs = cutoff(deltP(k), sloads);</pre>
                                                                                                                                                disp(cutIdxs);
                                                                                                                                      if(cutIdxs~=0)
for txd = 1:size(cutIdxs,2)
  122 -
123 -
                                                                                                                                                        123 - 124 - 125 - 126 - 127 - 128 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 
                                                                                                                                                        savedP(k) = sum(sloads(cutIdxs));
                                                                                                                                        end
                                                                                                                               end
                                                                                                                       if (fnew(k) >= 50)
   cutIdxs = 0;
end
  130 -
131 -
132 -
                                                                                          end
  133 -
134
                                                     Land
  135
136
137 -
                                                             detP = (TotalLoadyy(date,:) + savedP - GTotalyy(date,:))./GTotalyy(date,:);
  138
139 -
140 -
                                                          fnew = 50*ones(size(detP));
dfdt = detP*50/(2*2.92);
fnew = fnew - dfdt (resval);
ff1 = cast(fnew>= 0 (ble');
fr2 = cast(fnew>= 0 (ble');
fnew = (50*ones(sinterer)).*it?] / fram file Theses & Dissertations
Laxapanalyy = splane (becapity).*it?] / fram file Theses & Dissertations
Laxapanalyy = splane (comparison of the second 
  141 -
142 -
143 -
144 -
  144 -
145 -
146 -
147 -
148 -
149 -
  150 -
                                                          BNGyy = spline(T,BNG(:,1:48),x);
DNYyy = spline(T,DNY(:,1:48),x);
EMByy = spline(T,EMB(:,1:48),x);
GLLyy = spline(T,GLL(:,1:48),x);
HBTyy = spline(T,HBT(:,1:48),x);
RATyy = spline(T,RAT(:,1:48),x);
figure(...
                                                                                      'Units', 'Normalized'...
,'Position',[0.01 0.12, 0.98, 0.76]...
                                                                                          , 'Name', 'Simulation Plot Window', 'NumberTitle', 'off').
                                                          noPlots = 0;
                                                                                        if(get(ldVgen, 'Value'))
     noPlots = noPlots + 1;
                                                                                        end
                                                                                       if(get(genWgss,'Value'))
                                                                                        .see.genWgss,'Value'))
noPlots = noPlots + 1;
end
                                                                                        end
                                                                                        if(get(freqs, 'Value'))
     noPlots = noPlots + 1;
                                                                                           end
  181 -
```

182		
183 -		if(get(fdrSht,'Value'))
184 .		noPlots = noPlots + 1;
185 -	-	end
186 187 ·	_	
187	- 5	for $\mathbf{k} = 0:t0$
189 -	_	plotid = 0;
190		if (get(ldVgen,'Value'))
191 -	-	plotid = plotid + 1;
192 -	-	<pre>subplot(noPlots,1,plotid);</pre>
193 -		<pre>plot(x(i:k),GTotalyy(date,1:k));</pre>
194 -		hold on
195		<pre>plot(x(i:k),TotalLoadyy(date,1:k) - savedP(1:k),'-g');</pre>
196 · 197 ·		<pre>plot(x(i:k),TotalLoadyy(date,1:k),'-r'); legend('Total Generation','Balance after Shedding', 'Total Load',2);</pre>
198 -		hold off
199		<pre>title('Load vs Generation');</pre>
200 -	-	<pre>xlabel('time (hour)');</pre>
201 .		<pre>ylabel('Power (MW)');</pre>
202 -		xlim([0 25]);
203 -	-	end
204		
205 -	_	if(get(genWgss,'Value'))
206		plotid = plotid + 1;
207		subplot (noPlots, 1, plotid);
208 -		<pre>plot(x(i:k),Lampanalyy(date,1:k),'-c');</pre>
209		hold on
210		<pre>plot(x(i:k),Laxapana2yy(date,1:k),'-m');</pre>
211		<pre>plot(x(i:k),Samanalawealyy(date,1:k), '-k');</pre>
212		<pre>plot(x(:k),Samanalawewa2vy(date,1:k),'-d');</pre>
213		<pre>plot(x(i:k), ACE Matarayy(date, 1:k), '-b');</pre>
214		<pre>plot(x(1:k),ACE_Embilipitiyayy(date,1:k),'-r');</pre>
215		hold off
216		<pre>xlabel('time (hour)');</pre>
217		<pre>ylabel('Power (MW)');</pre>
218	-	xlim([0 25]);
219	-	ylim([-1 55]);
220 -	-	title('Operation of Power Plants vs Time');
221 .		end
222		
223 -	-	if (get (ldVfdr, 'Value'))
224 .	-	<pre>plotid = plotid + 1;</pre>
225 -	-	<pre>subplot (noPlots, 1, plotid);</pre>
226	-	hold on the second distribution of Moratuwa, Sri Lanka.
227 -	-	hold on 🚾 University of Morafilwa Sri Lanka
228	-	plot(x(i;;), DV yy(date,1:k), '-m');
229 .	-	plot (x (1) Complete definition of the set & Dissertations
230 -	-	plot (x () y (date by (1)) (1) (1) (1) (1) (1) (1) (1) (1) (1
231 -	-	plot(x(1,1,1,1,1,1,1),,'-1,');
232 -	-	plot (x (i (c) br gyy (date, i k)), i to, mrt. ac.lk
233 -	-	plot(x(i:k), RATyy(date, i:k), '-y');
234 .		hold off
235	-	<pre>xlabel('time (hour)');</pre>
236	-	<pre>ylabel('Power (MW)');</pre>
237		xlim([0 25]);
238		ylim([-1 75]);
239		title('Demand vs GSS');
240		end
241		if (get (freqs, 'Value'))
242		plotid = plotid + 1;
243		subplot (noPlots, 1, plotid);
244		
	-	
245		<pre>plot(x(i:k), fnew(1:k), '-c'); xlabel('time (hour)');</pre>
245 246	-	plot(x(i:k), fnew(1:k), '-c');
	_	<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)');</pre>
246		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)');</pre>
246 247		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]);</pre>
246 247 248		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]);</pre>
246 247 248 249		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency');</pre>
246 247 248 249 250		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end</pre>
246 247 248 249 250 251		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value'))</pre>
246 247 248 249 250 251 252		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1;</pre>
246 247 248 249 250 251 252 253 254 255		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid);</pre>
246 247 248 249 250 251 252 253 253		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k);</pre>
246 247 248 249 250 251 252 253 254 255		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1)</pre>
246 247 248 249 250 251 252 253 254 255 256		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr);</pre>
246 247 248 250 251 252 253 254 255 256 257		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency(Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill</pre>
246 247 248 249 250 251 252 253 254 255 256 257 258		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gca,'XTickLabel', ' ', 'YTick', 1:11,'YTickLabel',sheds,</pre>
246 247 248 249 250 251 252 253 254 255 256 257 258 259		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gca,'XTickLabel', ','YTick', 1:11,'YTickLabel',sheds, 'GridLineStyle','-','XGrid','on');</pre>
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gca,'XTickLabel', ' ', 'YTick', 1:11,'YTickLabel',sheds, 'GridLineStyle','-','XGrid','on','YGrid','on'); xlim([-4 t0+9]);</pre>
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gca,'XTickLabel', ' ', 'YTick', 1:11,'YTickLabel',sheds, 'GridLineStyle','-','XGrid','on','YGrid','on'); xlim([-4 t0+9]); end title('Feeder Shutdowns'); end</pre>
2446 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency(Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gca,'XTickLabel', ' ', 'YTick', 1:11,'YTickLabel',sheds, 'GridLineStyle','-','XGrid','on','YGrid','on'); xlim([-4 t0+9]); end title('Feeder Shutdowns'); end pause(updateRate);</pre>
2446 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency (Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gea,'XTickLabel', ','YTick', 1:11,'YTickLabel',sheds, 'GridLineStyle','-','XGrid','on','YGrid','on'); xlim([-4 t0+9]); end title('Feeder Shutdowns'); end pause(updateRate);</pre>
2446 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265		<pre>plot(x(i:k),fnew(1:k),'-c'); xlabel('time (hour)'); ylabel('Frequency(Hz)'); xlim([0 25]); ylim([40 60]); title('System Frequency'); end if(get(fdrSht,'Value')) plotid = plotid + 1; subplot(noPlots,1,plotid); mpr = map(:,1:k); if(size(mpr,2) > 1) spy(mpr); axis fill set(gca,'XTickLabel', ' ', 'YTick', 1:11,'YTickLabel',sheds, 'GridLineStyle','-','XGrid','on','YGrid','on'); xlim([-4 t0+9]); end title('Feeder Shutdowns'); end pause(updateRate);</pre>

Appendix-H: 'run.m' file created in MATLAB software to run the simulation.

Bus no.	FEEDER	ID	P(MW)	Q(MVAr)	Subtotal of P (MW)	
3580	KOTUG-3-12 33.000	2	15.6000	3.5487	15.6000	
3650	GALLE-3-4 33.000	3	15.5000	2.4983	31.1000	
3770	KIRIB-3-2 33.000	1	15.5000	2.4983	46.6000	
3600	BOLAW-3-4 33.000	3	13.6500	7.1152	60.2500	
3530	THULH-3-4 33.000	3	12.2500	1.9745	72.5000	
3600	BOLAW-3-8 33.000	5	11.5500	6.0206	84.0500	
3520	NUWAR-3-2 33.000	2	11.5000	7.8875	95.5500	
3890	DEHIW_3-1 33.000	1	11.3500	6.1628	106.9000	
3790	RATMA-3A-9 33.000	5	11.2500	6.9830	118.1500	
3820	ATURU-3-8 33.000	3	11.2000	4.7115	129.3500	
3420	HORANA_3-3 33.000	2	11.1500	7.6475	140.5000	
3200	UKUWE-3-10 33.000	3	11.0500	3.0694	151.5500	
4920	SUB C-11 11.000	1	10.4000	4.8000	161.9500	
3570	BIYAG-3-7 33.000	7	10.0000	4.4810	171.9500	
3580	KOTUG-3-3 33.000	1	10.0000	2.2748	181.9500	
3705	NEWANU-3-(4 and 5) 33.000	1	10.0000	1.6118	191.9500	
3260	MAHIYANGE 3-2 33.000	city o	9.6000	1.5473	Lanka 201.5500	
3570	BIYAG-3-5, 33,000	510 0	9.5000	4.2570	211.0500	
3680	KURUN-3-6, 33.000 Electro	mç i	n <u>9.5660</u>	Lissen	220.5500	
3560	PANNI-3-7 33.000 WWW.1	ıb.ønr	t. 9.4000	4.4593	229.9500	
3590	SAPUG-3A-7 33.000	5	9.3000	6.3786	239.2500	
4435	COL_A_11-1011 11.000	4	9.2000	4.4700	248.4500	CASE STUDY-1
3790	RATMA-3A-2 33.000	1	9.0500	5.6175	257.5000	
3860	MADAM-3-7 33.000	5	9.0000	2.5206	266.5000	
3900	PANNAL-4 33.000	3	8.9500	2.8647	275.4500	
4430	COL_I_11-18 11.000	1	8.9000	4.5670	284.3500	
4435	COL_A_11-22 11.000	3	8.9000	3.5000	293.2500	CASE STUDY-4
3770	KIRIB-3-4 33.000	3	8.9000	1.4345	302.1500	CASE STUDY-2
3850	PANAD-3-2 33.000	1	8.8000	2.4444	310.9500	
3670	MATARA-3-2 33.000	2	8.5000	2.7206	319.4500	
3860	MADAM-3-2 33.000	2	8.5000	2.3805	327.9500	
3570	BIYAG-3-4 33.000	4	8.2500	3.6969	336.2000	
3150	AMPA-3-3 33.00	1	8.1000	1.3056	344.3000	
3570	BIYAG-3-8 33.000	8	8.0000	3.5848	352.3000	
3770	KIRIB-3-7 33.000	5	8.0000	1.2894	360.3000	
3650	GALLE-3-5 33.000	4	7.9000	2.8176	368.2000	
3620	BADUL-3-3 33.000	2	7.8500	1.7857	376.0500	
3910	ANIYA-5 33.000	3	7.7500	3.9689	383.8000	
3560	PANNI-3-9 33.000	8	7.6000	3.6054	391.4000	

Appendix-I: Load Shedding Sequence used in ILS mechanism for PSS/E simulation.

3830 VEVAN-33-4 33.000 2 7.5000 2.1005 398.9000 3600 BOLAW-3-3 33.000 2 7.4000 3.8573 406.3000 3620 BADUL3-5 33.000 5 7.4000 1.1927 413.7000 3620 BADUL3-5 33.000 3 7.3000 1.6666 422.500 3800 MATUG-3-10 33.000 1 7.0000 4.8011 442.5000 3520 NUWAR-3-1 33.000 1 7.0000 1.6605 456.5000 3830 VEYAN-33-3 30.00 1 7.0000 1.1283 470.5000 3830 VEVAN-33-3 30.00 4 7.0000 1.1283 470.5000 3840 PURA_3-6 33.000 4 6.8000 3.0471 491.0300 3840 PURA_3-6 33.000 1 6.8000 1.0424 497.8300 3551 KOLON-3B-G1 3.000 3 6.7500 1.0880 518.300			10				1
3600 BOLAW-3-3 33.000 2 7.4000 3.8573 406.300 3690 HABAR-3-7 33.000 5 7.4000 1.1927 413.7000 3620 BADUL-3-5 33.000 3 7.3000 1.6666 421.0000 3705 NEWANU-3-(6an7) 33.000 2 7.2500 1.1686 435.500 3800 MATUG-3-10 33.000 1 7.0000 3.6488 449.5000 3600 BOLAW-3-2 33.000 1 7.0000 1.1283 463.5000 3700 KIRB-3-6 33.00 2 7.0000 1.1283 463.5000 3150 AMPA-3-5 33.00 4 6.8000 3.000 477.380 3200 UKUWE-3-12 33.000 1 6.8000 3.004 477.380 3200 UKUWE-3-12 33.000 1 6.8000 3.0471 491.0300 3515 KOLON-38-61 3.000 1 6.8000 1.9044 497.8300	Bus no.	FEEDER	ID	P(MW)	Q(MVAr)	Subtotal of P(MW)	-
3690 HABAR-3-7 33.000 5 7.4000 1.1927 413.7000 3620 BADUL-3-5 33.000 3 7.3000 1.6606 421.0000 3705 NEWANU-3-(6and7) 33.000 2 7.2500 1.1686 428.2500 3800 MATUG-3-10 33.000 1 7.0000 4.8011 442.5000 3600 BOLAW-3-2 33.000 1 7.0000 1.6486 435.000 3830 VEYAN-33-3 33.000 1 7.0000 1.1283 463.5000 3150 AMPA-3-5 33.000 2 7.0000 1.1283 463.5000 3200 UKUWE-3-12 33.000 4 6.8500 1.9028 484.2300 3443 JPURA_3-6 33.000 1 6.8000 1.0960 504.6300 3551 KOLON-8B-G1 33.000 1 6.8000 1.0960 504.6300 3670 MATRA-3-4 33.000 2 6.7500 1.0633 538.3000							-
3620 BADUL-3-5 33.000 3 7.3000 1.6606 421.0000 3705 NEWANU-3-(6and7) 33.000 2 7.2500 1.1686 428.2500 3800 MATUG-3-10 33.000 1 7.0000 4.8011 4425.000 3600 BOLAW-3-1 33.000 1 7.0000 1.6605 435.5000 3600 BOLAW-3-2 33.000 1 7.0000 1.5605 455.5000 3150 AMPA-3-5 33.000 2 7.0000 1.1283 463.5000 3150 AMPA-3-5 33.000 4 7.0000 1.1283 470.5000 3150 AMPA-3-5 33.000 4 6.8500 1.9028 484.2300 3200 UKUWE-3-12 33.000 1 6.8000 1.9044 497.8300 3515 KOLON-38-61 33.000 1 6.8000 1.9044 497.8300 3515 KOLON-38-61 3.000 1 6.6000 1.0638 538.0300	-						-
3705 NEWANU-3-(6and7) 33.000 2 7.2500 1.1686 428.2500 3800 MATUG-3-10 33.000 6 7.2500 1.1686 435.5000 3520 NUWAR-3-1 33.000 1 7.0000 4.8011 442.5000 3600 BOLAW-3-2 33.000 1 7.0000 1.9605 456.5000 3830 VEYAN-33-3 33.000 1 7.0000 1.1283 463.5000 3830 VEYAN-3-6 33.000 4 7.0000 1.1283 470.5000 4435 COL_A_11-14 11.000 2 6.8800 3.3000 477.3800 3200 UKUWE-3-12 33.000 1 6.8000 1.0928 484.2300 3515 KOLON-38-G1 33.000 1 6.8000 1.0944 497.8300 3540 BELIATT-3-4 33.000 1 6.8000 1.0944 497.8300 3551 KOLON-38-G1 33.000 1 6.5000 1.0638 53.8300							-
3800 MATUG-3-10 33.000 6 7.2500 1.1686 435.5000 3520 NUWAR-3-1 33.000 1 7.0000 4.8011 442.5000 3600 BOLAW-3-2 33.000 1 7.0000 1.9605 456.5000 3830 VEYAN-33-3 33.000 2 7.0000 1.1283 470.5000 3770 KIRIB-3-6 33.000 2 7.0000 1.1283 470.5000 3403 JPURA_3-6 33.000 4 6.8000 3.0471 491.0300 3501 LKUWE-3-12 33.000 1 6.8000 1.0944 497.8300 3515 KOLON-38-G1 33.000 1 6.8000 1.0960 504.6300 3590 SAPUG-3A-3 33.000 2 6.7500 1.0880 518.1300 3670 MATARA-3-7 33.000 3 6.5000 1.0838 538.30300 3551 KOLON-38-G2 38.000 2 6.6000 1.4786 557.5300							-
3520 NUWAR-3-1 33.000 1 7.0000 4.8011 442.5000 3600 BOLAW-3-2 33.000 1 7.0000 3.6488 449.5000 3830 VEYAN-33-3 33.000 1 7.0000 1.9605 456.5000 3150 AMPA-3-5 33.000 2 7.0000 1.1283 463.5000 3430 VEYAN-33-6 33.000 4 6.8800 3.3000 477.3800 3200 UKUWE-3-12 33.000 4 6.8000 3.0471 491.0300 3840 JPURA_3-6 33.000 1 6.8000 1.0944 497.8300 3400 BELIATT-3-4 33.000 1 6.8000 1.0960 504.6300 3551 KOLON-38-G1 33.000 2 6.7500 4.6296 511.8100 3670 MATAR-3-1 33.000 3 6.5000 1.0638 538.0300 3551 KOLON-38.62 38.000 3 6.5000 1.4786 551.300	-	, ,					-
3600 BOLAW-3-2 33.00 1 7.000 3.6488 449.500 3830 VEYAN-33-3 33.000 1 7.0000 1.9605 456.5000 3150 AMPA-3-5 33.00 2 7.0000 1.1283 463.5000 3770 KIRIB-3-6 33.000 4 7.0000 1.1283 470.5000 4435 COL_A_11-14 11.000 2 6.8800 3.000 477.3800 3200 UKUWE-3-12 33.000 1 6.8000 1.9028 484.2300 3840 JPURA_3-6 33.000 1 6.8000 1.9044 497.8300 3551 KOLON-3B-61 33.000 1 6.8000 1.0960 504.6300 3590 SAPUG-3A-3 33.000 2 6.7500 1.0880 518.1300 3690 HABAR-3-4 33.000 3 6.5000 1.4786 551.300 3518 KOTUG-3-13 33.000 3 6.5000 1.4786 557.5300							-
3830 VEYAN-33-3 33.00 1 7.000 1.9605 456.500 3150 AMPA-3-5 33.00 2 7.0000 1.1283 463.5000 3770 KIRIB-3-6 33.000 4 7.0000 1.1283 470.5000 4435 COL_A_11-14 11.000 2 6.8800 3.3000 477.3800 3840 JPURA_3-6 33.000 4 6.8500 1.9028 484.2300 3840 JPURA_3-6 33.000 1 6.8000 1.9044 497.8300 3515 KOLON-38-G1 33.000 1 6.8000 1.0960 504.6300 3590 SAPUG-3A-3 33.000 3 6.7500 1.0880 513.1300 3670 MATARA-3-7 33.000 3 6.5000 1.0638 534.8300 351 KOLON-38-G2 8.000 6.6000 1.4786 551.300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 557.5300 3580<							-
3150 AMPA-3-5 33.00 2 7.0000 1.1283 463.5000 3770 KIRIB-3-6 33.000 4 7.0000 1.1283 470.5000 4435 COL_A_11-14 11.000 2 6.8800 3.3000 477.3800 3200 UKUWE-3-12 33.000 4 6.8500 1.9028 484.2300 3840 JPURA_3-6 33.000 6 6.8000 3.0471 491.0300 3551 KOLON-3B-G1 33.000 1 6.8000 1.9044 497.8300 3590 SAPUG-3A-3 33.000 2 6.7500 4.6296 511.3800 3670 MATARA-3-4 33.000 3 6.7500 1.0880 538.300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.300 3670 MATARA-3-4 33.000 5 6.4000 3.2776 570.300 <							-
3770 KIRIB-3-6 33.000 4 7.0000 1.1283 470.5000 4435 COL_A_11-14 11.000 2 6.8800 3.3000 477.3800 3200 UKUWE-3-12 33.000 4 6.8500 1.9028 484.2300 3840 JPURA_3-6 33.000 6 6.8000 3.0471 491.0300 3551 KOLON-3B-G1 33.000 1 6.8000 1.9044 497.8300 3540 BELIATT-3-4 33.000 2 6.7500 4.6296 511.3800 3590 SAPUG-3A-3 33.000 3 6.7500 1.0880 518.1300 3690 HABAR-3-4 33.000 3 6.7500 1.0638 538.0300 3670 MATARA-3-7 33.000 3 6.5000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.3000 3580 KOTUG-3-13 33.000 4 6.4000 3.2776 570.3300 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>							-
4435 COL_A_11.14 11.000 2 6.8800 3.3000 477.3800 3200 UKUWE-3-12 33.000 4 6.8500 1.9028 484.2300 3840 JPURA_3-6 33.000 6 6.8000 3.0471 491.0300 3551 KOLON-3B-G1 33.000 1 6.8000 1.9044 497.8300 3590 SAPUG-3A-3 33.000 2 6.7500 4.6296 511.3800 3690 HABAR-3-4 33.000 3 6.7500 1.0880 518.1300 3670 MATARA-3-7 33.000 3 6.7500 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.0638 538.0300 3670 MATARA-3-7 33.000 3 6.5000 1.4786 551.0300 3880 KOTU_NEW-3-9 33.000 4 6.4000 3.2776 570.3300 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>							-
3200 UKUWE-3-12 33.000 4 6.8500 1.9028 484.2300 3840 JPURA_3-6 33.000 6 6.8000 3.0471 491.0300 3551 KOLON-3B-G1 33.000 1 6.8000 1.9044 497.8300 3340 BELIATT-3-4 33.000 1 6.8000 1.0960 504.6300 3551 KOLON-3B-G1 33.000 2 6.7500 4.6296 511.3800 3690 HABAR-3-4 33.000 3 6.7500 1.0880 518.1300 3670 MATARA-3-7 33.000 3 6.7500 1.0638 538.0300 3551 KOLON-3B 62 BE.000 lectro m2 1.6638 538.0300 544.5300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.0300 3580 KOTUG-3-13 33.000 5 6.4000 3.2776 570.3300 3890 DEHIW_3-8 33.000 4 6.2000 2.7782 582.7300							-
3840 JPURA_3.6 33.000 6 6.8000 3.0471 491.0300 3551 KOLON-3B-G1 33.000 1 6.8000 1.9044 497.8300 3340 BELIATT-3-4 33.000 1 6.8000 1.0960 504.6300 3590 SAPUG-3A-3 33.000 2 6.7500 4.6296 511.3800 3690 HABAR-3-4 33.000 3 6.7500 1.0880 513.1300 3670 MATARA-3-7 33.000 3 6.7500 1.0638 538.000 3551 KOLON-38.62 B8.000 2 6.6000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.0300 3580 KOTUG-3-13 33.000 3 6.5000 1.4786 551.0300 3581 KOTU_NEW-3-9 33.000 4 6.4000 3.2776 570.3300 3910 ANIYA-7 33.000 2 6.1000 1.13876 601.1300 <td>4435</td> <td>COL_A_11-14 11.000</td> <td>2</td> <td></td> <td></td> <td>477.3800</td> <td></td>	4435	COL_A_11-14 11.000	2			477.3800	
3551 KOLON-3B-G1 33.000 1 6.8000 1.9044 497.8300 3340 BELIATT-3-4 33.000 1 6.8000 1.0960 504.6300 3590 SAPUG-3A-3 33.000 2 6.7500 4.6296 511.3800 3690 HABAR-3-4 33.000 3 6.7500 1.0880 518.1300 3670 MATARA-3-7 33.000 1 6.6000 1.8484 531.4300 3690 HABAR-3-3 33.000 2 6.6000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.0300 3580 KOTUG-3-13 33.000 3 6.5000 1.4786 551.0300 3581 KOTU_NEW-3-9 33.000 4 6.4000 3.2776 570.3300 3880 AMBALA-6 33.000 2 6.1000 3.1239 595.0300 3910 ANIYA-3 33.000 2 6.1000 3.1239 595.0300	3200	UKUWE-3-12 33.000				484.2300	
3340 BELIATT-3-4 33.000 1 6.8000 1.0960 504.6300 3590 SAPUG-3A-3 33.000 2 6.7500 4.6296 511.3800 3690 HABAR-3-4 33.000 3 6.7500 1.0880 518.1300 3670 MATARA-3-7 33.000 3 6.7500 1.880 518.1300 3551 KOLON-38 (22) BB.000 6.6000 1.8484 1.0880 538.0300 3690 HABAR-3-3 33.000 3 6.5000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.0300 3581 KOTUG-3-13 33.000 1 6.5000 1.4786 557.5300 3890 DEHIW_3-8 33.000 4 6.4000 3.2776 570.3300 4430 COL111.1240 11.000 2 6.2000 1.9000 588.9300 <tr< td=""><td>3840</td><td>JPURA_3-6 33.000</td><td>6</td><td>6.8000</td><td>3.0471</td><td>491.0300</td><td>-</td></tr<>	3840	JPURA_3-6 33.000	6	6.8000	3.0471	491.0300	-
3590 SAPUG-3A-3 33.000 2 6.7500 4.6296 511.3800 3690 HABAR-3-4 33.000 3 6.7500 1.0880 518.1300 3670 MATARA-3-7 33.000 1.0880 518.1300 CASI 3670 MATARA-3-7 33.000 1.0880 518.4300 S18.4300 3551 KOLON-38.62 38.000 1.66200 1.8484rt tions S14.4300 3690 HABAR-3-3 33.000 3 6.5000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 1.4786 551.0300 3581 KOTUG-3-13 33.000 1 6.5000 1.4786 557.5300 3890 DEHIW_3-8 33.000 4 6.4000 3.2776 570.3300 4430 COL_L111240 11.000 2 6.2000 1.9000 588.9300 3910 ANIYA-7 33.000 2 6.1000 3.1239 595.0300 3581 KOTU_NE	3551	KOLON-3B-G1 33.000		6.8000	1.9044	497.8300	-
3690 HABAR-3-4 33.000 3 6.7500 1.0880 518.1300 CASI 3670 MATARA-3-4 33.000 jite of \$7000 1.0880 518.1300 CASI 3551 KOLON-3B 62 B8.000 jet of \$7000 1.0638 531.4300 531.4300 3690 HABAR-3-3 33.000 2 6.6000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 2.0805 544.5300 3580 KOTUG-3-13 33.000 3 6.5000 1.4786 551.0300 3581 KOTU_NEW-3-9 33.000 5 6.4000 3.2776 570.3300 3910 ANIYA-7 33.000 4 6.2000 2.7782 582.7300 3880 AMBALA-6 33.000 2 6.1000 3.1239 595.0300 3880 AMBALA-6 33.000 2 6.1000 1.3876 601.1300 3680 KURUN-3-3 33.000 2 6.0000 2.6886 </td <td>3340</td> <td>BELIATT-3-4 33.000</td> <td></td> <td></td> <td>1.0960</td> <td>504.6300</td> <td>-</td>	3340	BELIATT-3-4 33.000			1.0960	504.6300	-
3670 MATARA-3-7 33.000 Jiver sits 6.7090 12.4445r Lanka 524.8300 3551 KOLON-3B-62 38.000 12 1.6.6000 1.8484r tions 531.4300 3690 HABAR-3-3 33.000 2 6.6000 1.0638 538.0300 3670 MATARA-3-4 33.000 3 6.5000 2.0805 544.5300 3580 KOTUG-3-13 33.000 3 6.5000 1.4786 551.0300 3581 KOTU_NEW-3-9 33.000 1 6.5000 1.4786 557.5300 3890 DEHIW_3-8 33.000 4 6.4000 3.2776 570.3300 3810 COL_L11-1240 11.000 3 6.2000 2.7782 582.7300 3880 AMBALA-6 33.000 2 6.1000 1.3876 601.1300 3880 AMBALA-6 33.000 2 6.0000 2.6886 613.1800 3910 ANIYA-3 33.000 2 6.0000	3590	SAPUG-3A-3 33.000		6.7500	4.6296	511.3800	
3551 KOLON-38-62 BB.000 lectroni2 The 6,000 lectroni2 The 6,000 lectroni2 The 6,000 lectroni2 State State <td>3690</td> <td>HABAR-3-4 33.000</td> <td>3</td> <td>6.7500</td> <td>1.0880</td> <td>51<mark>8.1300</mark></td> <td>CASI</td>	3690	HABAR-3-4 33.000	3	6.7500	1.0880	51 <mark>8.1300</mark>	CASI
3690HABAR-3-33300026.60001.0638538.03003670MATARA-3-433.00036.50002.0805544.53003580KOTUG-3-1333.00036.50001.4786551.03003581KOTU_NEW-3-933.00016.50001.4786557.53003890DEHIW_3-833.00056.40003.4751563.93003910ANIYA-733.00046.40003.2776570.33004430COL_I_11-124011.00036.20003.3000576.53003880AMBALA-633.00046.20002.7782582.73004750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.05000.9751607.18003680KURUN-3-333.00016.00002.6886613.18003500KOSGA-3-133.00016.00002.6886619.18003500KOSGA-3-233.00026.00000.9671631.18003700RATMA-3A-733.00045.95003.6932637.13003340BELIATT-3-633.00025.85004.0124648.88003870K-NIYA-3-233.00025.85004.0124648.8800	3670	MATARA-3-7233.000 Jniver	sity o	f 6.7000a1	uv2:3445ri	Lanka. 524.8300	
3670 MATARA-3-4 33.000 3 6.5000 2.0805 544.5300 3580 KOTUG-3-13 33.000 3 6.5000 1.4786 551.0300 3581 KOTU_NEW-3-9 33.000 1 6.5000 1.4786 557.5300 3890 DEHIW_3-8 33.000 5 6.4000 3.4751 563.9300 3910 ANIYA-7 33.000 4 6.4000 3.2776 570.3300 4430 COL_I_11-1240 11.000 3 6.2000 2.7782 582.7300 3880 AMBALA-6 33.000 4 6.2000 2.7782 582.7300 4750 COL_E-11-10 11.000 2 6.2000 1.9000 588.9300 3910 ANIYA-3 33.000 2 6.1000 3.1239 595.0300 3581 KOTU_NEW-3-11 33.000 2 6.0500 0.9751 607.1800 3440 KATUNA-3-1 33.000 1 6.0000 2.6886 613.1800 <td>3551</td> <td>KOLON-3B-62 BB.000 lectro</td> <td>ni² T</td> <td>h6.6000 &</td> <td>1.8484 Dissert</td> <td>ations 531.4300</td> <td></td>	3551	KOLON-3B-62 BB.000 lectro	ni ² T	h6.6000 &	1.8484 Dissert	ations 531.4300	
3580KOTUG-3-1333.00036.50001.4786551.03003581KOTU_NEW-3-933.00016.50001.4786557.53003890DEHIW_3-833.00056.40003.4751563.93003910ANIYA-733.00046.40003.2776570.33004430COL_I_11-124011.00036.20003.3000576.53003880AMBALA-633.00046.20002.7782582.73004750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.05000.9751607.18003680KURUN-3-333.00016.00002.6886613.18003500KOSGA-3-133.00016.00002.6886613.18003500KOSGA-3-233.00026.00000.9671631.18003700KIRIB-3-1433.00045.95003.6932637.13003340BELIATT-3-633.00025.85004.0124648.88003870K-NIYA-3-233.00025.85004.0124648.8800	3690	HABAR-3-3 33.000	ih 2mm	60012	1.0638	538.0300	
3581KOTU_NEW-3-9 33.00016.50001.4786557.53003890DEHIW_3-833.00056.40003.4751563.93003910ANIYA-733.00046.40003.2776570.33004430COL_I_11-124011.00036.20003.3000576.53003880AMBALA-633.00046.20002.7782582.73004750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.05000.9751607.18003680KURUN-3-333.00016.00002.6886613.18003500KOSGA-3-133.00026.00002.6886619.18003500KOSGA-3-233.00026.00000.9671631.18003700RATMA-3A-733.00045.95003.6932637.13003340BELIATT-3-633.00025.85004.0124648.8800	3670	MATARA-3-4 33.000	.3	6.5000	2.0805	544.5300	
3890DEHIW_3-833.00056.40003.4751563.93003910ANIYA-733.00046.40003.2776570.33004430COL_I_11-124011.00036.20003.3000576.53003880AMBALA-633.00046.20002.7782582.73004750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.05000.9751607.18003680KURUN-3-333.00016.00002.6886613.18003500KOSGA-3-133.00016.00002.6886619.18003500KOSGA-3-233.00026.00000.9671631.18003770KIRIB-3-1433.00045.95003.6932637.13003340BELIATT-3-633.00025.85004.0124648.88003870K-NIYA-3-233.00025.85004.0124648.8800	3580	KOTUG-3-13 33.000	3	6.5000	1.4786	551.0300	
3910ANIYA-733.00046.40003.2776570.33004430COL_I_11-124011.00036.20003.3000576.5300380AMBALA-633.00046.20002.7782582.73004750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.05000.9751607.18003680KURUN-3-333.00016.00002.6886613.18003500KOSGA-3-133.00016.00002.6886619.18003500KOSGA-3-233.00026.00000.9671631.18003770KIRIB-3-1433.00045.95003.6932637.13003790RATMA-3A-733.00035.90000.9510643.03003870K-NIYA-3-233.00025.85004.0124648.8800	3581	KOTU_NEW-3-9 33.000	1	6.5000	1.4786	557.5300	
4430COL_I_11-124011.00036.20003.3000576.5300380AMBALA-633.00046.20002.7782582.73004750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.10001.3876601.13003680KURUN-3-333.00026.05000.9751607.18003440KATUNA-3-133.00016.00002.6886613.18003500KOSGA-3-133.00016.00002.6886619.18003500KOSGA-3-233.00026.00000.9671631.18003770KIRIB-3-1433.00045.95003.6932637.13003340BELIATT-3-633.00025.85004.0124648.88003870K-NIYA-3-233.00025.85004.0124648.8800	3890	DEHIW_3-8 33.000	5	6.4000	3.4751	563.9300	
3880 AMBALA-6 33.000 4 6.2000 2.7782 582.7300 4750 COL_E-11-10 11.000 2 6.2000 1.9000 588.9300 3910 ANIYA-3 33.000 2 6.1000 3.1239 595.0300 3581 KOTU_NEW-3-11 33.000 2 6.1000 1.3876 601.1300 3680 KURUN-3-3 33.000 2 6.0500 0.9751 607.1800 3440 KATUNA-3-1 33.000 1 6.0000 2.6886 613.1800 3500 KOSGA-3-1 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 2 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 4 5.9500 3.6932 637.1300 3790 RATMA-3A-7 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800 </td <td>3910</td> <td>ANIYA-7 33.000</td> <td>4</td> <td>6.4000</td> <td>3.2776</td> <td>570.3300</td> <td></td>	3910	ANIYA-7 33.000	4	6.4000	3.2776	570.3300	
4750COL_E-11-1011.00026.20001.9000588.93003910ANIYA-333.00026.10003.1239595.03003581KOTU_NEW-3-1133.00026.10001.3876601.13003680KURUN-3-333.00026.05000.9751607.18003440KATUNA-3-133.00016.00002.6886613.18003500KOSGA-3-133.00016.00002.6886619.18003500KOSGA-3-233.00026.00002.6886625.18003700KIRIB-3-1433.00066.00000.9671631.18003790RATMA-3A-733.00045.95003.6932637.13003340BELIATT-3-633.00025.85004.0124648.8800	4430	COL_I_11-1240 11.000	3	6.2000	3.3000	576.5300	
3910 ANIYA-3 33.000 2 6.1000 3.1239 595.0300 3581 KOTU_NEW-3-11 33.000 2 6.1000 1.3876 601.1300 3680 KURUN-3-3 33.000 2 6.0500 0.9751 607.1800 3440 KATUNA-3-1 33.000 1 6.0000 2.6886 613.1800 3500 KOSGA-3-1 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 2 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 4 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3880	AMBALA-6 33.000	4	6.2000	2.7782	582.7300	
3581 KOTU_NEW-3-11 33.000 2 6.1000 1.3876 601.1300 3680 KURUN-3-3 33.000 2 6.0500 0.9751 607.1800 3440 KATUNA-3-1 33.000 1 6.0000 2.6886 613.1800 3500 KOSGA-3-1 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 2 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	4750	COL_E-11-10 11.000	2	6.2000	1.9000	588.9300	
3680 KURUN-3-3 33.000 2 6.0500 0.9751 607.1800 3440 KATUNA-3-1 33.000 1 6.0000 2.6886 613.1800 3500 KOSGA-3-1 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 2 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3910	ANIYA-3 33.000	2	6.1000	3.1239	595.0300	
3440 KATUNA-3-1 33.000 1 6.0000 2.6886 613.1800 3500 KOSGA-3-1 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 2 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3581	KOTU_NEW-3-11 33.000	2	6.1000	1.3876	601.1300	
3500 KOSGA-3-1 33.000 1 6.0000 2.6886 619.1800 3500 KOSGA-3-2 33.000 2 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3680	KURUN-3-3 33.000	2	6.0500	0.9751	607.1800	
3500 KOSGA-3-2 33.000 2 6.0000 2.6886 625.1800 3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3440	KATUNA-3-1 33.000	1	6.0000	2.6886	613.1800	
3770 KIRIB-3-14 33.000 6 6.0000 0.9671 631.1800 3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3500	KOSGA-3-1 33.000	1	6.0000	2.6886	619.1800]
3790 RATMA-3A-7 33.000 4 5.9500 3.6932 637.1300 3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3500	KOSGA-3-2 33.000	2	6.0000	2.6886	625.1800]
3340 BELIATT-3-6 33.000 3 5.9000 0.9510 643.0300 3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3770	KIRIB-3-14 33.000	6	6.0000	0.9671	631.1800	1
3870 K-NIYA-3-2 33.000 2 5.8500 4.0124 648.8800	3790	RATMA-3A-7 33.000	4	5.9500	3.6932	637.1300	1
	3340	BELIATT-3-6 33.000	3	5.9000	0.9510	643.0300]
3900 PANNAL-2 33,000 1 5,8500 1,8724 654 7300	3870	K-NIYA-3-2 33.000	2	5.8500	4.0124	648.8800	1
	3900	PANNAL-2 33.000	1	5.8500	1.8724	654.7300	1

CASE STUDY-3

Bus no.	FEEDER	ID	P(MW)	Q(MVAr)	Subtotal of P(MW)
4435	COL A 11-1137 11.000	1	5.6700	2.1110	660.4000
3880	AMBALA-3 33.000	2	5.6500	2.5318	666.0500
3590	SAPUG-3A-11 33.000	8	5.5500	3.8066	671.6000
3510	SITHA-33-6 33.000	4	5.5000	3.0556	677.1000
4430	COL 11-45 11.000	2	5.4000	1.2000	682.5000
3560	PANNI-3-2 33.000	1	5.3500	2.5380	687.8500
3420	HORANA_3-4 33.000	3	5.3000	3.6351	693.1500
3800	 MATUG-3-9 33.000	5	5.2500	0.8462	698.4000
3240	VAVUN-33-4 33.000	3	5.1500	0.8301	703.5500
3870	K-NIYA-3-1 33.000	1	5.1000	3.4979	708.6500
3790	RATMA-3A-3 33.000	2	5.1000	3.1656	713.7500
3680	KURUN-3-2 33.000	1	5.1000	0.8220	718.8500
3570	BIYAG-3-1 33.000	1	5.0000	2.2405	723.8500
3860	MADAM-3-3 33.000	3	5.0000	1.4003	728.8500
3650	GALLE-3-1 33.000	1	5.0000	0.8059	733.8500
3690	HABAR-3-1 33.000	1	5.0000	0.8059	738.8500
3890	DEHIW_3-7 33.000	4	4.9500	2.6878	743.8000
4430	COL_I_11-602 11.000	5	4.9171	1.3330	748.7171
3890	DEHIW_3-6 \$3.000Univer	sit ³ o	f 4,8500a1	112:6335ri	Lanka 753.5671
4760	COL_F-11+624 11.000 lectro	mi ³ T	14.7800 8	1.9800rt	ations 758.3471
3620	BADUL-3-6 33 000 1	4	4.7000	1.0692	763.0471
3740	RATNAP-3-1 33.000	ib.mr	4.6000	2.0613	767.6471
3420	HORANA_3-5 33.000	4	4.5500	3.1207	772.1971
3670	MATARA-3-8 33.000	6	4.5500	1.4563	776.7471
4750	COL_E-11-609 11.000	3	4.5500	1.1000	781.2971
3510	SITHA-33-1 33.000	1	4.5000	2.5000	785.7971
4430	COL_I_11-1130 11.000	4	4.5000	1.3846	790.2971
3680	KURUN-3-4 33.000	3	4.5000	0.7253	794.7971
4435	COL_A_11-571 11.000	5	4.4776	1.0591	799.2747
3600	BOLAW-3-5 33.000	4	4.4000	2.2936	803.6747
3560	PANNI-3-4 33.000	3	4.3500	2.0636	808.0247
3880	AMBALA-4 33.000	3	4.3000	1.9268	812.3247
3500	KOSGA-3-8 33.000	4	4.2500	1.9044	816.5747
3530	THULH-3-5 33.000	4	4.2500	0.6850	820.8247
3440	KATUNA-3-7 33.000	3	4.2000	1.8820	825.0247
3840	JPURA_3-5 33.000	5	4.1500	1.8596	829.1747
3530		1	4.1000	0.6608	833.2747
3510	SITHA-33-2 33.000	2	4.0000	2.2222	837.2747
3820	ATURU-3-6 33.000	2	4.0000	1.6827	841.2747
3860	MADAM-3-4 33.000	4	4.0000	1.1203	845.2747

Bus no.	FEEDER	ID	P(MW)	Q(MVAr)	Subtotal of P(MW)
3850	PANAD-3-3 33.000	2	4.0000	1.1111	849.2747
4750	COL E-11-335 11.000	4	4.0000	1.0000	853.2747
3800	 MATUG-3-8 33.000	4	3.8500	0.6205	857.1247
3670	MATARA-3-6 33.000	4	3.7500	1.2003	860.8747
3260	MAHIYANGE 3-5 33.000	2	3.7500	0.6044	864.6247
3900	PANNAL-7 33.000	6	3.7000	1.1843	868.3247
3720	KILINOCH-3-2 33.000	1	3.6500	1.9819	871.9747
3560	PANNI-3-6 33.000	5	3.6500	1.7315	875.6247
3640	DENIY-3-1 33.000	1	3.6000	0.5802	879.2247
3590	SAPUG-3A-8 33.000	6	3.5500	2.4348	882.7747
4760	COL F-11-54 11.000	2	3.4800	2.5600	886.2547
3590		4	3.4500	2.3663	889.7047
3440	KATUNA-3-8 33.000	4	3.3500	1.5011	893.0547
3690	HABAR-3-8 33.000	6	3.3000	0.5319	896.3547
3560	PANNI-3-8 33.000	7	3.2000	1.5181	899.5547
4750	COL E-11-981 11.000	1	3.2000	0.5000	902.7547
3530		2	3.1000	0.4997	905.8547
3820	ATURU-3-3 33.000	1	3.0000	1.2620	908.8547
3650	GALLE-3-6 S3.000 Univer	sits c	f 3.0000-1	1.0700rj	Lanka. 911.8547
3590	SAPUG-34-933.000Flectro	nił T	12.9000	1.9890 rt	
3880	AMBALA-2 33.000	1	2.9000	1.2995	917.6547
3240	VAVUN-33-1 33.000	ib.mr	2.8500	0.4594	920.5047
3900	PANNAL-5 33.000	4	2.7500	0.8802	923.2547
3650	GALLE-3-2 33.000	2	2.7500	0.4432	926.0047
3690	HABAR-3-6 33.000	4	2.7500	0.4432	928.7547
3620	BADUL-3-1 33.000	1	2.7000	0.6142	931.4547
3551	KOLON-3B-B1 33.000	3	2.6500	0.7422	934.1047
3720	KILINOCH-3-4 33.000	2	2.5000	1.3575	936.6047
4760	COL_F-11-116 11.000	1	2.5000	0.8000	939.1047
3530	THULH-3-6 33.000	5	2.5000	0.4029	941.6047
3720	KILINOCH-3-5 33.000	3	2.4500	1.3303	944.0547
3900	PANNAL-6 33.000	5	2.4500	0.7842	946.5047
4760	COL_F-11-43 11.000	4	2.4000	0.6000	948.9047
3830	VEYAN-33-6 33.000	3	2.2500	0.6301	951.1547
3800	MATUG-3-5 33.000	2	2.1500	0.3465	953.3047
3551	KOLON-3B-B2 33.000	4	2.1000	0.5881	955.4047
3830	VEYAN-33-8 33.000	5	2.0000	0.5601	957.4047
3840	JPURA_3-2 33.000	2	1.8500	0.8290	959.2547
4760	COL_F-11-9 11.000	5	1.8400	0.5600	961.0947
3590	SAPUG-3A-4 33.000	3	1.6000	1.0974	962.6947

Bus no.	FEEDER	ID	P(MW)	Q(MVAr)	Subtotal of P(MW)
3570	BIYAG-3-6 33.000	6	1.5000	0.6722	964.1947
3840	JPURA_3-4 33.000	4	1.3500	0.6049	965.5447
3590	SAPUG-3A-2 33.000	1	1.3000	0.8916	966.8447
3800	MATUG-3-6 33.000	3	1.3000	0.2095	968.1447
3790	RATMA-3A-6 33.000	3	1.2500	0.7759	969.3947
3850	PANAD-3-5 33.000	4	1.2500	0.3472	970.6447
3240	VAVUN-33-6 33.000	4	1.1500	0.1854	971.7947
3420	HORANA_3-2 33.000	1	1.1000	0.7545	972.8947
3240	VAVUN-33-2 33.000	2	1.1000	0.1773	973.9947
3640	DENIY-3-2 33.000	2	1.1000	0.1773	975.0947
3800	MATUG-3-1 33.000	1	1.1000	0.1773	976.1947
3520	NUWAR-3-6 33.000	5	1.0000	0.6859	977.1947
3570	BIYAG-3-3 33.000	3	1.0000	0.4481	978.1947
3830	VEYAN-33-7 33.000	4	1.0000	0.2801	979.1947
3860	MADAM-3-1 33.000	1	1.0000	0.2801	980.1947
3340	BELIATT-3-5 33.000	2	1.0000	0.1612	981.1947
3840	JPURA_3-8 33.000	7	0.9500	0.4257	982.1447
3440	KATUNA-3-2 33.000	2	0.9000	0.4033	983.0447
3560	PANNI-3-3 38.000 Univer	sity o	f 0.5500at	u.Q.2609ri	Lanka. 983.5947
3510	SITHA-33-5 33.000 Electro	ni ³ T	10.5000	0.2778	ations 984.0947
3560	PANNI-3-5 33.000	4	0.3000	0.1423	984.3947
3770	KIRIB-3-3 33.000	ib.mr	0.2500	0.0403	984.6447
3670	MATARA-3-1 33.000	1	0.1000	0.0320	984.7447
3200	UKUWE-3-1 33.000	1	0.0000	0.0000	984.7447
3200	UKUWE-3-3 33.000	2	0.0000	0.0000	984.7447
3500	KOSGA-3-5 33.000	3	0.0000	0.0000	984.7447
3560	PANNI-3-10 33.000	9	0.0000	0.0000	984.7447
3680	KURUN-3-5 33.000	4	0.0000	0.0000	984.7447
3840	JPURA_3-1 33.000	1	0.0000	0.0000	984.7447
3850	PANAD-3-4 33.000	3	0.0000	0.0000	984.7447
3870	K-NIYA-3-3 33.000	3	0.0000	0.0000	984.7447
3890	DEHIW_3-3 33.000	2	0.0000	0.0000	984.7447
3900	PANNAL-3 33.000	2	0.0000	0.0000	984.7447
3910	ANIYA-1 33.000	1	0.0000	0.0000	984.7447
3520	NUWAR-3-4 33.000	3	-1.0000	-0.6859	983.7447